ACS Publications. Most Trusted. Most Cited. Most Read
Conformational Control of Chiral Amido-Thiourea Catalysts Enables Improved Activity and Enantioselectivity
My Activity
    Letter

    Conformational Control of Chiral Amido-Thiourea Catalysts Enables Improved Activity and Enantioselectivity
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
    Other Access OptionsSupporting Information (2)

    Organic Letters

    Cite this: Org. Lett. 2016, 18, 13, 3214–3217
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.6b01435
    Published June 13, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    While aryl pyrrolidinoamido-thioureas derived from α-amino acids are effective catalysts in a number of asymmetric transformations, they exist as mixtures of slowly interconverting amide rotamers. Herein, the compromising role of amide bond isomerism is analyzed experimentally and computationally. A modified catalyst structure that exists almost exclusively as a single amide rotamer is introduced. This modification is shown to result in improved reactivity and enantioselectivity by minimizing competing reaction pathways.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b01435.

    • Full experimental procedures, characterization data including NMR spectra for all new compounds, and geometries and energies of all calculated stationary points (PDF)

    • Crystallographic data for Me-1 (CCDC 1477622 and 1478394), catalyst analogues (CCDC 1478392, 1478393, 1478395), and a synthetic intermediate en route to Me-1 (CCDC 1477623) (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 34 publications.

    1. Marta Velázquez, Rosario Fernández, José M. Lassaletta, David Monge. Asymmetric Dearomatization of Phthalazines by Anion-Binding Catalysis. Organic Letters 2023, 25 (49) , 8797-8802. https://doi.org/10.1021/acs.orglett.3c03325
    2. Mohammad H. Samha, Julie L. H. Wahlman, Jacquelyne A. Read, Jacob Werth, Eric N. Jacobsen, Matthew S. Sigman. Exploring Structure–Function Relationships of Aryl Pyrrolidine-Based Hydrogen-Bond Donors in Asymmetric Catalysis Using Data-Driven Techniques. ACS Catalysis 2022, 12 (24) , 14836-14845. https://doi.org/10.1021/acscatal.2c04824
    3. Dan Lehnherr, Yu-hong Lam, Michael C. Nicastri, Jinchu Liu, Justin A. Newman, Erik L. Regalado, Daniel A. DiRocco, Tomislav Rovis. Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. Journal of the American Chemical Society 2020, 142 (1) , 468-478. https://doi.org/10.1021/jacs.9b10870
    4. Andrew J. Bendelsmith, Seohyun Chris Kim, Masayuki Wasa, Stéphane P. Roche, Eric N. Jacobsen. Enantioselective Synthesis of α-Allyl Amino Esters via Hydrogen-Bond-Donor Catalysis. Journal of the American Chemical Society 2019, 141 (29) , 11414-11419. https://doi.org/10.1021/jacs.9b05556
    5. Xiaojian Jiang, Shenghui Liu, Si Yang, Mei Jing, Lipeng Xu, Pei Yu, Yuqiang Wang, Ying-Yeung Yeung. Enantioselective Bromolactonization of Deactivated Olefinic Acids. Organic Letters 2018, 20 (11) , 3259-3262. https://doi.org/10.1021/acs.orglett.8b01125
    6. Rebekka S. Klausen, C. Rose Kennedy, Alan M. Hyde, and Eric N. Jacobsen . Chiral Thioureas Promote Enantioselective Pictet–Spengler Cyclization by Stabilizing Every Intermediate and Transition State in the Carboxylic Acid-Catalyzed Reaction. Journal of the American Chemical Society 2017, 139 (35) , 12299-12309. https://doi.org/10.1021/jacs.7b06811
    7. Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin . H2C(X)–X···X– (X = Cl, Br) Halogen Bonding of Dihalomethanes. Crystal Growth & Design 2017, 17 (3) , 1353-1362. https://doi.org/10.1021/acs.cgd.6b01754
    8. Weici Xu, Xiang Shen, Qiao Ma, Lei Gong, and Eric Meggers . Restricted Conformation of a Hydrogen Bond Mediated Catalyst Enables the Highly Efficient Enantioselective Construction of an All-Carbon Quaternary Stereocenter. ACS Catalysis 2016, 6 (11) , 7641-7646. https://doi.org/10.1021/acscatal.6b02080
    9. C. Rose Kennedy, Dan Lehnherr, Naomi S. Rajapaksa, David D. Ford, Yongho Park, and Eric N. Jacobsen . Mechanism-Guided Development of a Highly Active Bis-thiourea Catalyst for Anion-Abstraction Catalysis. Journal of the American Chemical Society 2016, 138 (41) , 13525-13528. https://doi.org/10.1021/jacs.6b09205
    10. Giulio Bertuzzi, Alessandro Sinisi, Lorenzo Caruana, Andrea Mazzanti, Mariafrancesca Fochi, and Luca Bernardi . Catalytic Enantioselective Addition of Indoles to Activated N-Benzylpyridinium Salts: Nucleophilic Dearomatization of Pyridines with Unusual C-4 Regioselectivity. ACS Catalysis 2016, 6 (10) , 6473-6477. https://doi.org/10.1021/acscatal.6b01962
    11. C. Rose Kennedy, Jennifer A. Guidera, and Eric N. Jacobsen . Synergistic Ion-Binding Catalysis Demonstrated via an Enantioselective, Catalytic [2,3]-Wittig Rearrangement. ACS Central Science 2016, 2 (6) , 416-423. https://doi.org/10.1021/acscentsci.6b00125
    12. Irma García‐Monzón, Jorge Borges‐González, Ezequiel Q. Morales, Israel Fernández, Tomás Martín. Disclosing the Intra‐Catalyst Non‐Covalent Interactions in Tetrahydropyran‐Based Dipeptidic Catalysts. Advanced Synthesis & Catalysis 2025, https://doi.org/10.1002/adsc.202401443
    13. Cáoimhe J. Niland, Joseph J. Ruddy, Martin P. O'Fearraigh, Eoghan M. McGarrigle. Asymmetric Organocatalyzed Synthesis of α‐Aminophosphinates via Thiourea Anion‐Binding Catalysis. European Journal of Organic Chemistry 2024, 27 (11) https://doi.org/10.1002/ejoc.202301212
    14. John M. Ovian, Petra Vojáčková, Eric N. Jacobsen. Enantioselective transition-metal catalysis via an anion-binding approach. Nature 2023, 616 (7955) , 84-89. https://doi.org/10.1038/s41586-023-05804-3
    15. Esteban Matador, Rosario Fernández, José M. Lassaletta, David Monge. Asymmetric Ion‐Pairing and H‐Bonding Catalysis. 2023, 121-149. https://doi.org/10.1002/9783527832217.ch4
    16. Lukas-M. Entgelmeier, Olga García Mancheño. Activation Modes in Asymmetric Anion-Binding Catalysis. Synthesis 2022, 54 (18) , 3907-3927. https://doi.org/10.1055/a-1846-6139
    17. Daniel A. Strassfeld, Eric N. Jacobsen. The Aryl‐Pyrrolidine‐ tert ‐Leucine Motif as a New Privileged Chiral Scaffold: The Role of Noncovalent Stabilizing Interactions. 2022, 361-385. https://doi.org/10.1002/9783527832033.ch25
    18. Friedemann Dressler, Peter R. Schreiner. From Anion Recognition to Organocatalytic Chemical Reactions. 2022, 1-77. https://doi.org/10.1002/9783527830664.ch1
    19. Matthew A. Horwitz, Véronique Gouverneur. (Thio)urea and Squaramide‐Catalyzed Anion‐Binding Catalysis with Halogen Anions. 2022, 111-140. https://doi.org/10.1002/9783527830664.ch3
    20. Rongrong Hou, Ziyu Wang, Jia Peng, Ye Yuan, Jingli Zhang, Du Wang, Taolei Sun. Conformational Preferences of Allene Ketones in Lewis Base Catalysis: Synthesis of 4 H ‐Pyrans and 3,4‐Dihydro‐2 H ‐pyrans via α ‐Regioselective [4+2] Annulations of γ ‐Substituted Allene Ketones and Activated Alkenes. Asian Journal of Organic Chemistry 2021, 10 (12) , 3334-3342. https://doi.org/10.1002/ajoc.202100523
    21. Nele Konrad, Matvey Horetski, Mariliis Sihtmäe, Khai-Nghi Truong, Irina Osadchuk, Tatsiana Burankova, Marc Kielmann, Jasper Adamson, Anne Kahru, Kari Rissanen, Mathias O. Senge, Victor Borovkov, Riina Aav, Dzmitry Kananovich. Thiourea Organocatalysts as Emerging Chiral Pollutants: En Route to Porphyrin-Based (Chir)Optical Sensing. Chemosensors 2021, 9 (10) , 278. https://doi.org/10.3390/chemosensors9100278
    22. Ana Maria Faisca Phillips, Martin H. G. Prechtl, Armando J. L. Pombeiro. Non-Covalent Interactions in Enantioselective Organocatalysis: Theoretical and Mechanistic Studies of Reactions Mediated by Dual H-Bond Donors, Bifunctional Squaramides, Thioureas and Related Catalysts. Catalysts 2021, 11 (5) , 569. https://doi.org/10.3390/catal11050569
    23. Esteban Matador, Javier Iglesias‐Sigüenza, David Monge, Pedro Merino, Rosario Fernández, José M. Lassaletta. Enantio‐ and Diastereoselective Nucleophilic Addition of N ‐ tert ‐Butylhydrazones to Isoquinolinium Ions through Anion‐Binding Catalysis. Angewandte Chemie 2021, 133 (10) , 5156-5161. https://doi.org/10.1002/ange.202012861
    24. Esteban Matador, Javier Iglesias‐Sigüenza, David Monge, Pedro Merino, Rosario Fernández, José M. Lassaletta. Enantio‐ and Diastereoselective Nucleophilic Addition of N ‐ tert ‐Butylhydrazones to Isoquinolinium Ions through Anion‐Binding Catalysis. Angewandte Chemie International Edition 2021, 60 (10) , 5096-5101. https://doi.org/10.1002/anie.202012861
    25. Lukas Schifferer, Martin Stinglhamer, Kirandeep Kaur, Olga García Macheño. Halides as versatile anions in asymmetric anion-binding organocatalysis. Beilstein Journal of Organic Chemistry 2021, 17 , 2270-2286. https://doi.org/10.3762/bjoc.17.145
    26. C. Rose Kennedy, Bo Young Choi, Mary‐Grace R. Reeves, Eric N. Jacobsen. Enantioselective Catalysis of an Anionic Oxy‐Cope Rearrangement Enabled by Synergistic Ion Binding. Israel Journal of Chemistry 2020, 60 (3-4) , 461-474. https://doi.org/10.1002/ijch.201900168
    27. Ruth Dorel, Ben L. Feringa. Stereodivergent Anion Binding Catalysis with Molecular Motors. Angewandte Chemie 2020, 132 (2) , 795-799. https://doi.org/10.1002/ange.201913054
    28. Ruth Dorel, Ben L. Feringa. Stereodivergent Anion Binding Catalysis with Molecular Motors. Angewandte Chemie International Edition 2020, 59 (2) , 785-789. https://doi.org/10.1002/anie.201913054
    29. Kristin Munkerup, Michael Thulin, Davin Tan, Xiaozhi Lim, Richmond Lee, Kuo-Wei Huang. Importance of thorough conformational analysis in modelling transition metal-mediated reactions: Case studies on pincer complexes containing phosphine groups. Journal of Saudi Chemical Society 2019, 23 (8) , 1206-1218. https://doi.org/10.1016/j.jscs.2019.07.005
    30. Eszter Baráth, Esteban Mejía. Ein Fest der Wissenschaft inmitten der Natur: Die 54. Bürgenstock‐Konferenz. Angewandte Chemie 2019, 131 (48) , 17265-17271. https://doi.org/10.1002/ange.201906781
    31. Eszter Baráth, Esteban Mejía. A Celebration of Science amidst Nature: The 54th Bürgenstock Conference. Angewandte Chemie International Edition 2019, 58 (48) , 17107-17113. https://doi.org/10.1002/anie.201906781
    32. Jorge Borges‐González, Irma García‐Monzón, Tomás Martín. Conformational Control of Tetrahydropyran‐Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Advanced Synthesis & Catalysis 2019, 361 (9) , 2141-2147. https://doi.org/10.1002/adsc.201900247
    33. Xiaojian Jiang, Haitao Wang, Haoquan He, Wei Wang, Yuqiang Wang, Zhihai Ke, Ying‐Yeung Yeung. Enantioseletive Fluorination of 3‐Functionalized Oxindoles Using Electron‐rich Amino Urea Catalyst. Advanced Synthesis & Catalysis 2018, 360 (24) , 4710-4714. https://doi.org/10.1002/adsc.201801133
    34. Dan Lehnherr, David D. Ford, Andrew J. Bendelsmith, C. Rose Kennedy, Eric N. Jacobsen. ChemInform Abstract: Conformational Control of Chiral Amido‐Thiourea Catalysts Enables Improved Activity and Enantioselectivity.. ChemInform 2016, 47 (46) https://doi.org/10.1002/chin.201646156

    Organic Letters

    Cite this: Org. Lett. 2016, 18, 13, 3214–3217
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.6b01435
    Published June 13, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    4272

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.