ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Pushing Electrons—Which Carbene Ligand for Which Application?

View Author Information
Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
Cite this: Organometallics 2018, 37, 3, 273–274
Publication Date (Web):February 12, 2018
https://doi.org/10.1021/acs.organomet.8b00014
Copyright © 2018 American Chemical Society
  • Free to Read

Article Views

1381

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (231 KB)

The isolation and scrutiny of metal carbene complexes is one of the core disciplines of organometallic chemistry and hence lies at the heart of Organometallics. Research has focused for many years on the development of carbon atom transfer reactivity after Fischer’s discovery of heteroatom-stabilized nucleophilic carbene complexes. (1) These efforts culminated in the development of Tebbe’s reagent (2) for methylene transfer as well as the application of carbene catalysts for cyclopropanation, (3) C–H insertion, (4) and the Nobel Prize winning olefin metathesis reaction. (5)

The field started to pick up even more speed with the isolation of the first stable acyclic free carbene, reported by Bertrand in the 1980s. (6) Synthesis of Arduengo’s crystalline N-heterocyclic carbene (NHC) in 1991, also known as “bottleable carbene”, eventually demonstrated that persistent carbenes are not merely laboratory curiosities. (7) Following these seminal discoveries, heterocyclic carbene ligands were introduced as ancillary ligands for catalysis, and the number of reports on NHC metal complexes skyrocketed. The success story of NHC ligands was, and still is, strongly connected with the names of Herrmann and Nolan. (8) Subsequently, further applications emerged in the fields of light/energy conversion and drug design. (9) Computational chemistry proved essential for the development of new carbenes and offered tools to decipher their electronic structures, causing carbene stability and reactivity trends. (11) After the early days of transition metal–NHC chemistry, it was again Bertrand’s group who was pushing the field, and within a few years, they isolated a remarkable series of stable acyclic and cyclic free carbenes. (10) These “unconventional” carbenes and derivatives showed a huge diversity of electronic properties, which was unprecedented for conventional NHCs. Currently, this new class of carbenes finds increasing application in organometallic coordination chemistry. Outstanding examples include the stabilization of radicals and low-valent complexes by cyclic alkyl amino carbene (CAAC) ligands or the isolation of metal complexes with nucleophilic carbene ligands derived from carbodiphosphoranes and carbodicarbenes. In fact, “classic” Schrock-type carbenes also are experiencing a remarkable renaissance. For instance, heterogeneous Schrock carbenes were shown to catalyze the metathesis of alkanes, (12) and smart ligand design (13) allowed for the development of stereoselective olefin metathesis catalysts.

Historically, traditional NHC ligands were believed to be pure σ-donors. (14) Accordingly, differences to Fischer- and especially Schrock-type carbenes were overemphasized, and they were classified as a new type of ligand. However, spotting the true differences between carbene ligands is very difficult, complex, and proved to be a challenging task. (15) Can diarylcarbenes be considered Schrock carbenes? Is a mesoionic carbene really a carbene or rather a heteroaryl-substituent? Is a particular carbene ligand a surprisingly strong π-acceptor (or is this behavior not surprising at all)? Is it a carbene, carbenoid, or carbocation? Is it a Schrock carbene, alkylidene, or nucleophilic carbene complex? How important are electrostatic considerations? What is the oxidation state of the coordinating metal and where are the electrons? Do electrophilic Schrock carbenes exist? A multitude of questions are waiting to be answered by a comprehensive tutorial (DOI: 10.1021/acs.organomet.7b00720).

Dominik Munz is an excellent choice for the assembly of such a tutorial review, because his academic education allowed him to obtain insights from several varying perspectives on carbene chemistry. During his graduate studies at TU Dresden, he studied the application of late transition metal NHC complexes for catalysis and the molecular modeling of the electronic properties of NHC complexes. In the group of Thomas Strassner in Dresden, he studied applications of NHC and mesoionic carbene complexes as light-emitting or -harvesting molecules. After a 1 year stint with Brent Gunnoe at the University of Virginia in the field of C–H bond activation, he continued with carbene research as a postdoctoral fellow in Guy Bertrand’s lab at UC San Diego. There, he worked on the synthesis of novel carbenes with small singlet–triplet gaps, functionalized CAAC ligands, and stable carbene radicals, as well as p-block carbene analogs. Currently, his research interests include the synthesis of carbene compounds of the electropositive metals as well as the application of ancillary carbene ligands for the stabilization of reactive transition metal intermediates.

I believe that this tutorial gives a concise and comprehensible introduction on the electronic structure of carbene ligands and helps to unveil how electronic effects translate into chemical behavior. The conceptual analysis of a variety of carbene ligands and their coordination chemistry can serve as an expedient guide to understand design principles and choice of specific carbene ligand for a particular application. Thus, I hope that chemists will be inspired to hop into the adventurous playground of carbene ligands, “push electrons”, and to discover the vast worlds beyond conventional NHCs and classic Fischer or Schrock carbene ligands.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Notes
      Views expressed in this editorial are those of the author and not necessarily the views of the ACS.

    References

    ARTICLE SECTIONS
    Jump To

    This article references 15 other publications.

    1. 1
      Fischer, E. O.; Maasböl, A. Angew. Chem. 1964, 76, 645 645 DOI: 10.1002/ange.19640761405
    2. 2
      (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611 3613 DOI: 10.1021/ja00479a061
      (b) Thompson, R.; Nakamaru-Ogiso, E.; Chen, C.-H.; Pink, M.; Mindiola, D. J. Organometallics 2014, 33, 429 432 DOI: 10.1021/om401108b
    3. 3
      Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411 432 DOI: 10.1021/cr00078a008
    4. 4
      Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704 724 DOI: 10.1021/cr900239n
    5. 5
      (a) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760 3765 DOI: 10.1002/anie.200600680
      (b) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748 3759 DOI: 10.1002/anie.200600085
      (c) Chauvin, Y. Angew. Chem., Int. Ed. 2006, 45, 3740 3747 DOI: 10.1002/anie.200601234
    6. 6
      (a) Igau, A.; Grützmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463 6466 DOI: 10.1021/ja00227a028
      (b) Baceiredo, A.; Bertrand, G.; Sicard, G. J. Am. Chem. Soc. 1985, 107, 4781 4783 DOI: 10.1021/ja00302a032
    7. 7
      Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361 363 DOI: 10.1021/ja00001a054
    8. 8
      (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290 1309 DOI: 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y
      (b) Rovis, T.; Nolan, S. Synlett 2013, 24, 1188 1189 DOI: 10.1055/s-0033-1339192
    9. 9
      (a) Mercs, L.; Albrecht, M. Chem. Soc. Rev. 2010, 39, 1903 1912 DOI: 10.1039/b902238b
      (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485 496 DOI: 10.1038/nature13384
    10. 10
      (a) Buron, C.; Gornitzka, H.; Romanenko, V.; Bertrand, G. Science 2000, 288, 834 836 DOI: 10.1126/science.288.5467.834
      (b) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705 5709 DOI: 10.1002/anie.200501841
      (c) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2006, 312, 722 724 DOI: 10.1126/science.1126675
      (d) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439 441 DOI: 10.1126/science.1141474
      (e) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 3206 3209 DOI: 10.1002/anie.200705620
      (f) Lavallo, V.; Dyker, C. A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 5411 5414 DOI: 10.1002/anie.200801176
      (g) Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Science 2009, 326, 556 559 DOI: 10.1126/science.1178206
      (h) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 4759 4762 DOI: 10.1002/anie.201001864
      (i) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 8810 8849 DOI: 10.1002/anie.201000165
    11. 11
      (a) Frenking, G.; Solà, M.; Vyboishchikov, S. F. J. Organomet. Chem. 2005, 690, 6178 6204 DOI: 10.1016/j.jorganchem.2005.08.054
      (b) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Coord. Chem. Rev. 2009, 253, 687 703 DOI: 10.1016/j.ccr.2008.06.006
    12. 12
      (a) Schrock, R. R.; Copéret, C. Organometallics 2017, 36, 1884 1892 DOI: 10.1021/acs.organomet.6b00825
      (b) Basset, J.-M.; Copéret, C.; Soulivong, D.; Taoufik, M.; Cazat, J. T. Acc. Chem. Res. 2010, 43, 323 334 DOI: 10.1021/ar900203a
      (c) Haibach, M. C.; Kundu, S.; Brookhart, M.; Goldman, A. S. Acc. Chem. Res. 2012, 45, 947 958 DOI: 10.1021/ar3000713
    13. 13
      (a) Koh, M. J.; Nguyen, T. T.; Lam, J. K.; Torker, S.; Hyvl, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2017, 542, 80 85 DOI: 10.1038/nature21043
      (b) Nguyen, T. T.; Koh, M. J.; Shen, X.; Romiti, F.; Schrock, R. R.; Hoveyda, A. H. Science 2016, 352, 569 575 DOI: 10.1126/science.aaf4622
    14. 14
      Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Organometallics 2004, 23, 755 764 DOI: 10.1021/om0341855
    15. 15
      Mindiola, D. J.; Scott, J. Nat. Chem. 2011, 3, 15 17 DOI: 10.1038/nchem.940

    Cited By

    ARTICLE SECTIONS
    Jump To

    This article is cited by 2 publications.

    1. Seunghwan Byun, Seungwook Park, Youngseo Choi, Ji Yeon Ryu, Junseong Lee, Jun-Ho Choi, Sukwon Hong. Highly Efficient Ethenolysis and Propenolysis of Methyl Oleate Catalyzed by Abnormal N-Heterocyclic Carbene Ruthenium Complexes in Combination with a Phosphine–Copper Cocatalyst. ACS Catalysis 2020, 10 (18) , 10592-10601. https://doi.org/10.1021/acscatal.0c02018
    2. Jing-fan Xin, Xiao-ru Han, Fei-fei He, Yi-hong Ding. Global Isomeric Survey of Elusive Cyclopropanetrione: Unknown but Viable Isomers. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00193
    • This publication has no figures.
    • References

      ARTICLE SECTIONS
      Jump To

      This article references 15 other publications.

      1. 1
        Fischer, E. O.; Maasböl, A. Angew. Chem. 1964, 76, 645 645 DOI: 10.1002/ange.19640761405
      2. 2
        (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611 3613 DOI: 10.1021/ja00479a061
        (b) Thompson, R.; Nakamaru-Ogiso, E.; Chen, C.-H.; Pink, M.; Mindiola, D. J. Organometallics 2014, 33, 429 432 DOI: 10.1021/om401108b
      3. 3
        Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411 432 DOI: 10.1021/cr00078a008
      4. 4
        Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704 724 DOI: 10.1021/cr900239n
      5. 5
        (a) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760 3765 DOI: 10.1002/anie.200600680
        (b) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748 3759 DOI: 10.1002/anie.200600085
        (c) Chauvin, Y. Angew. Chem., Int. Ed. 2006, 45, 3740 3747 DOI: 10.1002/anie.200601234
      6. 6
        (a) Igau, A.; Grützmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463 6466 DOI: 10.1021/ja00227a028
        (b) Baceiredo, A.; Bertrand, G.; Sicard, G. J. Am. Chem. Soc. 1985, 107, 4781 4783 DOI: 10.1021/ja00302a032
      7. 7
        Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361 363 DOI: 10.1021/ja00001a054
      8. 8
        (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290 1309 DOI: 10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y
        (b) Rovis, T.; Nolan, S. Synlett 2013, 24, 1188 1189 DOI: 10.1055/s-0033-1339192
      9. 9
        (a) Mercs, L.; Albrecht, M. Chem. Soc. Rev. 2010, 39, 1903 1912 DOI: 10.1039/b902238b
        (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485 496 DOI: 10.1038/nature13384
      10. 10
        (a) Buron, C.; Gornitzka, H.; Romanenko, V.; Bertrand, G. Science 2000, 288, 834 836 DOI: 10.1126/science.288.5467.834
        (b) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705 5709 DOI: 10.1002/anie.200501841
        (c) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2006, 312, 722 724 DOI: 10.1126/science.1126675
        (d) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439 441 DOI: 10.1126/science.1141474
        (e) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 3206 3209 DOI: 10.1002/anie.200705620
        (f) Lavallo, V.; Dyker, C. A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 5411 5414 DOI: 10.1002/anie.200801176
        (g) Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Science 2009, 326, 556 559 DOI: 10.1126/science.1178206
        (h) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 4759 4762 DOI: 10.1002/anie.201001864
        (i) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 8810 8849 DOI: 10.1002/anie.201000165
      11. 11
        (a) Frenking, G.; Solà, M.; Vyboishchikov, S. F. J. Organomet. Chem. 2005, 690, 6178 6204 DOI: 10.1016/j.jorganchem.2005.08.054
        (b) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Coord. Chem. Rev. 2009, 253, 687 703 DOI: 10.1016/j.ccr.2008.06.006
      12. 12
        (a) Schrock, R. R.; Copéret, C. Organometallics 2017, 36, 1884 1892 DOI: 10.1021/acs.organomet.6b00825
        (b) Basset, J.-M.; Copéret, C.; Soulivong, D.; Taoufik, M.; Cazat, J. T. Acc. Chem. Res. 2010, 43, 323 334 DOI: 10.1021/ar900203a
        (c) Haibach, M. C.; Kundu, S.; Brookhart, M.; Goldman, A. S. Acc. Chem. Res. 2012, 45, 947 958 DOI: 10.1021/ar3000713
      13. 13
        (a) Koh, M. J.; Nguyen, T. T.; Lam, J. K.; Torker, S.; Hyvl, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2017, 542, 80 85 DOI: 10.1038/nature21043
        (b) Nguyen, T. T.; Koh, M. J.; Shen, X.; Romiti, F.; Schrock, R. R.; Hoveyda, A. H. Science 2016, 352, 569 575 DOI: 10.1126/science.aaf4622
      14. 14
        Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Organometallics 2004, 23, 755 764 DOI: 10.1021/om0341855
      15. 15
        Mindiola, D. J.; Scott, J. Nat. Chem. 2011, 3, 15 17 DOI: 10.1038/nchem.940

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect