ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Controlled Flow Precipitation as a Valuable Tool for Synthesis

View Author Information
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Department of Pharmaceutical Science, University of Perugia, Via del Liceo, 1, I-06123 Perugia, Italy
Cite this: Org. Process Res. Dev. 2016, 20, 2, 371–375
Publication Date (Web):November 17, 2015
https://doi.org/10.1021/acs.oprd.5b00331
Copyright © 2015 American Chemical Society

    Article Views

    2610

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    In most standard flow process, the formation of solids represents a major problem often leading to obstruction of the flow device and reactor shutdown. However, many reactions produce solid products, and therefore finding ways to process these materials is an important area of research. In this article we demonstrate how a dynamically agitated flow reactor can be a powerful tool to facilitate workup and processing of biphasic solid–liquid flow streams at scale.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.oprd.5b00331.

    • Copy of NMR spectra, mass spectra, and single crystal X-ray diffraction data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Hanlin Yao, Li Wan, Xiaoyu Zhao, Yahui Guo, Jian Zhou, Xiaofan Bo, Yuxin Mao, Zhong Xin. Effective Phosphorylation of 2,2′-Methylene-bis(4,6-di-tert-butyl) Phenol in Continuous Flow Reactors. Organic Process Research & Development 2021, 25 (9) , 2060-2070. https://doi.org/10.1021/acs.oprd.1c00105
    2. Jorge García-Lacuna, Tobias Fleiß, Rachel Munday, Kevin Leslie, Anne O’Kearney-McMullan, Christopher A. Hone, C. Oliver Kappe. Synthesis of the Lipophilic Amine Tail of Abediterol Enabled by Multiphase Flow Transformations. Organic Process Research & Development 2021, 25 (4) , 947-959. https://doi.org/10.1021/acs.oprd.1c00002
    3. Ferdy J. A. G. Coumans, Sharon Mitchell, Jan Schütz, Jonathan Medlock, Javier Pérez-Ramírez. Hydrotalcite-Derived Mixed Oxides for the Synthesis of a Key Vitamin A Intermediate Reducing Waste. ACS Omega 2018, 3 (11) , 15293-15301. https://doi.org/10.1021/acsomega.8b02234
    4. Rasmus A. T. Verdier, Jesper H. Mikkelsen, Anders T. Lindhardt. Studying the Morita-Baylis-Hillman Reaction in Continuous Flow Using Packed Bed Reactors. Organic Process Research & Development 2018, 22 (11) , 1524-1533. https://doi.org/10.1021/acs.oprd.8b00298
    5. Alexander G. O’Brien, Eric M. Ricci, Michel Journet. Dehydration of an Insoluble Urea Byproduct Enables the Condensation of DCC and Malonic Acid in Flow. Organic Process Research & Development 2018, 22 (3) , 399-402. https://doi.org/10.1021/acs.oprd.7b00375
    6. Michael J. Pedersen, Tommy Skovby, Michael J. Mealy, Kim Dam-Johansen, and Søren Kiil . Redesign of a Grignard-Based Active Pharmaceutical Ingredient (API) Batch Synthesis to a Flow Process for the Preparation of Melitracen HCl. Organic Process Research & Development 2018, 22 (2) , 228-235. https://doi.org/10.1021/acs.oprd.7b00368
    7. Marcus Baumann, Ian R. Baxendale, Paolo Filipponi, and Te Hu . Sustainable Flow Synthesis of a Versatile Cyclopentenone Building Block. Organic Process Research & Development 2017, 21 (12) , 2052-2059. https://doi.org/10.1021/acs.oprd.7b00328
    8. Matthew B. Plutschack, Bartholomäus Pieber, Kerry Gilmore, and Peter H. Seeberger . The Hitchhiker’s Guide to Flow Chemistry. Chemical Reviews 2017, 117 (18) , 11796-11893. https://doi.org/10.1021/acs.chemrev.7b00183
    9. Michael J. Pedersen, Tommy Skovby, Michael J. Mealy, Kim Dam-Johansen, and Søren Kiil . A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry. Organic Process Research & Development 2016, 20 (12) , 2043-2049. https://doi.org/10.1021/acs.oprd.6b00223
    10. G. Yaghy, A.S. Tonge, H. Abouhakim, R. Peeling, M. Talford, L. O'Brien, A. Paksy, P. Nevitt, F.L. Muller, B.C. Hanson, T.N. Hunter. Opportunities for process intensification technologies in nuclear effluent treatment: A review of precipitators, adsorbers and separators. Chemical Engineering and Processing - Process Intensification 2023, 191 , 109441. https://doi.org/10.1016/j.cep.2023.109441
    11. Karuna Veeramani, Nagaraj Nayak, Neil R. Cameron, Anil Kumar. Process intensification of dendritic fibrous nanospheres of silica (DFNS) via continuous flow: a scalable and sustainable alternative to the conventional batch synthesis. Reaction Chemistry & Engineering 2023, 8 (4) , 838-848. https://doi.org/10.1039/D2RE00405D
    12. Pedro Brandão, Marta Pineiro, Teresa M.V.D. Pinho e Melo. Flow Chemistry: Sequential Flow Processes for the Synthesis of Heterocycles. 2022, 371-399. https://doi.org/10.1002/9783527832002.ch11
    13. Hugh P. Rice, Yi He, Frans L. Muller, Andrew E. Bayly, Robert Ashe, Andrew Karras, Ali Hassanpour, Richard A. Bourne, Michael Fairweather, Timothy N. Hunter. Physical and numerical characterisation of an agitated tubular reactor (ATR) for intensification of chemical processes. Chemical Engineering and Processing - Process Intensification 2022, 179 , 109067. https://doi.org/10.1016/j.cep.2022.109067
    14. Jianli Chen, Xiaoxuan Xie, Jiming Liu, Zhiqun Yu, Weike Su. Revisiting aromatic diazotization and aryl diazonium salts in continuous flow: highlighted research during 2001–2021. Reaction Chemistry & Engineering 2022, 7 (6) , 1247-1275. https://doi.org/10.1039/D2RE00001F
    15. Shoko Yamazaki. 1,3-Dioxins, Oxathiins, Dithiins and Their Benzo Derivatives. 2022, 776-862. https://doi.org/10.1016/B978-0-12-409547-2.14933-9
    16. José A. Souto. Continuous‐Flow Preparation of Benzotropolones: Combined Batch and Flow Synthesis of Epigenetic Modulators of the (JmjC)‐Containing Domain. ChemistrySelect 2021, 6 (39) , 10717-10721. https://doi.org/10.1002/slct.202102457
    17. Michaela Wernik, Gellért Sipos, Balázs Buchholcz, Ferenc Darvas, Zoltán Novák, Sándor B. Ötvös, C. Oliver Kappe. Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chemistry 2021, 23 (15) , 5625-5632. https://doi.org/10.1039/D1GC02039K
    18. Guido Gambacorta, James S Sharley, Ian R Baxendale. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein Journal of Organic Chemistry 2021, 17 , 1181-1312. https://doi.org/10.3762/bjoc.17.90
    19. Marcus Baumann, Thomas S. Moody, Megan Smyth, Scott Wharry. Overcoming the Hurdles and Challenges Associated with Developing Continuous Industrial Processes. European Journal of Organic Chemistry 2020, 2020 (48) , 7398-7406. https://doi.org/10.1002/ejoc.202001278
    20. Mabel Catalán, Vicente Castro-Castillo, Javier Gajardo-de la Fuente, Jocelyn Aguilera, Jorge Ferreira, Ricardo Ramires-Fernandez, Ivonne Olmedo, Alfredo Molina-Berríos, Charlotte Palominos, Marcelo Valencia, Marta Domínguez, José A. Souto, José A. Jara. Continuous flow synthesis of lipophilic cations derived from benzoic acid as new cytotoxic chemical entities in human head and neck carcinoma cell lines. RSC Medicinal Chemistry 2020, 11 (10) , 1210-1225. https://doi.org/10.1039/D0MD00153H
    21. Pauline Bianchi, Jason D. Williams, C. Oliver Kappe. Oscillatory flow reactors for synthetic chemistry applications. Journal of Flow Chemistry 2020, 10 (3) , 475-490. https://doi.org/10.1007/s41981-020-00105-6
    22. Alex B. Wood, Kakasaheb Y. Nandiwale, Yiming Mo, Bo Jin, Alexander Pomberger, Victor L. Schultz, Fabrice Gallou, Klavs F. Jensen, Bruce H. Lipshutz. Continuous flow Suzuki–Miyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. Green Chemistry 2020, 22 (11) , 3441-3444. https://doi.org/10.1039/D0GC00378F
    23. Zhilong Luo, Xije Wang, Xinchen Fan, Chao Kang, Yang Su, Yaoxuan Zhang, Song Chen. A facile and practical Amination of 4-Fluoronitrobenzene in continuous flow. Journal of Flow Chemistry 2020, 10 (2) , 423-427. https://doi.org/10.1007/s41981-019-00075-4
    24. Cristian Rosso, Sebastian Gisbertz, Jason D. Williams, Hannes P. L. Gemoets, Wouter Debrouwer, Bartholomäus Pieber, C. Oliver Kappe. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry & Engineering 2020, 5 (3) , 597-604. https://doi.org/10.1039/D0RE00036A
    25. Pedro Brandão, Marta Pineiro, Teresa M. V. D. Pinho e Melo. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry 2019, 2019 (43) , 7188-7217. https://doi.org/10.1002/ejoc.201901335
    26. Frederik B. Mortzfeld, Jörg Pietruszka, Ian R. Baxendale. A Simple and Efficient Flow Preparation of Pyocyanin a Virulence Factor of Pseudomonas aeruginosa. European Journal of Organic Chemistry 2019, 2019 (31-32) , 5424-5433. https://doi.org/10.1002/ejoc.201900526
    27. Renan Galaverna, Tom McBride, Julio C. Pastre, Duncan L. Browne. Exploring the generation and use of acylketenes with continuous flow processes. Reaction Chemistry & Engineering 2019, 4 (9) , 1559-1564. https://doi.org/10.1039/C9RE00072K
    28. Luke Rogers, Klavs F. Jensen. Continuous manufacturing – the Green Chemistry promise?. Green Chemistry 2019, 21 (13) , 3481-3498. https://doi.org/10.1039/C9GC00773C
    29. Marcus Baumann. Integrating reactive distillation with continuous flow processing. Reaction Chemistry & Engineering 2019, 4 (2) , 368-371. https://doi.org/10.1039/C8RE00217G
    30. Martin V. Enevoldsen, Jacob Overgaard, Maja S. Pedersen, Anders T. Lindhardt. Organocatalyzed Decarboxylative Trichloromethylation of Morita–Baylis–Hillman Adducts in Batch and Continuous Flow. Chemistry – A European Journal 2018, 24 (5) , 1204-1208. https://doi.org/10.1002/chem.201704972
    31. Seger Van Mileghem, Cedrick Veryser, Wim M. De Borggraeve. Flow-Assisted Synthesis of Heterocycles via Multicomponent Reactions. 2018, 133-159. https://doi.org/10.1007/7081_2018_23
    32. Marcus Baumann. Integrating continuous flow synthesis with in-line analysis and data generation. Organic & Biomolecular Chemistry 2018, 16 (33) , 5946-5954. https://doi.org/10.1039/C8OB01437J
    33. Marcus Baumann, Ian R. Baxendale. A Continuous-Flow Method for the Desulfurization of Substituted Thioimidazoles Applied to the Synthesis of Etomidate Derivatives. European Journal of Organic Chemistry 2017, 2017 (44) , 6518-6524. https://doi.org/10.1002/ejoc.201700833
    34. Klavs F. Jensen. Flow chemistry-Microreaction technology comes of age. AIChE Journal 2017, 63 (3) , 858-869. https://doi.org/10.1002/aic.15642
    35. Marcus Baumann, Ian R Baxendale, Fabien Deplante. A concise flow synthesis of indole-3-carboxylic ester and its derivatisation to an auxin mimic. Beilstein Journal of Organic Chemistry 2017, 13 , 2549-2560. https://doi.org/10.3762/bjoc.13.251
    36. Paolo Filipponi, Ian R. Baxendale. The Generation of a Library of ­Bromodomain-Containing Protein Modulators Expedited by Continuous Flow Synthesis. European Journal of Organic Chemistry 2016, 2016 (11) , 2000-2012. https://doi.org/10.1002/ejoc.201600222
    37. Yiming Mo, Klavs F. Jensen. A miniature CSTR cascade for continuous flow of reactions containing solids. Reaction Chemistry & Engineering 2016, 1 (5) , 501-507. https://doi.org/10.1039/C6RE00132G

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect