ACS Publications. Most Trusted. Most Cited. Most Read
Reagent Design and Ligand Evolution for the Development of a Mild Copper-Catalyzed Hydroxylation Reaction
My Activity
    Letter

    Reagent Design and Ligand Evolution for the Development of a Mild Copper-Catalyzed Hydroxylation Reaction
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2017, 19, 11, 3033–3036
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.7b01403
    Published May 18, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Parallel synthesis and mass-directed purification of a modular ligand library, high-throughput experimentation, and rational ligand evolution have led to a novel copper catalyst for the synthesis of phenols with a traceless hydroxide surrogate. The mild reaction conditions reported here enable the late-stage synthesis of numerous complex, druglike phenols.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b01403.

    • Experimental details and characterization data for new compounds (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 62 publications.

    1. Daniel W. Widlicka, Robert A. Singer, Ian Hotham, David J. Bernhardson, Samantha Grosslight. Copper-Catalyzed Hydroxylation of Aryl Halides Using Hydroxypicolinamide Ligands. Organic Process Research & Development 2024, 28 (7) , 2732-2742. https://doi.org/10.1021/acs.oprd.4c00108
    2. Hui Zhao, Anne K. Ravn, Michael C. Haibach, Keary M. Engle, Carin C. C. Johansson Seechurn. Diversification of Pharmaceutical Manufacturing Processes: Taking the Plunge into the Non-PGM Catalyst Pool. ACS Catalysis 2024, 14 (13) , 9708-9733. https://doi.org/10.1021/acscatal.4c01809
    3. Sailuo Li, Dawei Ma. CuI/Oxalamide-Catalyzed Coupling Reaction of (Hetero)aryl Halides with Sodium Nitrite. The Journal of Organic Chemistry 2024, 89 (9) , 6626-6630. https://doi.org/10.1021/acs.joc.4c00463
    4. Joshua W. M. MacMillan, Ryan T. McGuire, Adam M. McMahon, Timothy S. Anderson, Katherine N. Robertson, Mark Stradiotto. DalPhos on Demand: Facile Ligand Generation Enables New Ligand Discovery and Expedient Catalyst Screening. ACS Catalysis 2024, 14 (6) , 4074-4081. https://doi.org/10.1021/acscatal.4c00249
    5. Connor J. Taylor, Alexander Pomberger, Kobi C. Felton, Rachel Grainger, Magda Barecka, Thomas W. Chamberlain, Richard A. Bourne, Christopher N. Johnson, Alexei A. Lapkin. A Brief Introduction to Chemical Reaction Optimization. Chemical Reviews 2023, 123 (6) , 3089-3126. https://doi.org/10.1021/acs.chemrev.2c00798
    6. Ying Chen, Sailuo Li, Lanting Xu, Dawei Ma. Cu/Oxalic Diamide-Catalyzed Coupling of Terminal Alkynes with Aryl Halides. The Journal of Organic Chemistry 2023, 88 (5) , 3330-3334. https://doi.org/10.1021/acs.joc.2c02882
    7. Liu Yang, Yonggang Yan, Ni Cao, Jing Hao, Gang Li, Wei Zhang, Rui Cao, Chao Wang, Jianliang Xiao, Dong Xue. Ni(I)-Catalyzed Hydroxylation of Aryl Halides with Water under Thermal Catalysis. Organic Letters 2022, 24 (51) , 9431-9435. https://doi.org/10.1021/acs.orglett.2c03840
    8. Pufan Ni, Lei Yang, Yi Shen, Lei Zhang, Yueyue Ma, Maolin Sun, Ruihua Cheng, Jinxing Ye. Synthesis of Phenols from Aryl Ammonium Salts under Mild Conditions. The Journal of Organic Chemistry 2022, 87 (19) , 12677-12687. https://doi.org/10.1021/acs.joc.2c01133
    9. Amar Jyoti Bhuyan, Sourav Jyoti Bharali, Abhilash Sharma, Dhiraj Dutta, Pranjal Gogoi, Lakhinath Saikia. Copper-Catalyzed Direct Syntheses of Phenoxypyrimidines from Chloropyrimidines and Arylboronic Acids: A Cascade Avenue and Unconventional Substrate Pairs. The Journal of Organic Chemistry 2022, 87 (17) , 11846-11851. https://doi.org/10.1021/acs.joc.2c00658
    10. Sasa Li, Xia Huang, Yunlong Gao, Jian Jin. Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C–N Cross-Coupling for Triarylamine Synthesis. Organic Letters 2022, 24 (31) , 5817-5824. https://doi.org/10.1021/acs.orglett.2c02364
    11. Kotone Katagiri, Masami Kuriyama, Kosuke Yamamoto, Yosuke Demizu, Osamu Onomura. Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Organic Letters 2022, 24 (28) , 5149-5154. https://doi.org/10.1021/acs.orglett.2c01989
    12. Qiang Yang, Yinsong Zhao, Dawei Ma. Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes. Organic Process Research & Development 2022, 26 (6) , 1690-1750. https://doi.org/10.1021/acs.oprd.2c00050
    13. Guolin Xu, Peng Gao, Thomas J. Colacot. Tunable Unsymmetrical Ferrocene Ligands Bearing a Bulky Di-1-adamantylphosphino Motif for Many Kinds of Csp2–Csp3 Couplings. ACS Catalysis 2022, 12 (9) , 5123-5135. https://doi.org/10.1021/acscatal.2c00352
    14. Jing-Ru Wang, Zhi-Qiang Song, Chen Li, Dong-Hui Wang. Copper-Catalyzed Methoxylation of Aryl Bromides with 9-BBN−OMe. Organic Letters 2021, 23 (21) , 8450-8454. https://doi.org/10.1021/acs.orglett.1c03172
    15. Akshay M. Nair, Indranil Halder, Ritu Sharma, Chandra M. R. Volla. Water Mediated Rearrangement of Alkynyl Cyclohexadienones: Access to meta-Alkenylated Phenols. Organic Letters 2021, 23 (5) , 1840-1845. https://doi.org/10.1021/acs.orglett.1c00245
    16. Shaofeng Wu, Jianyu Dong, Dan Zhou, Wan Wang, Long Liu, Yongbo Zhou. Phosphorous Acid-Catalyzed Alkylation of Phenols with Alkenes. The Journal of Organic Chemistry 2020, 85 (22) , 14307-14314. https://doi.org/10.1021/acs.joc.9b03028
    17. Zhi-Qiang Song, Dong-Hui Wang. Palladium-Catalyzed Hydroxylation of Aryl Halides with Boric Acid. Organic Letters 2020, 22 (21) , 8470-8474. https://doi.org/10.1021/acs.orglett.0c03069
    18. Dariya D. Fedorova, Dariya S. Nazarova, David L. Avetyan, Andrey Shatskiy, Maxim L. Belyanin, Markus D. Kärkäs, Elena V. Stepanova. Divergent Synthesis of Natural Benzyl Salicylate and Benzyl Gentisate Glucosides. Journal of Natural Products 2020, 83 (10) , 3173-3180. https://doi.org/10.1021/acs.jnatprod.0c00838
    19. Yue-Ming Cai, Yu-Ting Xu, Xin Zhang, Wen-Xia Gao, Xiao-Bo Huang, Yun-Bing Zhou, Miao-Chang Liu, Hua-Yue Wu. Photoinduced Hydroxylation of Organic Halides under Mild Conditions. Organic Letters 2019, 21 (20) , 8479-8484. https://doi.org/10.1021/acs.orglett.9b03317
    20. Zheng Huang, Jean-Philip Lumb. Phenol-Directed C–H Functionalization. ACS Catalysis 2019, 9 (1) , 521-555. https://doi.org/10.1021/acscatal.8b04098
    21. Marcus Reitti, Ramani Gurubrahamam, Melanie Walther, Erik Lindstedt, Berit Olofsson. Synthesis of Phenols and Aryl Silyl Ethers via Arylation of Complementary Hydroxide Surrogates. Organic Letters 2018, 20 (7) , 1785-1788. https://doi.org/10.1021/acs.orglett.8b00287
    22. Xin Zhang, Ge Wu, Wenxia Gao, Jinchang Ding, Xiaobo Huang, Miaochang Liu, and Huayue Wu . Synergistic Photo-Copper-Catalyzed Hydroxylation of (Hetero)aryl Halides with Molecular Oxygen. Organic Letters 2018, 20 (3) , 708-711. https://doi.org/10.1021/acs.orglett.7b03840
    23. P. J. Amal Joseph and S. Priyadarshini . Copper-Mediated C–X Functionalization of Aryl Halides. Organic Process Research & Development 2017, 21 (12) , 1889-1924. https://doi.org/10.1021/acs.oprd.7b00285
    24. Dmitrii S. Bolotin, Nadezhda A. Bokach, Marina Ya. Demakova, and Vadim Yu. Kukushkin . Metal-Involving Synthesis and Reactions of Oximes. Chemical Reviews 2017, 117 (21) , 13039-13122. https://doi.org/10.1021/acs.chemrev.7b00264
    25. Lanting Xu, Jiazhou Zhu, Xiaodong Shen, Jiashuang Chai, Lei Shi, Bin Wu, Wei Li, Dawei Ma. 6‐Hydroxy Picolinohydrazides Promoted Cu(I)‐Catalyzed Hydroxylation Reaction in Water: Machine‐Learning Accelerated Ligands Design and Reaction Optimization. Angewandte Chemie International Edition 2024, 21 https://doi.org/10.1002/anie.202412552
    26. Lanting Xu, Jiazhou Zhu, Xiaodong Shen, Jiashuang Chai, Lei Shi, Bin Wu, Wei Li, Dawei Ma. 6‐Hydroxy Picolinohydrazides Promoted Cu(I)‐Catalyzed Hydroxylation Reaction in Water: Machine‐Learning Accelerated Ligands Design and Reaction Optimization. Angewandte Chemie 2024, 21 https://doi.org/10.1002/ange.202412552
    27. Kwang-Beom Lee, Ueon Sang Shin, Seung-Hoi Kim. Polydopamine-Modified Magnetic Nanoparticles (Fe3O4@PDA) for the Copper-Catalyzed Ipso-Hydroxylation of Arylboronic Acids and Subsequent O-Benzylation in Aqueous Media. Letters in Organic Chemistry 2024, 21 (10) , 889-897. https://doi.org/10.2174/0115701786294756240305063556
    28. Xiantong Yao, Xin Yang, Fanghua Chen, Rui Chen, Maolin Sun, Ruihua Cheng, Yueyue Ma, Jinxing Ye. Oxalamide ligands with additional coordinating groups for Cu-catalyzed arylation of alcohols and phenols. Chemical Communications 2024, 60 (69) , 9210-9213. https://doi.org/10.1039/D4CC02331E
    29. Xuan-Bo Hu, Qian-Qian Fu, Xue-Ying Huang, Xue-Qiang Chu, Zhi-Liang Shen, Chengping Miao, Weiyi Chen. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024, 29 (4) , 831. https://doi.org/10.3390/molecules29040831
    30. Nan Lu, Chengxia Miao, Xiaozheng Lan. Theoretical investigation on switchable [3 + 3] cycloaddition of vinyl sulfoxonnium ylide with cyclopropenone for divergent synthesis of phenol. Computational and Theoretical Chemistry 2023, 1230 , 114373. https://doi.org/10.1016/j.comptc.2023.114373
    31. Lin Min, Jiani Lin, Wei Shu. Rapid Access to Free Phenols by Photocatalytic Acceptorless Dehydrogenation of Cyclohexanones at Room Temperature. Chinese Journal of Chemistry 2023, 41 (21) , 2773-2778. https://doi.org/10.1002/cjoc.202300363
    32. Tongyu Huo, Xinyi Zhao, Zengrui Cheng, Jialiang Wei, Minghui Zhu, Xiaodong Dou, Ning Jiao. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharmaceutica Sinica B 2023, 356 https://doi.org/10.1016/j.apsb.2023.11.021
    33. Weiqi Liu, Xinghao Jin, Dawei Ma. Assembly of (hetero)aryl thioethers via simple nucleophilic aromatic substitution and Cu-catalyzed coupling reactions with (hetero)aryl chlorides and bromides under mild conditions. Green Chemistry 2023, 25 (19) , 7627-7634. https://doi.org/10.1039/D3GC02066E
    34. Shujing Tao, Minling Xü, Gang Zou. Co-catalytic borinate enables air-tolerant copper/oxalamide catalysis for cost-effective hydroxylation of aryl bromides. Tetrahedron Letters 2023, 123 , 154586. https://doi.org/10.1016/j.tetlet.2023.154586
    35. Lee Duff, Harry Meakin, Adam Richardson, Andrew J. Greener, George W. A. Smith, Ivan Ocaña, Victor Chechik, Michael J. James. Denitrative Hydroxylation of Unactivated Nitroarenes**. Chemistry – A European Journal 2023, 29 (16) https://doi.org/10.1002/chem.202203807
    36. Zhengjiang Fu, Xuezheng Yi, Ziqi Fang, Tingting Zhong, Dongdong He, Shengmei Guo, Hu Cai. An Electrochemical Method for Deborylative Hydroxylation of Arylboronic Acids under Metal‐free Conditions. Chemistry – An Asian Journal 2022, 17 (24) https://doi.org/10.1002/asia.202200780
    37. Qiaoli Li, Lanting Xu, Dawei Ma. Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero)Aryl Chlorides/Bromides. Angewandte Chemie 2022, 134 (43) https://doi.org/10.1002/ange.202210483
    38. Qiaoli Li, Lanting Xu, Dawei Ma. Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero)Aryl Chlorides/Bromides. Angewandte Chemie International Edition 2022, 61 (43) https://doi.org/10.1002/anie.202210483
    39. Rohit Das, K.R. Rohit, Gopinathan Anilkumar. Recent trends in non-noble metal-catalyzed hydroxylation reactions. Journal of Organometallic Chemistry 2022, 977 , 122456. https://doi.org/10.1016/j.jorganchem.2022.122456
    40. Dao Peng, Yu Zhang, Xiao-Qing Liu, Hang Shang, Gang Lin, Hong-Ying Jin, Xue-Fen Liu, Ran He, Ye-Han Shang, Yin-Hua Xu, Shu-Ping Luo. Highly active and reusable copper phthalocyanine derivatives catalyzed the hydroxylation of (hetero)aryl halides. Molecular Catalysis 2022, 525 , 112342. https://doi.org/10.1016/j.mcat.2022.112342
    41. Pooja Rani, Ahmad Husain, K. K. Bhasin, Girijesh Kumar. Coordination Polymers as a Functional Material for the Selective Molecular Recognition of Nitroaromatics and ipso ‐Hydroxylation of Arylboronic Acids. Chemistry – An Asian Journal 2022, 17 (2) https://doi.org/10.1002/asia.202101204
    42. David C. Leitch, Joseph Becica. High-Throughput Experimentation in Organometallic Chemistry and Catalysis. 2022, 502-555. https://doi.org/10.1016/B978-0-12-820206-7.00111-6
    43. Geyang Song, Dong Xue. Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. Chinese Journal of Organic Chemistry 2022, 42 (8) , 2275. https://doi.org/10.6023/cjoc202202018
    44. Wei Huiqin, Mei Wu. Photocatalytic synthesis of phenols mediated by visible light using KI as catalyst. Tetrahedron Letters 2021, 87 , 153549. https://doi.org/10.1016/j.tetlet.2021.153549
    45. Andrew J. Greener, Patrycja Ubysz, Will Owens-Ward, George Smith, Ivan Ocaña, Adrian C. Whitwood, Victor Chechik, Michael J. James. Radical–anion coupling through reagent design: hydroxylation of aryl halides. Chemical Science 2021, 12 (43) , 14641-14646. https://doi.org/10.1039/D1SC04748E
    46. Li Yang, Qinglong Zhuang, Mei Wu, Hua Long, Chen Lin, Mei Lin, Fang Ke. Electrochemical-induced hydroxylation of aryl halides in the presence of Et 3 N in water. Organic & Biomolecular Chemistry 2021, 19 (29) , 6417-6421. https://doi.org/10.1039/D1OB00931A
    47. Shruti A. Biyani, Yuta W. Moriuchi, David H. Thompson. Advancement in Organic Synthesis Through High Throughput Experimentation. Chemistry–Methods 2021, 1 (7) , 323-339. https://doi.org/10.1002/cmtd.202100023
    48. Xavi Ribas, Raül Xifra, Xavier Fontrodona. Bis-Phenoxo-CuII2 Complexes: Formal Aromatic Hydroxylation via Aryl-CuIII Intermediate Species. Molecules 2020, 25 (20) , 4595. https://doi.org/10.3390/molecules25204595
    49. Reeta, T. M. Rangarajan, Raj Pal Singh, R. P. Singh, Manjula Singh. An Easy Access to Oxime Ethers by Pd‐Catalyzed C—O Cross‐Coupling of Activated Aryl Bromides with Ketoximes and Chalcone Oximes. Chinese Journal of Chemistry 2020, 38 (8) , 830-836. https://doi.org/10.1002/cjoc.201900540
    50. Tatyana A. Tikhonova, Nikita V. Ilment, Konstantin A. Lyssenko, Igor V. Zavarzin, Yulia A. Volkova. Sulfur-mediated synthesis of unsymmetrically substituted N -aryl oxalamides by the cascade thioamidation/cyclocondensation and hydrolysis reaction. Organic & Biomolecular Chemistry 2020, 18 (26) , 5050-5060. https://doi.org/10.1039/D0OB00811G
    51. Vincent S. Chan, Scott W. Krabbe, Changfeng Li, Lijie Sun, Yue Liu, Alex J. Nett. Identification of an Oxalamide Ligand for Copper‐Catalyzed C−O Couplings from a Pharmaceutical Compound Library. ChemCatChem 2019, 11 (23) , 5748-5753. https://doi.org/10.1002/cctc.201900393
    52. Ruocheng Sang, Stamatis E. Korkis, Wanqi Su, Fei Ye, Pascal S. Engl, Florian Berger, Tobias Ritter. Site‐Selective C−H Oxygenation via Aryl Sulfonium Salts. Angewandte Chemie 2019, 131 (45) , 16307-16312. https://doi.org/10.1002/ange.201908718
    53. Ruocheng Sang, Stamatis E. Korkis, Wanqi Su, Fei Ye, Pascal S. Engl, Florian Berger, Tobias Ritter. Site‐Selective C−H Oxygenation via Aryl Sulfonium Salts. Angewandte Chemie International Edition 2019, 58 (45) , 16161-16166. https://doi.org/10.1002/anie.201908718
    54. Alexander S. Tikhomirov, Ivan V. Ivanov, Alexander M. Korolev, Andrey E. Shchekotikhin. β-Hydroxylation of anthraquinone derivatives with benzaldehyde oxime as a source of hydroxyl group. Tetrahedron 2019, 75 (43) , 130623. https://doi.org/10.1016/j.tet.2019.130623
    55. Elahe Ghiasbeigi, Mohammad Soleiman‐Beigi. Copper Immobilized on Isonicotinic Acid Hydrazide Functionalized Nano‐Magnetite as a Novel Recyclable Catalyst for Direct Synthesis of Phenols and Anilines. ChemistrySelect 2019, 4 (12) , 3611-3619. https://doi.org/10.1002/slct.201803770
    56. Xin Liu, Guo-En Wen, Jian-Chao Liu, Jin-Xi Liao, Jian-Song Sun. Total synthesis of scutellarin and apigenin 7-O-β-d-glucuronide. Carbohydrate Research 2019, 475 , 69-73. https://doi.org/10.1016/j.carres.2019.02.005
    57. Han-Sem Kim, Sung-Ryu Joo, Ueon Sang Shin, Seung-Hoi Kim. Recyclable CNT-chitosan nanohybrid film utilized in copper-catalyzed aerobic ipso-hydroxylation of arylboronic acids in aqueous media. Tetrahedron Letters 2018, 59 (52) , 4597-4601. https://doi.org/10.1016/j.tetlet.2018.11.039
    58. Sang Hoon Han, Ashok Kumar Pandey, Heeyoung Lee, Saegun Kim, Dahye Kang, Young Hoon Jung, Hyung Sik Kim, Sungwoo Hong, In Su Kim. One-pot synthesis of 2-naphthols from nitrones and MBH adducts via decarboxylative N–O bond cleavage. Organic Chemistry Frontiers 2018, 5 (22) , 3210-3218. https://doi.org/10.1039/C8QO00988K
    59. Liu Yang, Zhiyan Huang, Gang Li, Wei Zhang, Rui Cao, Chao Wang, Jianliang Xiao, Dong Xue. Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie 2018, 130 (7) , 1986-1990. https://doi.org/10.1002/ange.201710698
    60. Liu Yang, Zhiyan Huang, Gang Li, Wei Zhang, Rui Cao, Chao Wang, Jianliang Xiao, Dong Xue. Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie International Edition 2018, 57 (7) , 1968-1972. https://doi.org/10.1002/anie.201710698
    61. Marc Renom-Carrasco, Laurent Lefort. Ligand libraries for high throughput screening of homogeneous catalysts. Chemical Society Reviews 2018, 47 (13) , 5038-5060. https://doi.org/10.1039/C7CS00844A
    62. Yongsheng Zhou. Facile and Metal-Free Synthesis of Phenols from Benzaldoxime and Diaryliodonium Salts. Journal of Chemical Research 2017, 41 (10) , 591-593. https://doi.org/10.3184/174751917X15064232103119

    Organic Letters

    Cite this: Org. Lett. 2017, 19, 11, 3033–3036
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.orglett.7b01403
    Published May 18, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    8485

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.