ACS Publications. Most Trusted. Most Cited. Most Read
Ferrocenyl-Imidazolylidene Ligand for Redox-Switchable Gold-Based Catalysis. A Detailed Study on the Redox-Switching Abilities of the Ligand
My Activity

Figure 1Loading Img
    Article

    Ferrocenyl-Imidazolylidene Ligand for Redox-Switchable Gold-Based Catalysis. A Detailed Study on the Redox-Switching Abilities of the Ligand
    Click to copy article linkArticle link copied!

    View Author Information
    Instituto de Materiales Avanzados (INAM), Universitat Jaume I, Avenida Vicente Sos Baynat, 12071 Castellón, Spain
    Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
    *E-mail (M. Poyatos): [email protected]
    *E-mail (E. Peris): [email protected]
    Other Access OptionsSupporting Information (5)

    Organometallics

    Cite this: Organometallics 2016, 35, 16, 2747–2758
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.organomet.6b00517
    Published August 4, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    An imidazolium salt with a fused benzoferrocenyl was synthesized. This compound was used as an N-heterocyclic carbene (NHC) precursor, and the related ferrocenyl-imidazolylidene complexes Fc-NHC-MLn (MLn = IrCl(COD), IrCl(CO)2, AuCl) were synthesized and fully characterized, including the crystallographic characterization of some of the key structures. The oxidation of the iridium carbonyl compound Fc-NHC-IrCl(CO)2 with acetylferrocenium tetrafluoroborate afforded the oxidized ferrocenium-NHC-IrCl(CO)2 (Fe(III)) species; however the isolated product contained a byproduct resulting from the protonation of the starting Fe(II) complex. The analysis of the electron-donating character of the neutral ligand and the ligand resulting from the oxidation was carried out by studying the variation of the ν(CO) stretching frequencies of Fc-NHC-IrCl(CO)2 and its oxidized analogue, revealing that this shift is 2.9 cm–1, which is consistent with a decrease of the electron-donating character of the ligand produced by the generation of a positively charged metal complex. DFT calculations were carried out in order to rationalize these results. The effects of the oxidation of the ligand in homogeneous catalysis were tested by using a related ferrocenyl-imidazolylidene-gold(I) complex. In the hydroamination of terminal alkynes, the results indicated that the oxidation of the ligand produced a moderate increase of the activity of the gold catalyst. In the cyclization of alkynes with furans, the neutral complex was not active, while the product resulting from its oxidation produced moderate to good yields in the formation of the final products.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.6b00517.

    • NMR spectra of complexes of the new complexes, cyclic voltammograms of complexes 1, 2, 4, 5, and 7, and computational details, including atomic coordinates of optimized structures (PDF)

    • Crystallographic data for 6-H (CIF)

    • Crystallographic data for 7 (CIF)

    • Crystallographic data for 8-H (CIF)

    • Crystallographic data for 11 (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 66 publications.

    1. Maurice P. Schrick, G. Kabelo Ramollo, Cristina-Maria Susanne Hirschbiegel, Manuel Fernandes, Andreas Lemmerer, Christoph Förster, Daniela I. Bezuidenhout, Katja Heinze. Redox Activation of Acyclic (Aryl)(amino)carbene Gold(I) Complexes. Organometallics 2024, 43 (2) , 69-84. https://doi.org/10.1021/acs.organomet.3c00395
    2. César Ruiz-Zambrana, Macarena Poyatos, Eduardo Peris. A Redox-Switchable Gold(I) Complex for the Hydroamination of Acetylenes: A Convenient Way for Studying Ligand-Derived Electronic Effects. ACS Catalysis 2022, 12 (8) , 4465-4472. https://doi.org/10.1021/acscatal.2c00613
    3. Anuj Kumar, Chandan Singh, Hendrik Tinnermann, Han Vinh Huynh. Gold(I) and Gold(III) Complexes of Expanded-Ring N-Heterocyclic Carbenes: Structure, Reactivity, and Catalytic Applications. Organometallics 2020, 39 (1) , 172-181. https://doi.org/10.1021/acs.organomet.9b00718
    4. Sebastian Kaufmann, Michael Radius, Eric Moos, Frank Breher, Peter W. Roesky. Rhodium(I) and Iridium(I) Complexes of Ferrocenyl-Functionalized Amidinates and Bis(amidinates): κ2N-Coordination Versus Ferrocenyl Ortho-Metalation. Organometallics 2019, 38 (8) , 1721-1732. https://doi.org/10.1021/acs.organomet.9b00003
    5. Junnian Wei, Paula L. Diaconescu. Redox-Switchable Ring-Opening Polymerization with Ferrocene Derivatives. Accounts of Chemical Research 2019, 52 (2) , 415-424. https://doi.org/10.1021/acs.accounts.8b00523
    6. Vincent César, Valentina Mallardo, Adela Nano, Sadie F. DePeter, Stéphanie Bastin, Alix Sournia-Saquet, Aline Maisse-François, Noël Lugan, Stéphane Bellemin-Laponnaz. Homo- and Heteropolymetallic Complexes of the Hybrid, Ambidentate N-Heterocyclic Carbene Ligand IMes-acac. ACS Omega 2018, 3 (11) , 15582-15591. https://doi.org/10.1021/acsomega.8b02268
    7. Daniel Nuevo, Macarena Poyatos, Eduardo Peris. A Dinuclear Au(I) Complex with a Pyrene-di-N-heterocyclic Carbene Linker: Supramolecular and Catalytic Studies. Organometallics 2018, 37 (20) , 3407-3411. https://doi.org/10.1021/acs.organomet.8b00087
    8. Eduardo Peris. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chemical Reviews 2018, 118 (19) , 9988-10031. https://doi.org/10.1021/acs.chemrev.6b00695
    9. Torsten Hölzel, Maximilian Otto, Hannes Buhl, and Christian Ganter . An Extremely Electron Poor Cationic Triazoliumylidene N-Heterocyclic Carbene: Experimental and Computational Studies. Organometallics 2017, 36 (22) , 4443-4450. https://doi.org/10.1021/acs.organomet.7b00670
    10. Sinja Klenk, Susanne Rupf, Lisa Suntrup, Margarethe van der Meer, and Biprajit Sarkar . The Power of Ferrocene, Mesoionic Carbenes, and Gold: Redox-Switchable Catalysis. Organometallics 2017, 36 (10) , 2026-2035. https://doi.org/10.1021/acs.organomet.7b00270
    11. Susana Ibáñez, Macarena Poyatos, and Eduardo Peris . Gold Catalysts with Polyaromatic-NHC ligands. Enhancement of Activity by Addition of Pyrene. Organometallics 2017, 36 (7) , 1447-1451. https://doi.org/10.1021/acs.organomet.7b00172
    12. Mirko Ruamps, Noël Lugan, and Vincent César . A Cationic N-Heterocyclic Carbene Containing an Ammonium Moiety. Organometallics 2017, 36 (5) , 1049-1055. https://doi.org/10.1021/acs.organomet.7b00017
    13. Aminul Islam Sk, Ayan Ghosh, Kshama Kundu, Indukumari Murugan, Pintu K. Kundu. Azobenzene‐Attached (NHC)Gold(I) and (NHC)Copper(I) Complexes as Photoswitchable Catalysts. Chemistry – A European Journal 2024, 30 (64) https://doi.org/10.1002/chem.202402381
    14. Juan Carlos Pérez‐Sánchez, Raquel P. Herrera, M. Concepción Gimeno. Exploring Ferrocenyl Imine‐Phosphane Complexes in Gold(I) Redox Switchable Catalysis and the Role of the “Magic Blue” Oxidant. Advanced Synthesis & Catalysis 2024, https://doi.org/10.1002/adsc.202400593
    15. Mohammad Bashiri, Mona Hosseini-Sarvari, Sara Fakhraee. A new dual nickel/ferrocenyl-chalcone as photoredox catalyst along with DFT studies for the three-component domino performance. Journal of Photochemistry and Photobiology A: Chemistry 2024, 451 , 115494. https://doi.org/10.1016/j.jphotochem.2024.115494
    16. Bastian B. Burgert, Xiaofei Sun, Adrian Hauser, Perrine M. R. Wingering, Frank Breher, Peter W. Roesky. Bi‐ and tridentate coordination behaviour of a novel bis(phosphinimino)methanide ligand. Chemistry – An Asian Journal 2024, 19 (5) https://doi.org/10.1002/asia.202301084
    17. R. Malcolm Charles III, Timothy P. Brewster. Chemical Transformations in Heterobimetallic Complexes Facilitated by the Second Coordination Sphere. 2023, 67-98. https://doi.org/10.1007/3418_2022_79
    18. Reilly K. Gwinn, Anna E. Boggess, Elizabeth P. Winter, Chip Nataro. Synthesis of disubstituted furans catalysed by [(AuCl) 2 (μ-bis(phosphino)metallocene)] and Na[BArF 24 ]. Dalton Transactions 2022, 51 (44) , 17000-17007. https://doi.org/10.1039/D2DT02999E
    19. Nicolas I. Regenauer, Julianna S. Doll, Dragoș‐Adrian Roșca. Redox‐Switchable Catalysis. 2022, 1-21. https://doi.org/10.1002/9781119951438.eibc2807
    20. Arash Ghorbani-Choghamarani, Zahra Taherinia. Recent advances utilized in artificial switchable catalysis. RSC Advances 2022, 12 (36) , 23595-23617. https://doi.org/10.1039/D2RA03842K
    21. Juan Carlos Pérez‐Sánchez, Raquel P. Herrera, M. Concepción Gimeno. Ferrocenyl Gold Complexes as Efficient Catalysts. European Journal of Inorganic Chemistry 2022, 2022 (12) https://doi.org/10.1002/ejic.202101067
    22. Illia Ruzhylo, Alix Sournia‐Saquet, Alain Moreau, Tom Delord, Eric Manoury, Rinaldo Poli, Agnès Labande. Heteroleptic Dirhodium(II) Complexes with Redox‐Active Ferrocenyl Ligands: Synthesis, Electrochemical Properties, and Redox‐Responsive Chemoselectivity in Carbene C−H Insertion. European Journal of Inorganic Chemistry 2022, 2022 (12) https://doi.org/10.1002/ejic.202200033
    23. Hanna E. Wagner, Nils Frank, Elham Barani, Christopher E. Anson, Lea Bayer, Annie K. Powell, Karin Fink, Frank Breher. Asymmetrically Difunctionalized 1,1′‐Ferrocenyl Metalloligands and Their Transition Metal Complexes. European Journal of Inorganic Chemistry 2022, 2022 (4) https://doi.org/10.1002/ejic.202100898
    24. Carmen M. Casado, Beatriz Alonso, Mª Pilar García-Armada. Ferrocenes and Other Sandwich Complexes of Iron. 2022, 3-45. https://doi.org/10.1016/B978-0-12-820206-7.00083-4
    25. Bernhard S. Birenheide, Felix Krämer, Lea Bayer, Paul Mehlmann, Fabian Dielmann, Frank Breher. Multistimuli‐Responsive [3]Dioxaphosphaferrocenophanes with Orthogonal Switches. Chemistry – A European Journal 2021, 27 (61) , 15067-15074. https://doi.org/10.1002/chem.202101969
    26. V. N. Mikhaylov, I. A. Balova. Alternative Transformations of N-Heterocyclic Carbene Complexes of the Group 11 Metals in Transmetalation Reactions (A Review). Russian Journal of General Chemistry 2021, 91 (11) , 2194-2248. https://doi.org/10.1134/S1070363221110098
    27. César Ruiz‐Zambrana, Ana Gutiérrez‐Blanco, Sergio Gonell, Macarena Poyatos, Eduardo Peris. Redox‐Switchable Cycloisomerization of Alkynoic Acids with Napthalenediimide‐Derived N‐Heterocyclic Carbene Complexes. Angewandte Chemie 2021, 133 (36) , 20156-20164. https://doi.org/10.1002/ange.202107973
    28. César Ruiz‐Zambrana, Ana Gutiérrez‐Blanco, Sergio Gonell, Macarena Poyatos, Eduardo Peris. Redox‐Switchable Cycloisomerization of Alkynoic Acids with Napthalenediimide‐Derived N‐Heterocyclic Carbene Complexes. Angewandte Chemie International Edition 2021, 60 (36) , 20003-20011. https://doi.org/10.1002/anie.202107973
    29. Ramananda Maity, Bernhard S. Birenheide, Frank Breher, Biprajit Sarkar. Cooperative Effects in Multimetallic Complexes Applied in Catalysis. ChemCatChem 2021, 13 (10) , 2337-2370. https://doi.org/10.1002/cctc.202001951
    30. Stefano Nejrotti, Cristina Prandi. Gold Catalysis and Furans: A Powerful Match for Synthetic Connections. Synthesis 2021, 53 (06) , 1046-1060. https://doi.org/10.1055/s-0040-1705996
    31. Amy Lai, Zachary C. Hern, Yi Shen, Ruxi Dai, Paula L. Diaconescu. Metal Complexes for Redox Switching and Control of Reactivity. 2021, 155-180. https://doi.org/10.1016/B978-0-08-102688-5.00044-1
    32. Chip Nataro. Ferrocene: To Infinity and Back Again. 2021, 572-656. https://doi.org/10.1016/B978-0-12-409547-2.14671-2
    33. Laura Cunningham, Annette Benson, Patrick J. Guiry. Recent developments in the synthesis and applications of chiral ferrocene ligands and organocatalysts in asymmetric catalysis. Organic & Biomolecular Chemistry 2020, 18 (46) , 9329-9370. https://doi.org/10.1039/D0OB01933J
    34. Noor U. Din Reshi, Jitendra K. Bera. Recent advances in annellated NHCs and their metal complexes. Coordination Chemistry Reviews 2020, 422 , 213334. https://doi.org/10.1016/j.ccr.2020.213334
    35. Saravanakumar Shanmuganathan, Carola Schulzke, Peter G. Jones, Joachim W. Heinicke. Quinoxaline-anellated N,N´-dialkylimidazolium salts and iPr2quinox-NHC-Pd halide complexes. Journal of Organometallic Chemistry 2020, 926 , 121487. https://doi.org/10.1016/j.jorganchem.2020.121487
    36. Axel Straube, Peter Coburger, Luis Dütsch, Evamarie Hey-Hawkins. Triple the fun: tris(ferrocenyl)arene-based gold( i ) complexes for redox-switchable catalysis. Chemical Science 2020, 11 (39) , 10657-10668. https://doi.org/10.1039/D0SC03604H
    37. Rodary Gonzalez, Ramón Azpiroz, Pankaj Sharma, Claudia P. Villamizar C, Bertin Anzaldo, Francisco J. Pérez-Flores, Ruben Alfredo Toscano. Ferrocenylated Chalcogen (Se and Te)-containing N-heterocyclic carbenes: Selenones, silver and palladium complexes. Inorganica Chimica Acta 2020, 506 , 119531. https://doi.org/10.1016/j.ica.2020.119531
    38. John Popp, Anne‐Marie Caminade, Evamarie Hey‐Hawkins. Redox‐Switchable Transfer Hydrogenations with P ‐Chiral Dendritic Ferrocenyl Phosphine Complexes. European Journal of Inorganic Chemistry 2020, 2020 (17) , 1654-1669. https://doi.org/10.1002/ejic.202000142
    39. Robert C. Chapleski, Jesse L. Kern, W. Curtis Anderson, Brian K. Long, Sharani Roy. A mechanistic study of microstructure modulation in olefin polymerizations using a redox-active Ni( ii ) α-diimine catalyst. Catalysis Science & Technology 2020, 10 (7) , 2029-2039. https://doi.org/10.1039/C9CY02538C
    40. Sadie A. Wolfarth, Natasha E. Miner, Nicole E. Wamser, Reilly K. Gwinn, Benny C. Chan, Chip Nataro. Hydroamination reactions catalyzed by [Au2(μ-Cl)(μ-bis(phosphino)ferrocene)][BArF24]. Journal of Organometallic Chemistry 2020, 906 , 121049. https://doi.org/10.1016/j.jorganchem.2019.121049
    41. Tanmoy Mandal, Vivek Singh, Joyanta Choudhury. Coordination Booster‐Catalyst Assembly: Remote Osmium Outperforming Ruthenium in Boosting Catalytic Activity. Chemistry – An Asian Journal 2019, 14 (24) , 4774-4779. https://doi.org/10.1002/asia.201901215
    42. Jessica J. Sánchez García, Jose A. Castella-Lasaga, Marcos Flores-Álamo, José M. Méndez Stivalet, Elena I. Klimova. Diferrocenyl(hydroxy)oxazepines and diferrocenyl-4-aza-1,3-dienes in the reactions of 2,3-diferrocenyl-1-methylthiocyclopropenylium iodide with aromatic and aliphatic bis-1,4-N,O-nucleophiles. Polyhedron 2019, 171 , 353-364. https://doi.org/10.1016/j.poly.2019.07.019
    43. Altafhusen Naikwade, Megha Jagadale, Dolly Kale, Shivanand Gajare, Prakash Bansode, Gajanan Rashinkar. Intramolecular O‐arylation using nano‐magnetite supported N ‐heterocyclic carbene‐copper complex with wingtip ferrocene. Applied Organometallic Chemistry 2019, 33 (9) https://doi.org/10.1002/aoc.5066
    44. Yi Shen, Scott M. Shepard, Christopher J. Reed, Paula L. Diaconescu. Zirconium complexes supported by a ferrocene-based ligand as redox switches for hydroamination reactions. Chemical Communications 2019, 55 (39) , 5587-5590. https://doi.org/10.1039/C9CC01076A
    45. Eva Deck, Hanna E. Wagner, Jan Paradies, Frank Breher. Redox-responsive phosphonite gold complexes in hydroamination catalysis. Chemical Communications 2019, 55 (37) , 5323-5326. https://doi.org/10.1039/C9CC01492F
    46. Philipp Veit, Carla Volkert, Christoph Förster, Vadim Ksenofontov, Steffen Schlicher, Matthias Bauer, Katja Heinze. Gold( ii ) in redox-switchable gold( i ) catalysis. Chemical Communications 2019, 55 (32) , 4615-4618. https://doi.org/10.1039/C9CC00283A
    47. Yeonkyeong Ryu, Guillermo Ahumada, Christopher W. Bielawski. Redox- and light-switchable N-heterocyclic carbenes: a “soup-to-nuts” course on contemporary structure–activity relationships. Chemical Communications 2019, 55 (31) , 4451-4466. https://doi.org/10.1039/C9CC00795D
    48. Paul Mehlmann, Fabian Dielmann. Switching the Electron‐Donating Ability of Phosphines through Proton‐Responsive Imidazolin‐2‐ylidenamino Substituents. Chemistry – A European Journal 2019, 25 (9) , 2352-2357. https://doi.org/10.1002/chem.201805540
    49. Gellért Sipos, Reto Dorta. Iridium complexes with monodentate N-heterocyclic carbene ligands. Coordination Chemistry Reviews 2018, 375 , 13-68. https://doi.org/10.1016/j.ccr.2017.10.019
    50. Altafhusen Naikwade, Megha Jagadale, Dolly Kale, Shivanand Gajare, Gajanan Rashinkar. Magnetic Nanoparticle Decorated N-Heterocyclic Carbene–Nickel Complex with Pendant Ferrocenyl Group for C–H Arylation of Benzoxazole. Catalysis Letters 2018, 148 (10) , 3178-3192. https://doi.org/10.1007/s10562-018-2514-1
    51. Kristina Hanauer, Christoph Förster, Katja Heinze. Redox‐Controlled Stabilization of an Open‐Shell Intermediate in a Bioinspired Enzyme Model. European Journal of Inorganic Chemistry 2018, 2018 (31) , 3537-3547. https://doi.org/10.1002/ejic.201800570
    52. Yves Canac. Carbeniophosphines versus Phosphoniocarbenes: The Role of the Positive Charge. Chemistry – An Asian Journal 2018, 13 (15) , 1872-1887. https://doi.org/10.1002/asia.201800483
    53. Altafhusen Naikwade, Prakash Bansode, Gajanan Rashinkar. Magnetically retrievable N-heterocyclic carbene-silver complex with wingtip ferrocenyl group for Sonogashira coupling. Journal of Organometallic Chemistry 2018, 866 , 112-122. https://doi.org/10.1016/j.jorganchem.2018.04.017
    54. Natália Marozsán, Henrietta Horváth, Éva Kováts, Antal Udvardy, Anikó Erdei, Mihály Purgel, Ferenc Joó. Catalytic racemization of secondary alcohols with new (arene)Ru(II)-NHC and (arene)Ru(II)-NHC-tertiary phosphine complexes. Molecular Catalysis 2018, 445 , 248-256. https://doi.org/10.1016/j.mcat.2017.11.040
    55. Ramón Azpiroz, Pankaj Sharma, F. Javier Pérez-Flores, René Gutierrez, Georgina Espinosa-Pérez, Francisco Lara-Ochoa. Stable ferrocenyl-NHC Pd(II) complexes: Evidence of C-H ⋯H/π interaction and M-O bonding in solution. Journal of Organometallic Chemistry 2017, 848 , 196-206. https://doi.org/10.1016/j.jorganchem.2017.07.038
    56. Antonio M. Echavarren, Michael E. Muratore, Verónica López‐Carrillo, Ana Escribano‐Cuesta, Núria Huguet, Carla Obradors. Gold‐Catalyzed Cyclizations of Alkynes with Alkenes and Arenes. 2017, 1-288. https://doi.org/10.1002/0471264180.or092.01
    57. Alexander Feyrer, Markus K. Armbruster, Karin Fink, Frank Breher. Metal Complexes of a Redox‐Active [1]Phosphaferrocenophane: Structures, Electrochemistry and Redox‐Induced Catalysis. Chemistry – A European Journal 2017, 23 (31) , 7402-7408. https://doi.org/10.1002/chem.201700868
    58. Bishnu Dhakal, Lalith S.R. Gamage, Yanshi Zhang, James W. Herndon. Synthesis of highly substituted benzene ring systems through three-component coupling of enyne imines, Fischer carbene complexes, and electron-deficient alkynes. Tetrahedron Letters 2017, 58 (14) , 1403-1407. https://doi.org/10.1016/j.tetlet.2017.02.070
    59. Danielle Aucamp, Tim Witteler, Fabian Dielmann, Shepherd Siangwata, David C. Liles, Gregory S. Smith, Daniela I. Bezuidenhout. A Triarylated 1,2,3‐Triazol‐5‐ylidene Ligand with a Redox‐Active Ferrocenyl Substituent for Rhodium(I)‐Catalyzed Hydroformylation of 1‐Octene. European Journal of Inorganic Chemistry 2017, 2017 (9) , 1227-1236. https://doi.org/10.1002/ejic.201700164
    60. Florian Walz, Eric Moos, Delphine Garnier, Ralf Köppe, Christopher E. Anson, Frank Breher. A Redox‐Switchable Germylene and its Ligating Properties in Selected Transition Metal Complexes. Chemistry – A European Journal 2017, 23 (5) , 1173-1186. https://doi.org/10.1002/chem.201605073
    61. Jan Oetzel, Nadine Weyer, Clemens Bruhn, Michael Leibold, Birgit Gerke, Rainer Pöttgen, Markus Maier, Rainer F. Winter, Max. C. Holthausen, Ulrich Siemeling. Redox‐Active N‐Heterocyclic Germylenes and Stannylenes with a Ferrocene‐1,1′‐diyl Backbone. Chemistry – A European Journal 2017, 23 (5) , 1187-1199. https://doi.org/10.1002/chem.201605074
    62. S. Ibáñez, M. Poyatos, E. Peris. A D 3h -symmetry hexaazatriphenylene-tris-N-heterocyclic carbene ligand and its coordination to iridium and gold: preliminary catalytic studies. Chemical Communications 2017, 53 (26) , 3733-3736. https://doi.org/10.1039/C7CC00525C
    63. Kai Helmdach, Stephan Ludwig, Alexander Villinger, Dirk Hollmann, Jutta Kösters, Wolfram W. Seidel. Synthesis and activation potential of an open shell diphosphine. Chemical Communications 2017, 53 (43) , 5894-5897. https://doi.org/10.1039/C7CC02114C
    64. Kai Helmdach, Stephan Dörk, Alexander Villinger, Wolfram W. Seidel. Sterically encumbered metalla-diphosphines: unlocking alkyne rotation by Pt II coordination. Dalton Transactions 2017, 46 (34) , 11140-11144. https://doi.org/10.1039/C7DT01803G
    65. Alexander Feyrer, Frank Breher. Palladium complexes of ferrocene-based phosphine ligands as redox-switchable catalysts in Buchwald–Hartwig cross-coupling reactions. Inorganic Chemistry Frontiers 2017, 4 (7) , 1125-1134. https://doi.org/10.1039/C7QI00125H
    66. Susana Ibáñez, Macarena Poyatos, Eduardo Peris. A Ferrocenyl‐Benzo‐Fused Imidazolylidene Complex of Ruthenium as Redox‐Switchable Catalyst for the Transfer Hydrogenation of Ketones and Imines. ChemCatChem 2016, 8 (24) , 3790-3795. https://doi.org/10.1002/cctc.201601025

    Organometallics

    Cite this: Organometallics 2016, 35, 16, 2747–2758
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.organomet.6b00517
    Published August 4, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1826

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.