ACS Publications. Most Trusted. Most Cited. Most Read
Ruthenium-Catalyzed Cross-Selective Asymmetric Oxidative Coupling of Arenols
My Activity

    Letter

    Ruthenium-Catalyzed Cross-Selective Asymmetric Oxidative Coupling of Arenols
    Click to copy article linkArticle link copied!

    • Hiroki Hayashi
      Hiroki Hayashi
      Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
    • Takamasa Ueno
      Takamasa Ueno
      Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
    • Chungsik Kim
      Chungsik Kim
      International Institute of Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
      More by Chungsik Kim
    • Tatsuya Uchida*
      Tatsuya Uchida
      Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
      International Institute of Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
      *[email protected]
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2020, 22, 4, 1469–1474
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.0c00048
    Published January 27, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    (Aqua)ruthenium(salen) complex 1c achieved good to high chemo- and enantioselective oxidative cross-coupling of arenols. The catalytic system can be used to selectively produce C1-symmetric bis(arenol)s from the combination of C3- and C7-substituted 2-naphthols or phenols even when there is no significant difference in oxidation potential between the cross-coupling partners. This unique cross-selectivity is dominated by steric rather than electronic effects of the arenols and can be controlled by chemoselective single-electron oxidation and oxidative carbon–carbon bond formation.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c00048.

    • Optimization, oxidation potentials of arenols, experimental procedures, characterization data, computational data, HPLC conditions, and NMR spectra (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 38 publications.

    1. Suparna Kundu, Maheswar Tantubay, Rajarshi Samanta. Ru(II)-Catalyzed Reactions of ortho-Hydroxy Enaminones with Diazonaphthoquinones: Synthesis of Unsymmetrical Biaryl Diols. Organic Letters 2025, 27 (24) , 6368-6373. https://doi.org/10.1021/acs.orglett.5c01576
    2. Dingguo Song, Weiwei Huang, Wenji Zhang, Changdi Zheng, Yuhua Chen, Jiayang Lv, Cunwei Zheng, Weihui Zhong, Fei Ling. Synthesis of Non-C2-Symmetric Biaryldiols via Organo-Electro Catalyzed Aryl–Aryl Dehydrogenative Cross-Coupling. Journal of the American Chemical Society 2025, 147 (9) , 7524-7532. https://doi.org/10.1021/jacs.4c16426
    3. Kun Wang, Wei Wang, Dingkai Lou, Jie Zhang, Changli Chi, Jan-E. Bäckvall, Xiang Sheng, Can Zhu. Overcoming the Limitations of Transition-Metal Catalysis in the Chemoenzymatic Dynamic Kinetic Resolution (DKR) of Atropisomeric Bisnaphthols. ACS Central Science 2024, 10 (11) , 2099-2110. https://doi.org/10.1021/acscentsci.4c01370
    4. Ahui Shen, Jun Xu, Jun Gao, Shouyi Cen, Zhipeng Zhang. An Axially Chiral Quinoline-2-Carboxylic Acid-Cu Catalyst for Enantioselective Synthesis of C2- and C1-Symmetric BINOLs. The Journal of Organic Chemistry 2024, 89 (17) , 12842-12847. https://doi.org/10.1021/acs.joc.4c01421
    5. Chandan Kumar Giri, Tejender Singh, Sudeshna Mondal, Soumya Ghosh, Mahiuddin Baidya. Ru(II)-Catalyzed Deformylative C–C Activation and Carbene Insertion: Empowering Diversity-Oriented Synthesis of Unsymmetrical Biaryldiols and Heterobiaryl Amino Alcohols. ACS Catalysis 2024, 14 (15) , 11286-11293. https://doi.org/10.1021/acscatal.4c02889
    6. Qian-Ming Zuo, Ming-Ying Wu, Li-Biao Han, Shang-Dong Yang. Chiral α-Aminophosphonates as Ligands in Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols. Organic Letters 2024, 26 (25) , 5274-5279. https://doi.org/10.1021/acs.orglett.4c01582
    7. Jun Gao, Pengyang Wang, Ahui Shen, Xueyan Yang, Shouyi Cen, Zhipeng Zhang. Axially Chiral Copper Catalyst for Asymmetric Synthesis of Valuable Diversely Substituted BINOLs. ACS Catalysis 2024, 14 (8) , 5621-5629. https://doi.org/10.1021/acscatal.4c00726
    8. Ankit Kumar, Hiroaki Sasai, Shinobu Takizawa. Atroposelective Synthesis of C–C Axially Chiral Compounds via Mono- and Dinuclear Vanadium Catalysis. Accounts of Chemical Research 2022, 55 (20) , 2949-2965. https://doi.org/10.1021/acs.accounts.2c00545
    9. Robert Pearce-Higgins, Larissa N. Hogenhout, Philip J. Docherty, David M. Whalley, Padon Chuentragool, Najung Lee, Nelson Y. S. Lam, Thomas M. McGuire, Damien Valette, Robert J. Phipps. An Enantioselective Suzuki–Miyaura Coupling To Form Axially Chiral Biphenols. Journal of the American Chemical Society 2022, 144 (33) , 15026-15032. https://doi.org/10.1021/jacs.2c06529
    10. Jingze Wu, Marisa C. Kozlowski. Catalytic Oxidative Coupling of Phenols and Related Compounds. ACS Catalysis 2022, 12 (11) , 6532-6549. https://doi.org/10.1021/acscatal.2c00318
    11. Pengyang Wang, Shouyi Cen, Jun Gao, Ahui Shen, Zhipeng Zhang. Novel Axially Chiral Ligand-Enabled Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols for the Synthesis of 6,6′-Disubstituted BINOLs. Organic Letters 2022, 24 (12) , 2321-2326. https://doi.org/10.1021/acs.orglett.2c00479
    12. Yao Zhong, Jin Zhong, Taimei Cai, Shixia Chen, Jun Wang, Zheling Zeng, Qiang Deng. Controlled Synthesis of Dibenzenetriol and Diquinone from 1,2,4-Benzenetriol by Catalytic Aerobic Oxidation. ACS Sustainable Chemistry & Engineering 2022, 10 (10) , 3255-3263. https://doi.org/10.1021/acssuschemeng.1c07823
    13. Masumi Sugawara, Rikako Ohnishi, Tetsuya Ezawa, Mai Akakabe, Miki Sawamura, Daiki Hojo, Daisuke Hashizume, Yoshihiro Sohtome, Mikiko Sodeoka. Regiodivergent Oxidative Cross-Coupling of Catechols with Persistent tert-Carbon Radicals. ACS Catalysis 2020, 10 (21) , 12770-12782. https://doi.org/10.1021/acscatal.0c03986
    14. Subir Biswas, Arpita Devi, Tonmoy J. Bora, Kusum K. Bania. Heterogeneous Catalysts for C–C Bond Formation Reactions. Synlett 2025, 111 https://doi.org/10.1055/s-0043-1775449
    15. Wen-Long Wang, Xiao-Xiong Lv, Fei Chen, Ning Liu, Zhi-Hong Du. Copper–amine-complex-catalyzed highly selective oxidative cross-coupling of 2-naphthols: Synthesis of C-Symmetric BINOLs. Tetrahedron 2025, 174 , 134495. https://doi.org/10.1016/j.tet.2025.134495
    16. Yun Wu, Can Zhu. Changing the absolute configuration of atropisomeric bisnaphthols (BINOLs). Chemical Communications 2025, 61 (28) , 5228-5233. https://doi.org/10.1039/D5CC01026H
    17. Mohamed S. H. Salem, Shinobu Takizawa. Introduction. 2024, 1-20. https://doi.org/10.1002/9783527844258.ch1
    18. Tatsuya Uchida. Iron‐ and Ruthenium‐Catalyzed Atroposelective Synthesis of Axially Chiral Compounds. 2024, 21-43. https://doi.org/10.1002/9783527844258.ch2
    19. Mohamed S. H. Salem, Shinobu Takizawa. Vanadium‐Catalyzed Atroposelective Coupling of Arenols and Application in the Synthesis of Polycyclic Heteroaromatics ( PHAs ). 2024, 45-68. https://doi.org/10.1002/9783527844258.ch3
    20. Subir Biswas, Dipankar Barman, Priyanka Dutta, Nand K. Gour, Seonghwan Lee, Donguk Kim, Young-Bin Park, Tonmoy J. Bora, Arpita Devi, Salma A. Khanam, Lakshi Saikia, Galla V. Karunakar, Magdi E. A. Zaki, Kusum K. Bania. Ru-nanoparticles supported on zeolite-Y for ortho -benzylation of phenols and activation of H 2 O 2 for selective synthesis of BINOLs. Catalysis Science & Technology 2024, 14 (18) , 5234-5256. https://doi.org/10.1039/D4CY00429A
    21. Masaru Kondo, Shohei Tada, Takao Shioiri, Hiroki Nakajima, Masahiko Nishijima, Tetsuo Honma, Kakeru Fujiwara. Aerobic oxidative coupling of 2-naphthols catalyzed by flame-made VO /t-ZrO2: Effect of metal oxide support and VO content on catalytic activity. Applied Catalysis A: General 2024, 676 , 119638. https://doi.org/10.1016/j.apcata.2024.119638
    22. Richard R. Surgenor, Xiangqian Liu, Morgan J. H. Keenlyside, William Myers, Martin D. Smith. Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling. Nature Chemistry 2023, 15 (3) , 357-365. https://doi.org/10.1038/s41557-022-01095-9
    23. Everton Machado da Silva, Hérika Danielle Almeida Vidal, Marcelo Augusto Pereira Januário, Arlene Gonçalves Corrêa. Advances in the Asymmetric Synthesis of BINOL Derivatives. Molecules 2023, 28 (1) , 12. https://doi.org/10.3390/molecules28010012
    24. Masaru Kondo, H. D. P. Wathsala, Mohamed S. H. Salem, Kazunori Ishikawa, Satoshi Hara, Takayuki Takaai, Takashi Washio, Hiroaki Sasai, Shinobu Takizawa. Bayesian optimization-driven parallel-screening of multiple parameters for the flow synthesis of biaryl compounds. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00764-7
    25. Shao-Hua Xiang, Jun Kee Cheng, Bin Tan. The Application of 2-Naphthols in Asymmetric Synthesis of Atropisomers. Synlett 2022, 33 (20) , 1991-2003. https://doi.org/10.1055/a-1965-2928
    26. Duona Fan, Md. Imrul Khalid, Ganesh Tatya Kamble, Hiroaki Sasai, Shinobu Takizawa. Electrochemical Synthesis of 1,1′-Binaphthalene-2,2′-Diamines via Transition-Metal-Free Oxidative Homocoupling. Sustainable Chemistry 2022, 3 (4) , 551-557. https://doi.org/10.3390/suschem3040034
    27. Yue Cui, Siyu Li, Hesheng Wang, Jing Zeng, Yichen Wang, Xiubin Bu, Xiaobo Yang, Zhen Zhao. Synthesis of naphthalene-substituted aromatic esters via Rh( iii )-catalyzed C–H bond naphthylation and cascade directing group transformation. Chemical Communications 2022, 58 (95) , 13230-13233. https://doi.org/10.1039/D2CC05484A
    28. Masumi Sugawara, Miki Sawamura, Mai Akakabe, Boobalan Ramadoss, Yoshihiro Sohtome, Mikiko Sodeoka. Pd‐catalyzed Aerobic Cross‐Dehydrogenative Coupling of Catechols with 2‐Oxindoles and Benzofuranones: Reactivity Difference Between Monomer and Dimer. Chemistry – An Asian Journal 2022, 17 (20) https://doi.org/10.1002/asia.202200807
    29. Heng-Hui Li, Jia-Yan Zhang, Shaoyu Li, Yong-Bin Wang, Jun Kee Cheng, Shao-Hua Xiang, Bin Tan. Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution. Science China Chemistry 2022, 65 (6) , 1142-1148. https://doi.org/10.1007/s11426-022-1246-8
    30. Kengo Kasama, Yuya Hinami, Karin Mizuno, Satoshi Horino, Tomoya Nishio, Chiharu Yuki, Kyohei Kanomata, Gamal A. I. Moustafa, Harald Gröger, Shuji Akai. Lipase-Catalyzed Kinetic Resolution of C1-Symmetric Heterocyclic Biaryls. Chemical and Pharmaceutical Bulletin 2022, 70 (5) , 391-399. https://doi.org/10.1248/cpb.c22-00021
    31. Yuuya Kawasaki, Ryota Kamikubo, Yuta Kumegawa, Kouhei Ogawa, Takeru Kashiwagi, Yusuke Ano, Kazunobu Igawa, Katsuhiko Tomooka. Preparation of enantioenriched helical- and axial-chiral molecules by dynamic asymmetric induction. Chemical Communications 2022, 58 (10) , 1605-1608. https://doi.org/10.1039/D1CC05881A
    32. Fabrizio Medici, Simonetta Resta, Alessandra Puglisi, Sergio Rossi, Laura Raimondi, Maurizio Benaglia. Electrochemical Organic Synthesis of Electron-Rich Biaryl Scaffolds: An Update. Molecules 2021, 26 (22) , 6968. https://doi.org/10.3390/molecules26226968
    33. Ji-Wei Zhang, Fei Jiang, Ye-Hui Chen, Shao-Hua Xiang, Bin Tan. Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones. Science China Chemistry 2021, 64 (9) , 1515-1521. https://doi.org/10.1007/s11426-021-1003-9
    34. Makoto Sako, Keigo Higashida, Ganesh Tatya Kamble, Kevin Kaut, Ankit Kumar, Yuka Hirose, Da-Yang Zhou, Takeyuki Suzuki, Magnus Rueping, Tomohiro Maegawa, Shinobu Takizawa, Hiroaki Sasai. Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium( v ) complex. Organic Chemistry Frontiers 2021, 8 (17) , 4878-4885. https://doi.org/10.1039/D1QO00783A
    35. Xiao‐Jing Zhao, Zi‐Hao Li, Tong‐Mei Ding, Jin‐Miao Tian, Yong‐Qiang Tu, Ai‐Fang Wang, Yu‐Yang Xie. Enantioselective Synthesis of 3,3′‐Disubstituted 2‐Amino‐2′‐hydroxy‐1,1′‐binaphthyls by Copper‐Catalyzed Aerobic Oxidative Cross‐Coupling. Angewandte Chemie 2021, 133 (13) , 7137-7141. https://doi.org/10.1002/ange.202015001
    36. Xiao‐Jing Zhao, Zi‐Hao Li, Tong‐Mei Ding, Jin‐Miao Tian, Yong‐Qiang Tu, Ai‐Fang Wang, Yu‐Yang Xie. Enantioselective Synthesis of 3,3′‐Disubstituted 2‐Amino‐2′‐hydroxy‐1,1′‐binaphthyls by Copper‐Catalyzed Aerobic Oxidative Cross‐Coupling. Angewandte Chemie International Edition 2021, 60 (13) , 7061-7065. https://doi.org/10.1002/anie.202015001
    37. Jorge Andrés Mora Vargas, David P. Day, Antonio C. B. Burtoloso. Substituted Naphthols: Preparations, Applications, and Reactions. European Journal of Organic Chemistry 2021, 2021 (5) , 741-756. https://doi.org/10.1002/ejoc.202001132
    38. Makoto Sako, Shinobu Takizawa, Hiroaki Sasai. Chiral vanadium complex-catalyzed oxidative coupling of arenols. Tetrahedron 2020, 76 (47) , 131645. https://doi.org/10.1016/j.tet.2020.131645

    Organic Letters

    Cite this: Org. Lett. 2020, 22, 4, 1469–1474
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.0c00048
    Published January 27, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3893

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.