ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Well-Defined Aryl-FeII Complexes in Cross-Coupling and C–H Activation Processes

  • Carla Magallón
    Carla Magallón
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
  • Oriol Planas
    Oriol Planas
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
    More by Oriol Planas
  • Steven Roldán-Gómez
    Steven Roldán-Gómez
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
  • Josep M. Luis
    Josep M. Luis
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
  • Anna Company*
    Anna Company
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
    *Email for A.C.: [email protected]
    More by Anna Company
  • , and 
  • Xavi Ribas*
    Xavi Ribas
    Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
    *Email for X.R.: [email protected]
    More by Xavi Ribas
Cite this: Organometallics 2021, 40, 9, 1195–1200
Publication Date (Web):March 9, 2021
https://doi.org/10.1021/acs.organomet.1c00100

Copyright © 2021 American Chemical Society. This publication is licensed under

CC-BY 4.0.
  • Open Access

Article Views

2228

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

Herein we explore the intrinsic organometallic reactivity of iron embedded in a tetradentate N3C macrocyclic ligand scaffold that allows the stabilization of aryl-Fe species, which are key intermediates in Fe-catalyzed cross-coupling and C–H functionalization processes. This study covers C–H activation reactions using MeLH and FeCl2, biaryl C–C coupling product formation through reaction with Grignard reagents, and cross-coupling reactions using MeLBr or HLBr in combination with Fe0(CO)5. Synthesis under light irradiation and moderate heating (50 °C) affords the aryl-FeII complexes [FeII(Br)(MeL)(CO)] (1Me) and [FeII(HL)(CO)2]Br (1H). Exhaustive spectroscopic characterization of these rare low-spin diamagnetic species, including their crystal structures, allowed the investigation of their intrinsic reactivity.

This publication is licensed under

CC-BY 4.0.
  • cc licence
  • by licence

Organoiron species have been invoked for a long time in cross-coupling transformations and C–H functionalization reactions for the formation of C–C products. Early in the 1970s, Kochi reported that simple FeCl3 could catalyze the methylation of haloalkenes with the use of alkyl Grignard reagents. (1,2) Since then, many reports using cheap and nontoxic iron-based catalysts have appeared, highlighting the use of N-methylpyrrolidine (NMP) as an additive. (3−6) More recently, the use of bisphosphine (7−9) ligands or N-heterocyclic carbene (10−13) ligands to tune the reactivity of the in situ formed organoiron species has allowed the development of a variety of cross-coupling C–C bond forming transformations. (14−22) Many iron-catalyzed C–H functionalization protocols have also flourished in the past decade involving Csp2–H and Csp3–H activation, C–C bond forming reactions being the vast majority, (23−25) although some examples of C–X bond formation (X = N, B, Si, O, halides) have also been reported. (26) In the past decade, important advances in understanding the mechanism of these reactions relied on trapping relevant aryl or alkyl organoiron intermediate species. (18,27−31) However, in the particular case of aryl-Fe species bearing directing groups (DG) attached to the substrate, detection of the organometallic species involved in cross-coupling or C–H activation catalysis has been quite elusive for a long time, and only scarce spectroscopic characterization has been reported. Either oxidative addition (32) at Fe0 or σ-bond metathesis at FeII has been proposed to lead to the formation of aryl-FeII species (Scheme 1a). (32,33) Concerted metalation–deprotonation (CMD) by FeII has also been proposed in some cases. (34)

Scheme 1

Scheme 1. Relevant Examples of Iron-Mediated C–H Activation: (a) σ-Bond Metathesis at FeII and Oxidative Addition at Fe0, (b) Low-Spin Aryl-FeII Trapped at Low Temperature, and (c) Reactivity of Well-Defined Aryl-FeII Species formed via C–H Activation or Cross-Coupling to Undergo C–C Coupling (This Work)

Nakamura postulated a cyclometalated iron species as the active intermediate in an arene-containing substrate using the aminoquinoline (AQ) directing group, but actual spectroscopic data on this compound were not reported. (35,36) This lack of mechanistic understanding stems from the metastable character of organoiron species together with their multiple geometries and oxidation and spin states. Recently Neidig reported a series of insightful publications in which the combination of advanced spectroscopic techniques such as Mössbauer spectroscopy and X-ray crystallography proved to be a successful strategy to identify catalytically relevant organoiron species. (37−39)

Moreover, there are very few examples of key low-spin aryl-FeII species stemming from C–H metalation in DG-bearing substrates. One of them was recently trapped by Neidig at very low temperatures using noncyclic substrates with an amide-triazole bidentate directing group (Scheme 1b). (40) Another species was reported by Ackermann featuring a cyclometalated low-spin aryl-FeII-hydride species ligated with a ketone DG and three PMe3 ligands. (41) With regard to well-defined systems featuring aryl-halide oxidative addition processes, Nishiyama reported a low-spin aryl-FeII complex using a bisoxazoline aryl-Br pincer ligand and Fe02(CO)9. (42) Recently, Fout described the synthesis of an aryl-FeII-hydride stabilized within a bis(carbene) pincer CCC ligand, but no reactivity of the aryl-FeII was reported. (43) An alternative strategy to get access to well-defined aryl-FeII species consists of the use of macrocyclic aryl-X and aryl-H model substrates capable of stabilizing otherwise very reactive species. These size-tunable macrocyclic model substrates have been used by our group and others to stabilize square-planar aryl-CuIII, (44) aryl-AgIII, (45) and aryl-NiII, (46) as well as octahedral aryl-CoIII(47) and aryl-MnIII species. (48) Following this strategy, herein we report the reactivity of well-defined octahedral aryl-FeII species and their C–C cross-coupling reactivity with ArMgX reagents (Scheme 1c).

The model arene substrate MeLH was exposed to FeCl2 in CH3CN to obtain the coordination complex [FeII(Cl)2(MeLH)] (1·Cl2) in 86% yield, which was isolated as a yellowish crystalline solid (Figure 1a). Paramagnetic 1H NMR spectroscopy clearly indicated a high-spin FeII species, which was confirmed by X-ray crystallography (Figure 1b). The FeII center featured a pentacoordinated distorted-square-pyramidal geometry (τ = 0.46) (49) with long Fe–N distances (>2.1 Å). Noticeably, the sixth coordination site was occupied by an interaction with the inner aromatic C–H bond of MeLH, which conformed to an incipient CAr-H···Fe interaction (Figure S59). The analogous structure with bromides as counterions was also obtained (1·Br2, τ = 0.46; Figure 1b and Figure S60).

Figure 1

Figure 1. (a) Synthesis of the FeII complex 1·Cl2 and subsequent reactivity with PhMgBr to obtain the biaryl C–C coupling product (MeLPh). (b) Crystal structures of 1·Cl2 and 1·Br2 (ellipsoids set at 50% probability and H atoms removed for clarity, except for inner Ar–H).

These structures suggested that an octahedral geometry featuring an organometallic aryl–Fe bond was feasible, provided the CAr–H activation could be executed. At this point we explored the reactivity of the complex 1·Cl2 with PhMgBr Grignard reagent, seeking for a biaryl coupling product. By performing the reaction in THF at low temperature (−78 °C) for 1 h and warming up the mixture to room temperature for an additional 2 h, we obtained a 66% yield of the Csp2–Csp2 biaryl coupling product (MeLPh) after workup under aerobic conditions (Figure 1a). The product was fully characterized by NMR and HR-ESI-MS (see the Supporting Information). Despite no organoiron species derived from C–H activation could be isolated, the intermediacy of an aryl-iron species is clearly inferred by the obtained coupling product. Whether C–H activation proceeds via σ-bond metathesis or concerted metalation–deprotonation (CMD) at the iron(II) center is difficult to establish. (32−34,50) This prompted us to attempt another synthetic strategy to stabilize and isolate relevant aryl-iron species via aryl-halide oxidative addition at Fe0. Thus, we prepared aryl-Br ligand analogues (RLBr, R = H, Me, tBu; Figure 2a) and reacted them with Fe0(CO)5. In the case of MeLBr, upon overnight photoirradiation (254 nm) at 50 °C, the oxidative addition aryl-FeII product was obtained. The compound [FeII(Br)(MeL)(CO)] (1Me, Figure 2a) was characterized as a low-spin FeII species and displayed diamagnetic NMR spectra (Figures S19–S23), which was directly related to the coordination of the strong-field carbonyl ligand. The crystal structure of 1Me confirmed a distorted-octahedral structure of the FeII center, featuring a short Fe–aryl bond (1.904(3) Å) and a long Fe–Br bond (2.571(2) Å) trans to the aryl moiety, with a CO ligand completing the coordination sphere (Figure 2b). This trans disposition indicated that the reaction must entail an aryl-Br oxidative addition concomitant with a cis to trans rearrangement. (51,52) Indeed, the analogous [FeII(HL)(CO)2]Br complex (1H) featured two CO ligands coordinated to the FeII center and a noncoordinating Br anion, clearly indicating that Br and CO ligands can easily exchange. Indeed, the trans effect of the aryl moiety is visualized by a longer Fe–CO bond trans to the aryl (1.837(3) Å) compared to the Fe–CO bond trans to the pyridine (1.759(3) Å). To evaluate the electronic effects of the tertiary amines, we also prepared the analogous complex [FeII(tBuL)(CO)2]Br (1tBu) (Figure 2a), which was characterized by NMR and HR-ESI-MS.

Figure 2

Figure 2. (a) Experimental conditions for the synthesis of 1tBu, 1Me, and 1H via aryl-Br oxidative addition at Fe0. (b) Crystal structures of 1Me and 1H (monocation shown) (ellipsoids set at 50% probability and H atoms removed for clarity). Selected bond distances (Å): for 1H, Fe–Caryl 1.925(2), Fe–Npy 1.928(2), Fe–N9 2.030(2), Fe–N18 2.034(2), Fe–C20 1.837(3), Fe–C22 1.759(3); for 1Me, Fe–Caryl 1.904(3), Fe–Npy 1.935(3), Fe–N12 2.095(3), Fe–N22 2.102(3), Fe–Br 2.571(2), Fe–C3 1.785(4).

At this point, we centered our efforts on investigating the intrinsic reactivity of [FeII(Br)(MeL)(CO)] (1Me) as a reference compound for well-defined low-spin aryl-FeII species. In order to determine whether this species could be involved in the reaction of the complex 1·Cl2 with the Grignard reagent, we reacted 1Me with PhMgBr under experimental conditions and workup analogous to those described above for 1·Cl2, obtaining a relevant 38% yield of the MeLCOPh product (Figure 3, top). NMR and HR-ESI-MS confirmed the nature of the coupling product, which stemmed from a putative [FeII(MeL)(Ph)(CO)] (1Me-Ph) followed by a CO migratory insertion and reductive elimination to form the aryl–COPh bond in MeLCOPh.

Figure 3

Figure 3. Synthesis of MeLCOPh from well-defined aryl-FeII (top) and synthesis of MeL-COH from MeLBr via 2Me(CO) in an unprecedented amine-to-amide transformation (bottom).

It is worth noting here that the products MeLPh (derived from 1·Cl2) and MeLCOPh (derived from 1Me) are obtained presumably via exposure of [FeII(MeL)(Ph)] and [FeII(MeL)(Ph)(CO)] to O2 (or air) and a subsequent acid/base workup. An evident change in color (UV–vis monitoring, Figures S1 and S2) from dark green to reddish brown was observed upon contact with air, suggesting an oxidation to an FeIII species that triggered the C–C reductive elimination, as reported in other examples. (26,53) Despite cryo-MS analysis at −40 °C of the mixture immediately after exposure to O2, the decay was so fast that only the final coupling product MeLPh was detected as a single peak in the mass spectrum (Figure S2b). Moreover, when the crude mixture containing [FeII(MeL)(Ph)] was quenched with HCl prior to air exposure, MeLH was solely obtained (85%) with no signs of biaryl coupling. Finally, since 1,2- dichloroisobutane (DCIB) is generally used as an oxidant in Fe-catalyzed C–H activations, (26) the addition of 2 equiv of DCIB under N2 to the green species [FeII(MeL)(Ph)] afforded MeLPh in 45% yield, a value slightly lower than that with O2 exposure (66%) (section 7.3 in the Supporting Information). Interestingly, DCIB addition at the beginning of the reaction only afforded a 9% yield of MeLPh, suggesting that oxidation to FeIII at the initial stages is detrimental to the observed chemistry. In line with the latter, catalytic attempts have been unfruitful.

On the basis of all these experimental observations, feasible mechanistic proposals are outlined in Figure 4a for the synthesis of MeLPh and in Figure 4b for the synthesis of MeLCOPh. The reaction of 1·Cl2 with PhMgBr (Figure 4a) affords species A, which undergoes C–H activation, presumably via σ-bond metathesis, to give species B. A second equivalent of the Grignard reagent generates species C, which undergoes oxidative reductive elimination via C+ upon exposure to O2. With regard to the reactivity of 1Me with PhMgBr (Figure 4b), first the Br ligand is exchanged by Ph to afford D, and then a CO migratory insertion occurs to give E-1 or E-2. Both species would form the final product MeLCOPh via reductive elimination. To discern between the two possibilities, the crude compound was treated with HCl(aq) prior to air exposure, and MeLH was obtained as the product in 95% yield. This supports the idea that E-1 is the most plausible intermediate, which is backed by DFT studies (Gibbs energies with respect to D are 6.19 kcal/mol for E-1 and 9.72 kcal/mol for E-2; Figure 4b and the Supporting Information).

Figure 4

Figure 4. (a) Proposed mechanism for the synthesis of MeLPh via FeII-mediated C–H activation. (b) Proposed mechanism for the synthesis of MeLCOPh via the reaction of 1Me with PhMgBr (E-1 and E-2 quintuplet DFT optimized structures shown as insets; see the Supporting Information).

While exploring the reactivity of MeLBr with Fe(CO)5, we also performed the reaction under thermal conditions (100 °C) instead of via photoirradiation (Figure 3, bottom). Strikingly, the nature of the low-spin FeII complex 2Me(CO) obtained after 24 h was completely unexpected. A detailed diamagnetic 1D/2D NMR and FT-IR characterization concluded that a formal CO insertion occurred by amine to amide conversion at a pyridine-benzylic position, still holding the organoiron aryl-FeII moiety: i.e., [FeII(Br)(MeL-CO)(CO)2] (2Me(CO)) (Figure 3). 13C NMR integration of the coordinated CO signal and the lack of a HR-ESI-MS peak clearly points toward the coordination of two CO and one Br ligand to the FeII center, leaving the amide moiety uncoordinated. The amide moiety was corroborated upon protodemetalation, affording MeL-COH as the resulting macrocyclic compound (see the Supporting Information for characterization). To our knowledge, carbonylation into the ligand backbone to transform a tertiary amine to a tertiary amide is unprecedented and is reminiscent of an unreported inverse Curtius-like rearrangement. (54) Although it is not the same transformation, Cantat recently reported the iron-catalyzed amine to amide transformation of an N,N-dimethylaniline substrate by taking advantage of the acylation of a tertiary amine followed by the extrusion of Me+ as MeI. (55) Also, the participation of Fe in Curtius-like rearrangements has only a few precedents, such as the work from Xia, forming isocyanates from hydroxamates through an FeII-nitrenoid complex. (56)

In order to gain insight into the mechanism of this unprecedented reactivity, the well-defined 1Me complex was heated under a CO atmosphere (1 bar). The reaction was monitored by 1H NMR, and formation of 2Me(CO) was observed (14%) just after 2 h, together with the starting 1Me and protodemetalation byproduct (MeLH), thus suggesting that aryl-Br oxidative addition at Fe0 takes place prior to the amine to amide conversion. Also, the nature of the tertiary amine is crucial, since a tBu-N-substituted ligand (tBuLBr) did not undergo the amine to amide transformation, whereas HLBr afforded HL-COH in a sluggish manner (section 8 in the Supporting Information).

In conclusion, model macrocyclic aryl-FeII species have been studied in detail by taking advantage of the stabilizing effect imposed by the macrocyclic N3C-type ligands XLY (X = H, Me; Y = H, Br). The system affords the C–C biaryl cross-coupling products through C–H activation at a FeII complex using ArMgX reagents and the phenylcarbonylation cross-coupling products when well-defined aryl-FeII species are used, featuring C–C coupling with Grignard reagents, concomitantly with CO insertion. Furthermore, the overstabilized 1Me species undergoes at high temperatures an unprecedented CO insertion–carbonylation into the tertiary amine ligand backbone, rendering a tertiary amide quantitatively. Such model aryl-FeII complexes provide a neat mechanistic picture for C–H arylation and cross-coupling reactions that should inspire others in the design of improved Fe-catalyzed bond forming transformations.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.1c00100.

  • Spectroscopic characterization of all compounds, crystallographic data for 1·Cl2, 1·Br2, 1Me, and 1H, and DFT results for D, E-1, and E-2 (PDF)

Accession Codes

CCDC 20461552046158 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Carla Magallón - Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
    • Oriol Planas - Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, SpainOrcidhttp://orcid.org/0000-0003-2038-2678
    • Steven Roldán-Gómez - Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
    • Josep M. Luis - Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, SpainOrcidhttp://orcid.org/0000-0002-2880-8680
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

We acknowledge financial support from the MINECO-Spain for projects PID2019-104498GB-I00 to X.R., PID2019-106699GB-I00 to A.C., and PGC2018-098212-B-C22 to J.M.L. The Generalitat de Catalunya is also acknowledged for projects 2017SGR264 and 2017SGR39. We thank the UdG for a IFUdG Ph.D. grant to C.M. and the MINECO for an FPI grant to S.R.-G. We also thank COST Action CHAOS (CA15106). X.R. and A.C. are thankful for an ICREA Acadèmia award. The authors are grateful to STR-UdG for technical support.

References

ARTICLE SECTIONS
Jump To

This article references 56 other publications.

  1. 1
    Tamura, M.; Kochi, J. Iron catalysis in the reaction of grignard reagents with alkyl halides. J. Organomet. Chem. 1971, 31, 289309,  DOI: 10.1016/S0022-328X(00)86239-7
  2. 2
    Tamura, M.; Kochi, J. K. Vinylation of Grignard reagents. Catalysis by iron. J. Am. Chem. Soc. 1971, 93, 14871489,  DOI: 10.1021/ja00735a030
  3. 3
    Cahiez, G.; Avedissian, H. Highly Stereo- and Chemoselective Iron-Catalyzed Alkenylation of Organomagnesium Compounds. Synthesis 1998, 1998, 11991205,  DOI: 10.1055/s-1998-2135
  4. 4
    Sears, J. D.; Muñoz, S. B., III; Daifuku, S. L.; Shaps, A. A.; Carpenter, S. H.; Brennessel, W. W.; Neidig, M. L. The Effect of β-Hydrogen Atoms on Iron Speciation in Cross-Couplings with Simple Iron Salts and Alkyl Grignard Reagents. Angew. Chem., Int. Ed. 2019, 58, 27692773,  DOI: 10.1002/anie.201813578
  5. 5
    Gärtner, D.; Stein, A. L.; Grupe, S.; Arp, J.; Jacobi von Wangelin, A. Iron-Catalyzed Cross-Coupling of Alkenyl Acetates. Angew. Chem., Int. Ed. 2015, 54, 1054510549,  DOI: 10.1002/anie.201504524
  6. 6
    Cahiez, G.; Duplais, C.; Moyeux, A. Iron-Catalyzed Alkylation of Alkenyl Grignard Reagents. Org. Lett. 2007, 9, 32533254,  DOI: 10.1021/ol7016092
  7. 7
    Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. Iron-Catalyzed Suzuki–Miyaura Coupling of Alkyl Halides. J. Am. Chem. Soc. 2010, 132, 1067410676,  DOI: 10.1021/ja103973a
  8. 8
    Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Tuning Chemoselectivity in Iron-Catalyzed Sonogashira-Type Reactions Using a Bisphosphine Ligand with Peripheral Steric Bulk: Selective Alkynylation of Nonactivated Alkyl Halides. Angew. Chem., Int. Ed. 2011, 50, 1097310976,  DOI: 10.1002/anie.201104125
  9. 9
    Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Iron-Catalyzed Alkyl–Alkyl Suzuki–Miyaura Coupling. Angew. Chem., Int. Ed. 2012, 51, 88348837,  DOI: 10.1002/anie.201202797
  10. 10
    Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird, M. Iron–Phosphine, – Phosphite, – Arsine, and – Carbene Catalysts for the Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents. J. Org. Chem. 2006, 71, 11041110,  DOI: 10.1021/jo052250+
  11. 11
    Ghorai, S. K.; Jin, M.; Hatakeyama, T.; Nakamura, M. Cross-Coupling of Non-activated Chloroalkanes with Aryl Grignard Reagents in the Presence of Iron/N-Heterocyclic Carbene Catalysts. Org. Lett. 2012, 14, 10661069,  DOI: 10.1021/ol2031729
  12. 12
    Guisán-Ceinos, M.; Tato, F.; Buñuel, E.; Calle, P.; Cárdenas, D. J. Fe-catalysed Kumada-type alkyl–alkyl cross-coupling. Evidence for the intermediacy of Fe(i) complexes. Chem. Sci. 2013, 4, 10981104,  DOI: 10.1039/c2sc21754f
  13. 13
    Hatakeyama, T.; Nakamura, M. Iron-Catalyzed Selective Biaryl Coupling: Remarkable Suppression of Homocoupling by the Fluoride Anion. J. Am. Chem. Soc. 2007, 129, 98449845,  DOI: 10.1021/ja073084l
  14. 14
    Dongol, K. G.; Koh, H.; Sau, M.; Chai, C. L. L. Iron-Catalysed sp3–sp3 Cross-Coupling Reactions of Unactivated Alkyl Halides with Alkyl Grignard Reagents. Adv. Synth. Catal. 2007, 349, 10151018,  DOI: 10.1002/adsc.200600383
  15. 15
    Jin, M.; Adak, L.; Nakamura, M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015, 137, 71287134,  DOI: 10.1021/jacs.5b02277
  16. 16
    Chua, Y.-Y.; Duong, H. A. Selective Kumada biaryl cross-coupling reaction enabled by an iron(iii) alkoxide–N-heterocyclic carbene catalyst system. Chem. Commun. 2014, 50, 84248427,  DOI: 10.1039/c4cc02930e
  17. 17
    O’Brien, H. M.; Manzotti, M.; Abrams, R. D.; Elorriaga, D.; Sparkes, H. A.; Davis, S. A.; Bedford, R. B. Iron-catalysed substrate-directed Suzuki biaryl cross-coupling. Nat. Catal. 2018, 1, 429437,  DOI: 10.1038/s41929-018-0081-x
  18. 18
    Przyojski, J. A.; Veggeberg, K. P.; Arman, H. D.; Tonzetich, Z. J. Mechanistic Studies of Catalytic Carbon–Carbon Cross-Coupling by Well-Defined Iron NHC Complexes. ACS Catal. 2015, 5, 59385946,  DOI: 10.1021/acscatal.5b01445
  19. 19
    Sherry, B. D.; Fürstner, A. The Promise and Challenge of Iron-Catalyzed Cross Coupling. Acc. Chem. Res. 2008, 41, 15001511,  DOI: 10.1021/ar800039x
  20. 20
    Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.; Ilies, L.; Nakamura, M., Iron-Catalyzed Cross-Coupling Reactions. In Organic Reactions; Wiley: 2014; Vol. 83, pp 1210.
  21. 21
    Piontek, A.; Bisz, E.; Szostak, M. Iron-Catalyzed Cross-Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angew. Chem., Int. Ed. 2018, 57, 1111611128,  DOI: 10.1002/anie.201800364
  22. 22
    Lübken, D.; Saxarra, M.; Kalesse, M. Tris(acetylacetonato) Iron(III): Recent Developments and Synthetic Applications. Synthesis 2019, 51, 161177,  DOI: 10.1055/s-0037-1610393
  23. 23
    Ilies, L.; Asako, S.; Nakamura, E. Iron-Catalyzed Stereospecific Activation of Olefinic C–H Bonds with Grignard Reagent for Synthesis of Substituted Olefins. J. Am. Chem. Soc. 2011, 133, 76727675,  DOI: 10.1021/ja2017202
  24. 24
    Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. Iron-Catalyzed C(sp2)–H Bond Functionalization with Organoboron Compounds. J. Am. Chem. Soc. 2014, 136, 1434914352,  DOI: 10.1021/ja5070763
  25. 25
    Ilies, L.; Ichikawa, S.; Asako, S.; Matsubara, T.; Nakamura, E. Iron-Catalyzed Directed Alkylation of Alkenes and Arenes with Alkylzinc Halides. Adv. Synth. Catal. 2015, 357, 21752179,  DOI: 10.1002/adsc.201500276
  26. 26
    Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C–H Bond Activation. Chem. Rev. 2017, 117, 90869139,  DOI: 10.1021/acs.chemrev.6b00772
  27. 27
    Fürstner, A. Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS Cent. Sci. 2016, 2, 778789,  DOI: 10.1021/acscentsci.6b00272
  28. 28
    Bauer, I.; Knölker, H.-J. Iron Catalysis in Organic Synthesis. Chem. Rev. 2015, 115, 31703387,  DOI: 10.1021/cr500425u
  29. 29
    Bedford, R. B.; Brenner, P. B.; Carter, E.; Cogswell, P. M.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Nunn, J.; Woodall, C. H. TMEDA in Iron-Catalyzed Kumada Coupling: Amine Adduct versus Homoleptic “ate” Complex Formation. Angew. Chem., Int. Ed. 2014, 53, 18041808,  DOI: 10.1002/anie.201308395
  30. 30
    Liu, Y.; Xiao, J.; Wang, L.; Song, Y.; Deng, L. Carbon–Carbon Bond Formation Reactivity of a Four-Coordinate NHC-Supported Iron(II) Phenyl Compound. Organometallics 2015, 34, 599605,  DOI: 10.1021/om501061b
  31. 31
    Zhurkin, F. E.; Wodrich, M. D.; Hu, X. A Monometallic Iron(I) Organoferrate. Organometallics 2017, 36, 499501,  DOI: 10.1021/acs.organomet.6b00841
  32. 32
    Camadanli, S.; Beck, R.; Flörke, U.; Klein, H.-F. C–H Activation of Imines by Trimethylphosphine-Supported Iron Complexes and Their Reactivities. Organometallics 2009, 28, 23002310,  DOI: 10.1021/om800828j
  33. 33
    Shi, Y.; Li, M.; Hu, Q.; Li, X.; Sun, H. C–Cl Bond Activation of ortho-Chlorinated Imine with Iron Complexes in Low Oxidation States. Organometallics 2009, 28, 22062210,  DOI: 10.1021/om801162u
  34. 34
    Wunderlich, S. H.; Knochel, P. Preparation of Functionalized Aryl Iron(II) Compounds and a Nickel-Catalyzed Cross-Coupling with Alkyl Halides. Angew. Chem., Int. Ed. 2009, 48, 97179720,  DOI: 10.1002/anie.200905196
  35. 35
    Asako, S.; Ilies, L.; Nakamura, E. Iron-Catalyzed Ortho-Allylation of Aromatic Carboxamides with Allyl Ethers. J. Am. Chem. Soc. 2013, 135, 1775517757,  DOI: 10.1021/ja4106368
  36. 36
    Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. Synthesis of Anthranilic Acid Derivatives through Iron-Catalyzed Ortho Amination of Aromatic Carboxamides with N-Chloroamines. J. Am. Chem. Soc. 2014, 136, 646649,  DOI: 10.1021/ja412521k
  37. 37
    Daifuku, S. L.; Al-Afyouni, M. H.; Snyder, B. E. R.; Kneebone, J. L.; Neidig, M. L. A Combined Mössbauer, Magnetic Circular Dichroism, and Density Functional Theory Approach for Iron Cross-Coupling Catalysis: Electronic Structure, In Situ Formation, and Reactivity of Iron-Mesityl-Bisphosphines. J. Am. Chem. Soc. 2014, 136, 91329143,  DOI: 10.1021/ja503596m
  38. 38
    Neidig, M. L.; Carpenter, S. H.; Curran, D. J.; DeMuth, J. C.; Fleischauer, V. E.; Iannuzzi, T. E.; Neate, P. G. N.; Sears, J. D.; Wolford, N. J. Development and Evolution of Mechanistic Understanding in Iron-Catalyzed Cross-Coupling. Acc. Chem. Res. 2019, 52, 140150,  DOI: 10.1021/acs.accounts.8b00519
  39. 39
    Neate, P. G. N.; Greenhalgh, M. D.; Brennessel, W. W.; Thomas, S. P.; Neidig, M. L. Mechanism of the Bis(imino)pyridine-Iron-Catalyzed Hydromagnesiation of Styrene Derivatives. J. Am. Chem. Soc. 2019, 141, 1009910108,  DOI: 10.1021/jacs.9b04869
  40. 40
    Boddie, T. E.; Carpenter, S. H.; Baker, T. M.; DeMuth, J. C.; Cera, G.; Brennessel, W. W.; Ackermann, L.; Neidig, M. L. Identification and Reactivity of Cyclometalated Iron(II) Intermediates in Triazole-Directed Iron-Catalyzed C–H Activation. J. Am. Chem. Soc. 2019, 141, 1233812345,  DOI: 10.1021/jacs.9b05269
  41. 41
    Messinis, A. M.; Finger, L. H.; Hu, L.; Ackermann, L. Allenes for Versatile Iron-Catalyzed C–H Activation by Weak O-Coordination: Mechanistic Insights by Kinetics, Intermediate Isolation, and Computation. J. Am. Chem. Soc. 2020, 142, 1310213111,  DOI: 10.1021/jacs.0c04837
  42. 42
    Hosokawa, S.; Ito, J.-i.; Nishiyama, H. A Chiral Iron Complex Containing a Bis(oxazolinyl)phenyl Ligand: Preparation and Asymmetric Hydrosilylation of Ketones. Organometallics 2010, 29, 57735775,  DOI: 10.1021/om1009186
  43. 43
    Jackson, B. J.; Najera, D. C.; Matson, E. M.; Woods, T. J.; Bertke, J. A.; Fout, A. R. Synthesis and Characterization of (DIPPCCC)Fe Complexes: A Zwitterionic Metalation Method and CO2 Reactivity. Organometallics 2019, 38, 29432952,  DOI: 10.1021/acs.organomet.9b00271
  44. 44
    Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X. Direct Observation of CuI/CuIII Redox Steps Relevant to Ullmann-Type Coupling Reactions. Chem. Sci. 2010, 1, 326330,  DOI: 10.1039/c0sc00245c
  45. 45
    Font, M.; Acuña-Parés, F.; Parella, T.; Serra, J.; Luis, J. M.; Lloret-Fillol, J.; Costas, M.; Ribas, X. Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis. Nat. Commun. 2014, 5, 4373,  DOI: 10.1038/ncomms5373
  46. 46
    Rovira, M.; Roldán-Gómez, S.; Martin-Diaconescu, V.; Whiteoak, C. J.; Company, A.; Luis, J. M.; Ribas, X. Trifluoromethylation of a Well-Defined Square-Planar Aryl-NiII Complex involving NiIII/CF3. and NiIV–CF3 Intermediate Species. Chem. - Eur. J. 2017, 23, 1166211668,  DOI: 10.1002/chem.201702168
  47. 47
    Planas, O.; Roldán-Gómez, S.; Martin-Diaconescu, V.; Parella, T.; Luis, J. M.; Company, A.; Ribas, X. Carboxylate-Assisted Formation of Aryl-Co(III) Masked-Carbenes in Cobalt-Catalyzed C–H Functionalization with Diazo Esters. J. Am. Chem. Soc. 2017, 139, 1464914655,  DOI: 10.1021/jacs.7b07880
  48. 48
    Sarbajna, A.; He, Y.-T.; Dinh, M. H.; Gladkovskaya, O.; Rahaman, S. M. W.; Karimata, A.; Khaskin, E.; Lapointe, S.; Fayzullin, R. R.; Khusnutdinova, J. R. Aryl–X Bond-Forming Reductive Elimination from High-Valent Mn–Aryl Complexes. Organometallics 2019, 38, 44094419,  DOI: 10.1021/acs.organomet.9b00494
  49. 49
    Addison, A. W.; Rao, T. N.; Reedijk, J.; Van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulfur donor ligands: the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 7, 134946,  DOI: 10.1039/DT9840001349
  50. 50
    Beck, R.; Sun, H.; Li, X.; Camadanli, S.; Klein, H.-F. Cyclometalation of Thiobenzophenones with Mononuclear Methyliron and -cobalt Complexes. Eur. J. Inorg. Chem. 2008, 2008, 32533257,  DOI: 10.1002/ejic.200800397
  51. 51
    Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. The chemistry of 2-naphthyl bis[bis(dimethylphosphino)ethane] hydride complexes of iron, ruthenium, and osmium. 1. Characterization and reactions with hydrogen and Lewis base ligands. J. Am. Chem. Soc. 1978, 100, 40804089,  DOI: 10.1021/ja00481a016
  52. 52
    Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. Chemistry of 2-naphthyl bis[bis(dimethylphosphino)ethane] hydride complexes of iron, ruthenium, and osmium. 3. Cleavage of sp2 carbon-hydrogen bonds. J. Am. Chem. Soc. 1979, 101, 17421751,  DOI: 10.1021/ja00501a017
  53. 53
    Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Iron-Catalyzed Direct Arylation of Aryl Pyridines and Imines Using Oxygen as an Oxidant. Synlett 2010, 2010, 313316,  DOI: 10.1055/s-0029-1219184
  54. 54
    Ghosh, A. K.; Sarkar, A.; Brindisi, M. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Org. Biomol. Chem. 2018, 16, 20062027,  DOI: 10.1039/C8OB00138C
  55. 55
    Nasr Allah, T.; Savourey, S.; Berthet, J.-C.; Nicolas, E.; Cantat, T. Carbonylation of C–N Bonds in Tertiary Amines Catalyzed by Low-Valent Iron Catalysts. Angew. Chem., Int. Ed. 2019, 58, 1088410887,  DOI: 10.1002/anie.201903740
  56. 56
    Li, D.; Wu, T.; Liang, K.; Xia, C. Curtius-like Rearrangement of an Iron–Nitrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes. Org. Lett. 2016, 18, 22282231,  DOI: 10.1021/acs.orglett.6b00864

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 2 publications.

  1. Kwok-Chung Law, Zhou Tang, Liangliang Wu, Qingyun Wan, Wai-Pong To, Xiaoyong Chang, Kam-Hung Low, Yungen Liu, Chi-Ming Che. Cyclometalated Iron and Ruthenium Complexes Supported by a Tetradentate Ligand Scaffold with Mixed O, N, and C Donor Atoms: Synthesis, Structures, and Excited-State Properties. Organometallics 2022, 41 (4) , 418-429. https://doi.org/10.1021/acs.organomet.1c00677
  2. Carolina Torres‐Gutiérrez, Aldo S. Estrada‐Montaño, Christophe Orvain, Georg Mellitzer, Christian Gaiddon, Ronan Le Lagadec. Synthesis of Cytotoxic Iron‐Containing Macrocycles Through Unexpected C(sp 2 )−C(sp 2 ) Bonds Formation. European Journal of Inorganic Chemistry 2023, 26 (23) https://doi.org/10.1002/ejic.202300139
  • Abstract

    Scheme 1

    Scheme 1. Relevant Examples of Iron-Mediated C–H Activation: (a) σ-Bond Metathesis at FeII and Oxidative Addition at Fe0, (b) Low-Spin Aryl-FeII Trapped at Low Temperature, and (c) Reactivity of Well-Defined Aryl-FeII Species formed via C–H Activation or Cross-Coupling to Undergo C–C Coupling (This Work)

    Figure 1

    Figure 1. (a) Synthesis of the FeII complex 1·Cl2 and subsequent reactivity with PhMgBr to obtain the biaryl C–C coupling product (MeLPh). (b) Crystal structures of 1·Cl2 and 1·Br2 (ellipsoids set at 50% probability and H atoms removed for clarity, except for inner Ar–H).

    Figure 2

    Figure 2. (a) Experimental conditions for the synthesis of 1tBu, 1Me, and 1H via aryl-Br oxidative addition at Fe0. (b) Crystal structures of 1Me and 1H (monocation shown) (ellipsoids set at 50% probability and H atoms removed for clarity). Selected bond distances (Å): for 1H, Fe–Caryl 1.925(2), Fe–Npy 1.928(2), Fe–N9 2.030(2), Fe–N18 2.034(2), Fe–C20 1.837(3), Fe–C22 1.759(3); for 1Me, Fe–Caryl 1.904(3), Fe–Npy 1.935(3), Fe–N12 2.095(3), Fe–N22 2.102(3), Fe–Br 2.571(2), Fe–C3 1.785(4).

    Figure 3

    Figure 3. Synthesis of MeLCOPh from well-defined aryl-FeII (top) and synthesis of MeL-COH from MeLBr via 2Me(CO) in an unprecedented amine-to-amide transformation (bottom).

    Figure 4

    Figure 4. (a) Proposed mechanism for the synthesis of MeLPh via FeII-mediated C–H activation. (b) Proposed mechanism for the synthesis of MeLCOPh via the reaction of 1Me with PhMgBr (E-1 and E-2 quintuplet DFT optimized structures shown as insets; see the Supporting Information).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 56 other publications.

    1. 1
      Tamura, M.; Kochi, J. Iron catalysis in the reaction of grignard reagents with alkyl halides. J. Organomet. Chem. 1971, 31, 289309,  DOI: 10.1016/S0022-328X(00)86239-7
    2. 2
      Tamura, M.; Kochi, J. K. Vinylation of Grignard reagents. Catalysis by iron. J. Am. Chem. Soc. 1971, 93, 14871489,  DOI: 10.1021/ja00735a030
    3. 3
      Cahiez, G.; Avedissian, H. Highly Stereo- and Chemoselective Iron-Catalyzed Alkenylation of Organomagnesium Compounds. Synthesis 1998, 1998, 11991205,  DOI: 10.1055/s-1998-2135
    4. 4
      Sears, J. D.; Muñoz, S. B., III; Daifuku, S. L.; Shaps, A. A.; Carpenter, S. H.; Brennessel, W. W.; Neidig, M. L. The Effect of β-Hydrogen Atoms on Iron Speciation in Cross-Couplings with Simple Iron Salts and Alkyl Grignard Reagents. Angew. Chem., Int. Ed. 2019, 58, 27692773,  DOI: 10.1002/anie.201813578
    5. 5
      Gärtner, D.; Stein, A. L.; Grupe, S.; Arp, J.; Jacobi von Wangelin, A. Iron-Catalyzed Cross-Coupling of Alkenyl Acetates. Angew. Chem., Int. Ed. 2015, 54, 1054510549,  DOI: 10.1002/anie.201504524
    6. 6
      Cahiez, G.; Duplais, C.; Moyeux, A. Iron-Catalyzed Alkylation of Alkenyl Grignard Reagents. Org. Lett. 2007, 9, 32533254,  DOI: 10.1021/ol7016092
    7. 7
      Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. Iron-Catalyzed Suzuki–Miyaura Coupling of Alkyl Halides. J. Am. Chem. Soc. 2010, 132, 1067410676,  DOI: 10.1021/ja103973a
    8. 8
      Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Tuning Chemoselectivity in Iron-Catalyzed Sonogashira-Type Reactions Using a Bisphosphine Ligand with Peripheral Steric Bulk: Selective Alkynylation of Nonactivated Alkyl Halides. Angew. Chem., Int. Ed. 2011, 50, 1097310976,  DOI: 10.1002/anie.201104125
    9. 9
      Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Iron-Catalyzed Alkyl–Alkyl Suzuki–Miyaura Coupling. Angew. Chem., Int. Ed. 2012, 51, 88348837,  DOI: 10.1002/anie.201202797
    10. 10
      Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird, M. Iron–Phosphine, – Phosphite, – Arsine, and – Carbene Catalysts for the Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents. J. Org. Chem. 2006, 71, 11041110,  DOI: 10.1021/jo052250+
    11. 11
      Ghorai, S. K.; Jin, M.; Hatakeyama, T.; Nakamura, M. Cross-Coupling of Non-activated Chloroalkanes with Aryl Grignard Reagents in the Presence of Iron/N-Heterocyclic Carbene Catalysts. Org. Lett. 2012, 14, 10661069,  DOI: 10.1021/ol2031729
    12. 12
      Guisán-Ceinos, M.; Tato, F.; Buñuel, E.; Calle, P.; Cárdenas, D. J. Fe-catalysed Kumada-type alkyl–alkyl cross-coupling. Evidence for the intermediacy of Fe(i) complexes. Chem. Sci. 2013, 4, 10981104,  DOI: 10.1039/c2sc21754f
    13. 13
      Hatakeyama, T.; Nakamura, M. Iron-Catalyzed Selective Biaryl Coupling: Remarkable Suppression of Homocoupling by the Fluoride Anion. J. Am. Chem. Soc. 2007, 129, 98449845,  DOI: 10.1021/ja073084l
    14. 14
      Dongol, K. G.; Koh, H.; Sau, M.; Chai, C. L. L. Iron-Catalysed sp3–sp3 Cross-Coupling Reactions of Unactivated Alkyl Halides with Alkyl Grignard Reagents. Adv. Synth. Catal. 2007, 349, 10151018,  DOI: 10.1002/adsc.200600383
    15. 15
      Jin, M.; Adak, L.; Nakamura, M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015, 137, 71287134,  DOI: 10.1021/jacs.5b02277
    16. 16
      Chua, Y.-Y.; Duong, H. A. Selective Kumada biaryl cross-coupling reaction enabled by an iron(iii) alkoxide–N-heterocyclic carbene catalyst system. Chem. Commun. 2014, 50, 84248427,  DOI: 10.1039/c4cc02930e
    17. 17
      O’Brien, H. M.; Manzotti, M.; Abrams, R. D.; Elorriaga, D.; Sparkes, H. A.; Davis, S. A.; Bedford, R. B. Iron-catalysed substrate-directed Suzuki biaryl cross-coupling. Nat. Catal. 2018, 1, 429437,  DOI: 10.1038/s41929-018-0081-x
    18. 18
      Przyojski, J. A.; Veggeberg, K. P.; Arman, H. D.; Tonzetich, Z. J. Mechanistic Studies of Catalytic Carbon–Carbon Cross-Coupling by Well-Defined Iron NHC Complexes. ACS Catal. 2015, 5, 59385946,  DOI: 10.1021/acscatal.5b01445
    19. 19
      Sherry, B. D.; Fürstner, A. The Promise and Challenge of Iron-Catalyzed Cross Coupling. Acc. Chem. Res. 2008, 41, 15001511,  DOI: 10.1021/ar800039x
    20. 20
      Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.; Ilies, L.; Nakamura, M., Iron-Catalyzed Cross-Coupling Reactions. In Organic Reactions; Wiley: 2014; Vol. 83, pp 1210.
    21. 21
      Piontek, A.; Bisz, E.; Szostak, M. Iron-Catalyzed Cross-Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angew. Chem., Int. Ed. 2018, 57, 1111611128,  DOI: 10.1002/anie.201800364
    22. 22
      Lübken, D.; Saxarra, M.; Kalesse, M. Tris(acetylacetonato) Iron(III): Recent Developments and Synthetic Applications. Synthesis 2019, 51, 161177,  DOI: 10.1055/s-0037-1610393
    23. 23
      Ilies, L.; Asako, S.; Nakamura, E. Iron-Catalyzed Stereospecific Activation of Olefinic C–H Bonds with Grignard Reagent for Synthesis of Substituted Olefins. J. Am. Chem. Soc. 2011, 133, 76727675,  DOI: 10.1021/ja2017202
    24. 24
      Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. Iron-Catalyzed C(sp2)–H Bond Functionalization with Organoboron Compounds. J. Am. Chem. Soc. 2014, 136, 1434914352,  DOI: 10.1021/ja5070763
    25. 25
      Ilies, L.; Ichikawa, S.; Asako, S.; Matsubara, T.; Nakamura, E. Iron-Catalyzed Directed Alkylation of Alkenes and Arenes with Alkylzinc Halides. Adv. Synth. Catal. 2015, 357, 21752179,  DOI: 10.1002/adsc.201500276
    26. 26
      Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C–H Bond Activation. Chem. Rev. 2017, 117, 90869139,  DOI: 10.1021/acs.chemrev.6b00772
    27. 27
      Fürstner, A. Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS Cent. Sci. 2016, 2, 778789,  DOI: 10.1021/acscentsci.6b00272
    28. 28
      Bauer, I.; Knölker, H.-J. Iron Catalysis in Organic Synthesis. Chem. Rev. 2015, 115, 31703387,  DOI: 10.1021/cr500425u
    29. 29
      Bedford, R. B.; Brenner, P. B.; Carter, E.; Cogswell, P. M.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Nunn, J.; Woodall, C. H. TMEDA in Iron-Catalyzed Kumada Coupling: Amine Adduct versus Homoleptic “ate” Complex Formation. Angew. Chem., Int. Ed. 2014, 53, 18041808,  DOI: 10.1002/anie.201308395
    30. 30
      Liu, Y.; Xiao, J.; Wang, L.; Song, Y.; Deng, L. Carbon–Carbon Bond Formation Reactivity of a Four-Coordinate NHC-Supported Iron(II) Phenyl Compound. Organometallics 2015, 34, 599605,  DOI: 10.1021/om501061b
    31. 31
      Zhurkin, F. E.; Wodrich, M. D.; Hu, X. A Monometallic Iron(I) Organoferrate. Organometallics 2017, 36, 499501,  DOI: 10.1021/acs.organomet.6b00841
    32. 32
      Camadanli, S.; Beck, R.; Flörke, U.; Klein, H.-F. C–H Activation of Imines by Trimethylphosphine-Supported Iron Complexes and Their Reactivities. Organometallics 2009, 28, 23002310,  DOI: 10.1021/om800828j
    33. 33
      Shi, Y.; Li, M.; Hu, Q.; Li, X.; Sun, H. C–Cl Bond Activation of ortho-Chlorinated Imine with Iron Complexes in Low Oxidation States. Organometallics 2009, 28, 22062210,  DOI: 10.1021/om801162u
    34. 34
      Wunderlich, S. H.; Knochel, P. Preparation of Functionalized Aryl Iron(II) Compounds and a Nickel-Catalyzed Cross-Coupling with Alkyl Halides. Angew. Chem., Int. Ed. 2009, 48, 97179720,  DOI: 10.1002/anie.200905196
    35. 35
      Asako, S.; Ilies, L.; Nakamura, E. Iron-Catalyzed Ortho-Allylation of Aromatic Carboxamides with Allyl Ethers. J. Am. Chem. Soc. 2013, 135, 1775517757,  DOI: 10.1021/ja4106368
    36. 36
      Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. Synthesis of Anthranilic Acid Derivatives through Iron-Catalyzed Ortho Amination of Aromatic Carboxamides with N-Chloroamines. J. Am. Chem. Soc. 2014, 136, 646649,  DOI: 10.1021/ja412521k
    37. 37
      Daifuku, S. L.; Al-Afyouni, M. H.; Snyder, B. E. R.; Kneebone, J. L.; Neidig, M. L. A Combined Mössbauer, Magnetic Circular Dichroism, and Density Functional Theory Approach for Iron Cross-Coupling Catalysis: Electronic Structure, In Situ Formation, and Reactivity of Iron-Mesityl-Bisphosphines. J. Am. Chem. Soc. 2014, 136, 91329143,  DOI: 10.1021/ja503596m
    38. 38
      Neidig, M. L.; Carpenter, S. H.; Curran, D. J.; DeMuth, J. C.; Fleischauer, V. E.; Iannuzzi, T. E.; Neate, P. G. N.; Sears, J. D.; Wolford, N. J. Development and Evolution of Mechanistic Understanding in Iron-Catalyzed Cross-Coupling. Acc. Chem. Res. 2019, 52, 140150,  DOI: 10.1021/acs.accounts.8b00519
    39. 39
      Neate, P. G. N.; Greenhalgh, M. D.; Brennessel, W. W.; Thomas, S. P.; Neidig, M. L. Mechanism of the Bis(imino)pyridine-Iron-Catalyzed Hydromagnesiation of Styrene Derivatives. J. Am. Chem. Soc. 2019, 141, 1009910108,  DOI: 10.1021/jacs.9b04869
    40. 40
      Boddie, T. E.; Carpenter, S. H.; Baker, T. M.; DeMuth, J. C.; Cera, G.; Brennessel, W. W.; Ackermann, L.; Neidig, M. L. Identification and Reactivity of Cyclometalated Iron(II) Intermediates in Triazole-Directed Iron-Catalyzed C–H Activation. J. Am. Chem. Soc. 2019, 141, 1233812345,  DOI: 10.1021/jacs.9b05269
    41. 41
      Messinis, A. M.; Finger, L. H.; Hu, L.; Ackermann, L. Allenes for Versatile Iron-Catalyzed C–H Activation by Weak O-Coordination: Mechanistic Insights by Kinetics, Intermediate Isolation, and Computation. J. Am. Chem. Soc. 2020, 142, 1310213111,  DOI: 10.1021/jacs.0c04837
    42. 42
      Hosokawa, S.; Ito, J.-i.; Nishiyama, H. A Chiral Iron Complex Containing a Bis(oxazolinyl)phenyl Ligand: Preparation and Asymmetric Hydrosilylation of Ketones. Organometallics 2010, 29, 57735775,  DOI: 10.1021/om1009186
    43. 43
      Jackson, B. J.; Najera, D. C.; Matson, E. M.; Woods, T. J.; Bertke, J. A.; Fout, A. R. Synthesis and Characterization of (DIPPCCC)Fe Complexes: A Zwitterionic Metalation Method and CO2 Reactivity. Organometallics 2019, 38, 29432952,  DOI: 10.1021/acs.organomet.9b00271
    44. 44
      Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X. Direct Observation of CuI/CuIII Redox Steps Relevant to Ullmann-Type Coupling Reactions. Chem. Sci. 2010, 1, 326330,  DOI: 10.1039/c0sc00245c
    45. 45
      Font, M.; Acuña-Parés, F.; Parella, T.; Serra, J.; Luis, J. M.; Lloret-Fillol, J.; Costas, M.; Ribas, X. Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis. Nat. Commun. 2014, 5, 4373,  DOI: 10.1038/ncomms5373
    46. 46
      Rovira, M.; Roldán-Gómez, S.; Martin-Diaconescu, V.; Whiteoak, C. J.; Company, A.; Luis, J. M.; Ribas, X. Trifluoromethylation of a Well-Defined Square-Planar Aryl-NiII Complex involving NiIII/CF3. and NiIV–CF3 Intermediate Species. Chem. - Eur. J. 2017, 23, 1166211668,  DOI: 10.1002/chem.201702168
    47. 47
      Planas, O.; Roldán-Gómez, S.; Martin-Diaconescu, V.; Parella, T.; Luis, J. M.; Company, A.; Ribas, X. Carboxylate-Assisted Formation of Aryl-Co(III) Masked-Carbenes in Cobalt-Catalyzed C–H Functionalization with Diazo Esters. J. Am. Chem. Soc. 2017, 139, 1464914655,  DOI: 10.1021/jacs.7b07880
    48. 48
      Sarbajna, A.; He, Y.-T.; Dinh, M. H.; Gladkovskaya, O.; Rahaman, S. M. W.; Karimata, A.; Khaskin, E.; Lapointe, S.; Fayzullin, R. R.; Khusnutdinova, J. R. Aryl–X Bond-Forming Reductive Elimination from High-Valent Mn–Aryl Complexes. Organometallics 2019, 38, 44094419,  DOI: 10.1021/acs.organomet.9b00494
    49. 49
      Addison, A. W.; Rao, T. N.; Reedijk, J.; Van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulfur donor ligands: the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 7, 134946,  DOI: 10.1039/DT9840001349
    50. 50
      Beck, R.; Sun, H.; Li, X.; Camadanli, S.; Klein, H.-F. Cyclometalation of Thiobenzophenones with Mononuclear Methyliron and -cobalt Complexes. Eur. J. Inorg. Chem. 2008, 2008, 32533257,  DOI: 10.1002/ejic.200800397
    51. 51
      Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. The chemistry of 2-naphthyl bis[bis(dimethylphosphino)ethane] hydride complexes of iron, ruthenium, and osmium. 1. Characterization and reactions with hydrogen and Lewis base ligands. J. Am. Chem. Soc. 1978, 100, 40804089,  DOI: 10.1021/ja00481a016
    52. 52
      Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. Chemistry of 2-naphthyl bis[bis(dimethylphosphino)ethane] hydride complexes of iron, ruthenium, and osmium. 3. Cleavage of sp2 carbon-hydrogen bonds. J. Am. Chem. Soc. 1979, 101, 17421751,  DOI: 10.1021/ja00501a017
    53. 53
      Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Iron-Catalyzed Direct Arylation of Aryl Pyridines and Imines Using Oxygen as an Oxidant. Synlett 2010, 2010, 313316,  DOI: 10.1055/s-0029-1219184
    54. 54
      Ghosh, A. K.; Sarkar, A.; Brindisi, M. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Org. Biomol. Chem. 2018, 16, 20062027,  DOI: 10.1039/C8OB00138C
    55. 55
      Nasr Allah, T.; Savourey, S.; Berthet, J.-C.; Nicolas, E.; Cantat, T. Carbonylation of C–N Bonds in Tertiary Amines Catalyzed by Low-Valent Iron Catalysts. Angew. Chem., Int. Ed. 2019, 58, 1088410887,  DOI: 10.1002/anie.201903740
    56. 56
      Li, D.; Wu, T.; Liang, K.; Xia, C. Curtius-like Rearrangement of an Iron–Nitrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes. Org. Lett. 2016, 18, 22282231,  DOI: 10.1021/acs.orglett.6b00864
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.1c00100.

    • Spectroscopic characterization of all compounds, crystallographic data for 1·Cl2, 1·Br2, 1Me, and 1H, and DFT results for D, E-1, and E-2 (PDF)

    Accession Codes

    CCDC 20461552046158 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect