ACS Publications. Most Trusted. Most Cited. Most Read
Arborisidine and Arbornamine, Two Monoterpenoid Indole Alkaloids with New Polycyclic Carbon–Nitrogen Skeletons Derived from a Common Pericine Precursor
My Activity
    Letter

    Arborisidine and Arbornamine, Two Monoterpenoid Indole Alkaloids with New Polycyclic Carbon–Nitrogen Skeletons Derived from a Common Pericine Precursor
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
    School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2016, 18, 7, 1618–1621
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.6b00478
    Published March 22, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Two new monoterpene indole alkaloids, characterized by previously unencountered natural product skeletons, viz., arborisidine (1), incorporating indolizidine and cyclohexanone moieties fused to an indole unit, and arbornamine (2), incorporating an unprecedented 6/5/6/5/6 “arbornane” skeleton (distinct from the eburnan or tacaman skeleton), were isolated from a Malayan Kopsia arborea. The structures of the alkaloids were determined based on analysis of the NMR and MS data. Possible biogenetic pathways to these alkaloids from a common pericine precursor (3) are presented.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00478.

    • Experimental procedures, 1D, 2D NMR, and HRESIMS data of compounds 1, 2, and 9, ECD data for 1, calculated free energies, and Cartesian coordinates for 2 (chair and twist-boat conformers) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 60 publications.

    1. Liang Huo, Yunxia Yang, Xiaofei Gao, Wei Chen, Xuegong She, Xiao-Ping Cao. A Formal Synthesis of (±)-Arborisidine. Organic Letters 2024, 26 (18) , 3801-3805. https://doi.org/10.1021/acs.orglett.4c00928
    2. Raju Chouhan, Hemanga Bhattacharyya, Sajal Kumar Das. Diastereocontrolled Construction of Spiroindolenines via Hexafluoroisopropanol-Promoted Dearomative Epoxide–Indole Cyclization. Organic Letters 2024, 26 (5) , 1088-1093. https://doi.org/10.1021/acs.orglett.3c04361
    3. Jinghua Wu, Yubing Pang, Huanfeng Jiang, Zhiqiang Ma. Formal Synthesis of Arboridinine Enabled by a Double-Mannich Reaction. The Journal of Organic Chemistry 2022, 87 (12) , 8223-8228. https://doi.org/10.1021/acs.joc.2c00602
    4. Ran Yang, Dong Yi, Kunrong Shen, Qiang Fu, Jun Wei, Ji Lu, Lin Yang, Li Wang, Siping Wei, Zhijie Zhang. Indole and Pyrrole Derivatives as Pre-photocatalysts and Substrates in the Sulfonyl Radical-Triggered Relay Cyclization Leading to Sulfonylated Heterocycles. Organic Letters 2022, 24 (10) , 2014-2019. https://doi.org/10.1021/acs.orglett.2c00472
    5. Ying Li, Cheng Wang, Zhiqiang Ma, Kun Zhang, Xue-Tao Xu. Asymmetric Total Synthesis and Assignment of Absolute Configuration of Arbornamine. Organic Letters 2020, 22 (21) , 8589-8592. https://doi.org/10.1021/acs.orglett.0c03183
    6. Rémi Andres, Qian Wang, Jieping Zhu. Asymmetric Total Synthesis of (−)-Arborisidine and (−)-19-epi-Arborisidine Enabled by a Catalytic Enantioselective Pictet–Spengler Reaction. Journal of the American Chemical Society 2020, 142 (33) , 14276-14285. https://doi.org/10.1021/jacs.0c05804
    7. Yao-Bin Shen, Long-Fei Li, Ming-Yan Xiao, Jian-Ming Yang, Qing Liu, Jian Xiao. Redox-Neutral Cascade Dearomatization of Indoles via Hydride Transfer: Divergent Synthesis of Tetrahydroquinoline-Fused Spiroindolenines. The Journal of Organic Chemistry 2019, 84 (21) , 13935-13947. https://doi.org/10.1021/acs.joc.9b02110
    8. Soon-Kit Wong, Suet-Pick Wong, Kae-Shin Sim, Siew-Huah Lim, Yun-Yee Low, Toh-Seok Kam. A Cytotoxic Indole Characterized by Incorporation of a Unique Carbon–Nitrogen Skeleton and Two Pentacyclic Corynanthean Alkaloids Incorporating a Substituted Tetrahydrofuranone Ring from Kopsia arborea. Journal of Natural Products 2019, 82 (7) , 1902-1907. https://doi.org/10.1021/acs.jnatprod.9b00255
    9. Zhiyao Zhou, Alison X. Gao, Scott A. Snyder. Total Synthesis of (+)-Arborisidine. Journal of the American Chemical Society 2019, 141 (19) , 7715-7720. https://doi.org/10.1021/jacs.9b03248
    10. Zhen Zhang, Sujun Xie, Bin Cheng, Hongbin Zhai, Yun Li. Enantioselective Total Synthesis of (+)-Arboridinine. Journal of the American Chemical Society 2019, 141 (17) , 7147-7154. https://doi.org/10.1021/jacs.9b02362
    11. Manojkumar G. Kalshetti, Narshinha P. Argade. Regioselective and Stereoselective Reductive Aziridinium Ring Cleavage Leading to Azabicyclodecane Architecture: Enantioselective Synthesis of (+)-Subincanadine F. The Journal of Organic Chemistry 2018, 83 (19) , 12164-12170. https://doi.org/10.1021/acs.joc.8b02113
    12. Manojkumar G. Kalshetti, Narshinha P. Argade. Diastereoselective Synthesis of (±)-epi-Subincanadine C. ACS Omega 2018, 3 (5) , 5308-5316. https://doi.org/10.1021/acsomega.8b00587
    13. Yu Zheng, Bei-Bei Yue, Kun Wei, Yu-Rong Yang. Short Synthesis of the Monoterpene Indole Alkaloid (±)-Arbornamine. The Journal of Organic Chemistry 2018, 83 (8) , 4867-4870. https://doi.org/10.1021/acs.joc.8b00529
    14. Pei Gan, Jennifer Pitzen, Pei Qu, and Scott A. Snyder . Total Synthesis of the Caged Indole Alkaloid Arboridinine Enabled by aza-Prins and Metal-Mediated Cyclizations. Journal of the American Chemical Society 2018, 140 (3) , 919-925. https://doi.org/10.1021/jacs.7b07724
    15. Manojkumar G. Kalshetti and Narshinha P. Argade . Total Synthesis of (±)/(+)-Subincanadine E and Determination of Absolute Configuration. The Journal of Organic Chemistry 2017, 82 (20) , 11126-11133. https://doi.org/10.1021/acs.joc.7b02122
    16. Jun Zeng, Dong-Bo Zhang, Pan-Pan Zhou, Qi-Li Zhang, Lei Zhao, Jian-Jun Chen, and Kun Gao . Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria. Organic Letters 2017, 19 (15) , 3998-4001. https://doi.org/10.1021/acs.orglett.7b01723
    17. Shino Tooriyama, Yuji Mimori, Yuqiu Wu, Noriyuki Kogure, Mariko Kitajima, and Hiromitsu Takayama . Asymmetric Total Synthesis of Pentacyclic Indole Alkaloid Andranginine and Absolute Configuration of Natural Product Isolated from Kopsia arborea. Organic Letters 2017, 19 (10) , 2722-2725. https://doi.org/10.1021/acs.orglett.7b01076
    18. Ryoko Tokuda, Yoshiki Okamoto, Tetsuya Koyama, Noriyuki Kogure, Mariko Kitajima, and Hiromitsu Takayama . Asymmetric Total Synthesis of Kopsiyunnanine K, a Monoterpenoid Indole Alkaloid with a Rearranged Skeleton. Organic Letters 2016, 18 (14) , 3490-3493. https://doi.org/10.1021/acs.orglett.6b01704
    19. Xiaochen Tian, Tengfei Xuan, Jingkun Gao, Xinyu Zhang, Tao Liu, Fengbiao Luo, Ruochen Pang, Pengcheng Shao, Yun-Fang Yang, Yang Wang. Catalytic enantioselective nitrone cycloadditions enabling collective syntheses of indole alkaloids. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50509-4
    20. Ming Zheng, Cheng Wang, Huanfeng Jiang, Zhiqiang Ma. Concise asymmetric total synthesis of (+)-arbornamine. Organic Chemistry Frontiers 2024, 11 (20) , 5847-5850. https://doi.org/10.1039/D4QO01240B
    21. Lvli Chen, Dong Xiong, Zeyu Yang, Yuyao Chen, Jian Xiao, Yin Tian, Jianfeng Zheng. Atom-economic metal free mediated difunctionalization of isocyanides with 3-methyleneoxindoles and 3-methylene-benzofuranones. Organic Chemistry Frontiers 2024, 11 (20) , 5868-5875. https://doi.org/10.1039/D4QO01369G
    22. Nanping Zhang, Cheng Wang, Hailong Xu, Ming Zheng, Huanfeng Jiang, Kai Chen, Zhiqiang Ma. Asymmetric Total Synthesis of Alstrostine G Utilizing a Catalytic Asymmetric Desymmetrization Strategy. Angewandte Chemie International Edition 2024, 63 (34) https://doi.org/10.1002/anie.202407127
    23. Nanping Zhang, Cheng Wang, Hailong Xu, Ming Zheng, Huanfeng Jiang, Kai Chen, Zhiqiang Ma. Asymmetric Total Synthesis of Alstrostine G Utilizing a Catalytic Asymmetric Desymmetrization Strategy. Angewandte Chemie 2024, 136 (34) https://doi.org/10.1002/ange.202407127
    24. Rui Yang, Zeyu Zhou, Huanfeng Jiang, Toh‐Seok Kam, Kai Chen, Zhiqiang Ma. Asymmetric Synthesis of Arboduridine. Angewandte Chemie 2024, 136 (3) https://doi.org/10.1002/ange.202316016
    25. Rui Yang, Zeyu Zhou, Huanfeng Jiang, Toh‐Seok Kam, Kai Chen, Zhiqiang Ma. Asymmetric Synthesis of Arboduridine. Angewandte Chemie International Edition 2024, 63 (3) https://doi.org/10.1002/anie.202316016
    26. Bao-Long Hou, Junyang Liu, Chuang Qiao, Chuang-Chuang Li. Total synthesis of natural products containing bicyclo[n.2.2] ring systems. Tetrahedron Letters 2024, 135 , 154871. https://doi.org/10.1016/j.tetlet.2023.154871
    27. Ramsha Munir, Ameer Fawad Zahoor, Usman Nazeer, Muhammad Athar Saeed, Asim Mansha, Ahmad Irfan, Muhammad Umair Tariq. Gilman reagent toward the synthesis of natural products. RSC Advances 2023, 13 (50) , 35172-35208. https://doi.org/10.1039/D3RA07359A
    28. Minghui Fan, Liangbang Zou, Kaidi Tian, Guoqing Chen, Kai Cheng, Yong Li. Chemistry, bioactivity, biosynthesis, and total synthesis of stemmadenine alkaloids. Natural Product Reports 2023, 40 (5) , 1022-1044. https://doi.org/10.1039/D2NP00052K
    29. Rémi Andres, Fenggang Sun, Qian Wang, Jieping Zhu. Organocatalytic Enantioselective Pictet–Spengler Reaction of α‐Ketoesters: Development and Application to the Total Synthesis of (+)‐Alstratine A. Angewandte Chemie International Edition 2023, 62 (1) https://doi.org/10.1002/anie.202213831
    30. Rémi Andres, Fenggang Sun, Qian Wang, Jieping Zhu. Organocatalytic Enantioselective Pictet–Spengler Reaction of α‐Ketoesters: Development and Application to the Total Synthesis of (+)‐Alstratine A. Angewandte Chemie 2023, 135 (1) https://doi.org/10.1002/ange.202213831
    31. Fangzhi Hu, Yao-Bin Shen, Liang Wang, Shuai-Shuai Li. Merging dearomatization with redox-neutral C(sp 3 )–H functionalization via hydride transfer/cyclization: recent advances and perspectives. Organic Chemistry Frontiers 2022, 9 (18) , 5041-5052. https://doi.org/10.1039/D2QO01054B
    32. Hongbin Zhai, Zhenhua Wang, Kewei Chen, Tian-Yu Sun, Jian Wei, Yun-Dong Wu. Total synthesis of monoterpenoid indole alkaloid (–)-arbophyllidine. Organic Chemistry Frontiers 2022, 9 (9) , 2328-2332. https://doi.org/10.1039/D2QO00284A
    33. Rémi Andres, Qian Wang, Jieping Zhu. Catalytic Enantioselective Pictet–Spengler Reaction of α‐Ketoamides Catalyzed by a Single H‐Bond Donor Organocatalyst. Angewandte Chemie 2022, 134 (19) https://doi.org/10.1002/ange.202201788
    34. Rémi Andres, Qian Wang, Jieping Zhu. Catalytic Enantioselective Pictet–Spengler Reaction of α‐Ketoamides Catalyzed by a Single H‐Bond Donor Organocatalyst. Angewandte Chemie International Edition 2022, 61 (19) https://doi.org/10.1002/anie.202201788
    35. Soon-Kit Wong, Yi-Sheng Tan, Siew-Huah Lim, Yun-Yee Low, Toh-Seok Kam. Arboduridine, a hexacyclic caged monoterpenoid indole incorporating cyclohexane, piperidine, and bridged-fused pyrrolidine-tetrahydrofuran moieties. Tetrahedron Letters 2022, 98 , 153836. https://doi.org/10.1016/j.tetlet.2022.153836
    36. Xiao-Yu Liu, Yong Qin. Recent advances in the total synthesis of monoterpenoid indole alkaloids enabled by asymmetric catalysis. Green Synthesis and Catalysis 2022, 3 (1) , 25-39. https://doi.org/10.1016/j.gresc.2021.10.009
    37. Cheng Wang, Yubing Pang, Yuecheng Wu, Nanping Zhang, Rui Yang, Ying Li, Pengquan Chen, Huanfeng Jiang, Xue‐Tao Xu, Toh‐Seok Kam, Ting Fan, Zhiqiang Ma. Divergent Synthesis of Skeletally Distinct Arboridinine and Arborisidine. Angewandte Chemie 2021, 133 (52) , 27184-27191. https://doi.org/10.1002/ange.202110149
    38. Cheng Wang, Yubing Pang, Yuecheng Wu, Nanping Zhang, Rui Yang, Ying Li, Pengquan Chen, Huanfeng Jiang, Xue‐Tao Xu, Toh‐Seok Kam, Ting Fan, Zhiqiang Ma. Divergent Synthesis of Skeletally Distinct Arboridinine and Arborisidine. Angewandte Chemie International Edition 2021, 60 (52) , 26978-26985. https://doi.org/10.1002/anie.202110149
    39. Xue Xiao, Xiao-Hui Chen, Xian-Xun Wang, Fei-Yue Wu, Hai-Lei Cui. NBS-mediated synthesis of bromodihydroindolizino[8,7-b]indole derivatives. Tetrahedron Letters 2021, 77 , 153255. https://doi.org/10.1016/j.tetlet.2021.153255
    40. Feng‐Yuan Wang, Lei Jiao. Total Synthesis of (−)‐Arborisidine. Angewandte Chemie 2021, 133 (23) , 12842-12846. https://doi.org/10.1002/ange.202101161
    41. Feng‐Yuan Wang, Lei Jiao. Total Synthesis of (−)‐Arborisidine. Angewandte Chemie International Edition 2021, 60 (23) , 12732-12736. https://doi.org/10.1002/anie.202101161
    42. Tessa Lynch-Colameta, Sarah Greta, Scott A. Snyder. Synthesis of aza-quaternary centers via Pictet–Spengler reactions of ketonitrones. Chemical Science 2021, 12 (17) , 6181-6187. https://doi.org/10.1039/D1SC00882J
    43. Tímea Szabó, Balázs Volk, Mátyás Milen. Recent Advances in the Synthesis of β-Carboline Alkaloids. Molecules 2021, 26 (3) , 663. https://doi.org/10.3390/molecules26030663
    44. Goutam Brahmachari. Self-catalytic techniques for the synthesis of biologically relevant heterocyclic scaffolds at room temperature: a recent update. 2021, 563-587. https://doi.org/10.1016/B978-0-12-820586-0.00001-7
    45. Majid M. Heravi, Vahideh Zadsirjan. Applications of Pictet–Spengler reaction in the total synthesis of alkaloids. 2021, 227-294. https://doi.org/10.1016/B978-0-12-824021-2.00003-0
    46. Soon-Kit Wong, Joanne Soon-Yee Yeap, Chun-Hoe Tan, Kae-Shin Sim, Siew-Huah Lim, Yun-Yee Low, Toh-Seok Kam. Arbolodinines A−C, biologically-active aspidofractinine-aspidofractinine, aspidofractinine-strychnan, and kopsine-strychnan bisindole alkaloids from Kopsia arborea. Tetrahedron 2021, 78 , 131802. https://doi.org/10.1016/j.tet.2020.131802
    47. Afrah E. Mohammed, Zainab H. Abdul-Hameed, Modhi O. Alotaibi, Nahed O. Bawakid, Tariq R. Sobahi, Ahmed Abdel-Lateff, Walied M. Alarif. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera. Molecules 2021, 26 (2) , 488. https://doi.org/10.3390/molecules26020488
    48. Xiao-Dong Chen, Jiang Hu, Jia-Xun Li, Fu-Sheng Chi. Cytotoxic monoterpenoid indole alkaloids from the aerial part of Kopsia arborea. Journal of Asian Natural Products Research 2020, 22 (11) , 1024-1030. https://doi.org/10.1080/10286020.2019.1680646
    49. K. K. Banerji. Oxidation and Reduction. 2020, 97-199. https://doi.org/10.1002/9781119288657.ch3
    50. Si‐Wei Liu, Chang Yuan, Xue‐Fei Jiang, Xian‐Xun Wang, Hai‐Lei Cui. Catalyst‐Free [3+2] Cycloaddition of Unactivated Imines with Cyclopropenones. Asian Journal of Organic Chemistry 2020, 9 (1) , 82-85. https://doi.org/10.1002/ajoc.201900630
    51. Manojkumar Gulabrao Kalshetti, Narshinha Panditrao Argade. The indole-based subincanadine alkaloids and their biogenetic congeners. 2020, 187-223. https://doi.org/10.1016/bs.alkal.2019.12.001
    52. Manojkumar G. Kalshetti, Narshinha P. Argade. Progress in total synthesis of subincanadine alkaloids and their congeners. Organic & Biomolecular Chemistry 2019, 17 (4) , 745-761. https://doi.org/10.1039/C8OB02565G
    53. Yen‐Chun Lee, Kamal Kumar. Gold(I) Catalyzed Enyne Cycloisomerization – A Roadmap to Privileged Heterocyclic Scaffolds. Israel Journal of Chemistry 2018, 58 (5) , 531-556. https://doi.org/10.1002/ijch.201700067
    54. Majid M. Heravi, Vahideh Zadsirjan, Masumeh Malmir. Application of the Asymmetric Pictet–Spengler Reaction in the Total Synthesis of Natural Products and Relevant Biologically Active Compounds. Molecules 2018, 23 (4) , 943. https://doi.org/10.3390/molecules23040943
    55. Yan-Fei Liu, Shi-Shan Yu. Survey of natural products reported by Asian research groups in 2016. Journal of Asian Natural Products Research 2017, 19 (11) , 1047-1072. https://doi.org/10.1080/10286020.2017.1391229
    56. Zhi-Wei Wang, Xiao-Jian Shi, Yan Mu, Lei Fang, Yue Chen, Yun-Liang Lin. Three novel indole alkaloids from Kopsia officinalis. Fitoterapia 2017, 119 , 8-11. https://doi.org/10.1016/j.fitote.2017.01.017
    57. Kai-Kai Wang, Wei Du, Jin Zhu, Ying-Chun Chen. Construction of polycyclic spirooxindoles through [3+2] annulations of Morita–Baylis–Hillman carbonates and 3-nitro-7-azaindoles. Chinese Chemical Letters 2017, 28 (3) , 512-516. https://doi.org/10.1016/j.cclet.2016.11.003
    58. Mariko Kitajima, Maiko Nakazawa, Yuqiu Wu, Noriyuki Kogure, Rong-Ping Zhang, Hiromitsu Takayama. Kopsiyunnanines L and M, Strychnos-related monoterpenoid indole alkaloids from Yunnan Kopsia arborea. Tetrahedron 2016, 72 (42) , 6692-6696. https://doi.org/10.1016/j.tet.2016.08.082
    59. Suet‐Pick Wong, Kam‐Weng Chong, Kuan‐Hon Lim, Siew‐Huah Lim, Yun‐Yee Low, Toh‐Seok Kam. ChemInform Abstract: Arborisidine and Arbornamine, Two Monoterpenoid Indole Alkaloids with New Polycyclic Carbon—Nitrogen Skeletons Derived from a Common Pericine Precursor.. ChemInform 2016, 47 (32) https://doi.org/10.1002/chin.201632213
    60. Robert A. Hill, Andrew Sutherland. Hot off the Press. Natural Product Reports 2016, 33 (6) , 742-746. https://doi.org/10.1039/C6NP90022D

    Organic Letters

    Cite this: Org. Lett. 2016, 18, 7, 1618–1621
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.6b00478
    Published March 22, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3018

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.