Reagent Design and Ligand Evolution for the Development of a Mild Copper-Catalyzed Hydroxylation ReactionClick to copy article linkArticle link copied!
Abstract
Parallel synthesis and mass-directed purification of a modular ligand library, high-throughput experimentation, and rational ligand evolution have led to a novel copper catalyst for the synthesis of phenols with a traceless hydroxide surrogate. The mild reaction conditions reported here enable the late-stage synthesis of numerous complex, druglike phenols.
Cited By
This article is cited by 62 publications.
- Daniel W. Widlicka, Robert A. Singer, Ian Hotham, David J. Bernhardson, Samantha Grosslight. Copper-Catalyzed Hydroxylation of Aryl Halides Using Hydroxypicolinamide Ligands. Organic Process Research & Development 2024, 28
(7)
, 2732-2742. https://doi.org/10.1021/acs.oprd.4c00108
- Hui Zhao, Anne K. Ravn, Michael C. Haibach, Keary M. Engle, Carin C. C. Johansson Seechurn. Diversification of Pharmaceutical Manufacturing Processes: Taking the Plunge into the Non-PGM Catalyst Pool. ACS Catalysis 2024, 14
(13)
, 9708-9733. https://doi.org/10.1021/acscatal.4c01809
- Sailuo Li, Dawei Ma. CuI/Oxalamide-Catalyzed Coupling Reaction of (Hetero)aryl Halides with Sodium Nitrite. The Journal of Organic Chemistry 2024, 89
(9)
, 6626-6630. https://doi.org/10.1021/acs.joc.4c00463
- Joshua W. M. MacMillan, Ryan T. McGuire, Adam M. McMahon, Timothy S. Anderson, Katherine N. Robertson, Mark Stradiotto. DalPhos on Demand: Facile Ligand Generation Enables New Ligand Discovery and Expedient Catalyst Screening. ACS Catalysis 2024, 14
(6)
, 4074-4081. https://doi.org/10.1021/acscatal.4c00249
- Connor J. Taylor, Alexander Pomberger, Kobi C. Felton, Rachel Grainger, Magda Barecka, Thomas W. Chamberlain, Richard A. Bourne, Christopher N. Johnson, Alexei A. Lapkin. A Brief Introduction to Chemical Reaction Optimization. Chemical Reviews 2023, 123
(6)
, 3089-3126. https://doi.org/10.1021/acs.chemrev.2c00798
- Ying Chen, Sailuo Li, Lanting Xu, Dawei Ma. Cu/Oxalic Diamide-Catalyzed Coupling of Terminal Alkynes with Aryl Halides. The Journal of Organic Chemistry 2023, 88
(5)
, 3330-3334. https://doi.org/10.1021/acs.joc.2c02882
- Liu Yang, Yonggang Yan, Ni Cao, Jing Hao, Gang Li, Wei Zhang, Rui Cao, Chao Wang, Jianliang Xiao, Dong Xue. Ni(I)-Catalyzed Hydroxylation of Aryl Halides with Water under Thermal Catalysis. Organic Letters 2022, 24
(51)
, 9431-9435. https://doi.org/10.1021/acs.orglett.2c03840
- Pufan Ni, Lei Yang, Yi Shen, Lei Zhang, Yueyue Ma, Maolin Sun, Ruihua Cheng, Jinxing Ye. Synthesis of Phenols from Aryl Ammonium Salts under Mild Conditions. The Journal of Organic Chemistry 2022, 87
(19)
, 12677-12687. https://doi.org/10.1021/acs.joc.2c01133
- Amar Jyoti Bhuyan, Sourav Jyoti Bharali, Abhilash Sharma, Dhiraj Dutta, Pranjal Gogoi, Lakhinath Saikia. Copper-Catalyzed Direct Syntheses of Phenoxypyrimidines from Chloropyrimidines and Arylboronic Acids: A Cascade Avenue and Unconventional Substrate Pairs. The Journal of Organic Chemistry 2022, 87
(17)
, 11846-11851. https://doi.org/10.1021/acs.joc.2c00658
- Sasa Li, Xia Huang, Yunlong Gao, Jian Jin. Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C–N Cross-Coupling for Triarylamine Synthesis. Organic Letters 2022, 24
(31)
, 5817-5824. https://doi.org/10.1021/acs.orglett.2c02364
- Kotone Katagiri, Masami Kuriyama, Kosuke Yamamoto, Yosuke Demizu, Osamu Onomura. Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Organic Letters 2022, 24
(28)
, 5149-5154. https://doi.org/10.1021/acs.orglett.2c01989
- Qiang Yang, Yinsong Zhao, Dawei Ma. Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes. Organic Process Research & Development 2022, 26
(6)
, 1690-1750. https://doi.org/10.1021/acs.oprd.2c00050
- Guolin Xu, Peng Gao, Thomas J. Colacot. Tunable Unsymmetrical Ferrocene Ligands Bearing a Bulky Di-1-adamantylphosphino Motif for Many Kinds of Csp2–Csp3 Couplings. ACS Catalysis 2022, 12
(9)
, 5123-5135. https://doi.org/10.1021/acscatal.2c00352
- Jing-Ru Wang, Zhi-Qiang Song, Chen Li, Dong-Hui Wang. Copper-Catalyzed Methoxylation of Aryl Bromides with 9-BBN−OMe. Organic Letters 2021, 23
(21)
, 8450-8454. https://doi.org/10.1021/acs.orglett.1c03172
- Akshay M. Nair, Indranil Halder, Ritu Sharma, Chandra M. R. Volla. Water Mediated Rearrangement of Alkynyl Cyclohexadienones: Access to meta-Alkenylated Phenols. Organic Letters 2021, 23
(5)
, 1840-1845. https://doi.org/10.1021/acs.orglett.1c00245
- Shaofeng Wu, Jianyu Dong, Dan Zhou, Wan Wang, Long Liu, Yongbo Zhou. Phosphorous Acid-Catalyzed Alkylation of Phenols with Alkenes. The Journal of Organic Chemistry 2020, 85
(22)
, 14307-14314. https://doi.org/10.1021/acs.joc.9b03028
- Zhi-Qiang Song, Dong-Hui Wang. Palladium-Catalyzed Hydroxylation of Aryl Halides with Boric Acid. Organic Letters 2020, 22
(21)
, 8470-8474. https://doi.org/10.1021/acs.orglett.0c03069
- Dariya D. Fedorova, Dariya S. Nazarova, David L. Avetyan, Andrey Shatskiy, Maxim L. Belyanin, Markus D. Kärkäs, Elena V. Stepanova. Divergent Synthesis of Natural Benzyl Salicylate and Benzyl Gentisate Glucosides. Journal of Natural Products 2020, 83
(10)
, 3173-3180. https://doi.org/10.1021/acs.jnatprod.0c00838
- Yue-Ming Cai, Yu-Ting Xu, Xin Zhang, Wen-Xia Gao, Xiao-Bo Huang, Yun-Bing Zhou, Miao-Chang Liu, Hua-Yue Wu. Photoinduced Hydroxylation of Organic Halides under Mild Conditions. Organic Letters 2019, 21
(20)
, 8479-8484. https://doi.org/10.1021/acs.orglett.9b03317
- Zheng Huang, Jean-Philip Lumb. Phenol-Directed C–H Functionalization. ACS Catalysis 2019, 9
(1)
, 521-555. https://doi.org/10.1021/acscatal.8b04098
- Marcus Reitti, Ramani Gurubrahamam, Melanie Walther, Erik Lindstedt, Berit Olofsson. Synthesis of Phenols and Aryl Silyl Ethers via Arylation of Complementary Hydroxide Surrogates. Organic Letters 2018, 20
(7)
, 1785-1788. https://doi.org/10.1021/acs.orglett.8b00287
- Xin Zhang, Ge Wu, Wenxia Gao, Jinchang Ding, Xiaobo Huang, Miaochang Liu, and Huayue Wu . Synergistic Photo-Copper-Catalyzed Hydroxylation of (Hetero)aryl Halides with Molecular Oxygen. Organic Letters 2018, 20
(3)
, 708-711. https://doi.org/10.1021/acs.orglett.7b03840
- P. J. Amal Joseph and S. Priyadarshini . Copper-Mediated C–X Functionalization of Aryl Halides. Organic Process Research & Development 2017, 21
(12)
, 1889-1924. https://doi.org/10.1021/acs.oprd.7b00285
- Dmitrii S. Bolotin, Nadezhda A. Bokach, Marina Ya. Demakova, and Vadim Yu. Kukushkin . Metal-Involving Synthesis and Reactions of Oximes. Chemical Reviews 2017, 117
(21)
, 13039-13122. https://doi.org/10.1021/acs.chemrev.7b00264
- Lanting Xu, Jiazhou Zhu, Xiaodong Shen, Jiashuang Chai, Lei Shi, Bin Wu, Wei Li, Dawei Ma. 6‐Hydroxy Picolinohydrazides Promoted Cu(I)‐Catalyzed Hydroxylation Reaction in Water: Machine‐Learning Accelerated Ligands Design and Reaction Optimization. Angewandte Chemie International Edition 2024, 21 https://doi.org/10.1002/anie.202412552
- Lanting Xu, Jiazhou Zhu, Xiaodong Shen, Jiashuang Chai, Lei Shi, Bin Wu, Wei Li, Dawei Ma. 6‐Hydroxy Picolinohydrazides Promoted Cu(I)‐Catalyzed Hydroxylation Reaction in Water: Machine‐Learning Accelerated Ligands Design and Reaction Optimization. Angewandte Chemie 2024, 21 https://doi.org/10.1002/ange.202412552
- Kwang-Beom Lee, Ueon Sang Shin, Seung-Hoi Kim. Polydopamine-Modified Magnetic Nanoparticles (Fe3O4@PDA) for the
Copper-Catalyzed Ipso-Hydroxylation of Arylboronic Acids and
Subsequent O-Benzylation in Aqueous Media. Letters in Organic Chemistry 2024, 21
(10)
, 889-897. https://doi.org/10.2174/0115701786294756240305063556
- Xiantong Yao, Xin Yang, Fanghua Chen, Rui Chen, Maolin Sun, Ruihua Cheng, Yueyue Ma, Jinxing Ye. Oxalamide ligands with additional coordinating groups for Cu-catalyzed arylation of alcohols and phenols. Chemical Communications 2024, 60
(69)
, 9210-9213. https://doi.org/10.1039/D4CC02331E
- Xuan-Bo Hu, Qian-Qian Fu, Xue-Ying Huang, Xue-Qiang Chu, Zhi-Liang Shen, Chengping Miao, Weiyi Chen. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024, 29
(4)
, 831. https://doi.org/10.3390/molecules29040831
- Nan Lu, Chengxia Miao, Xiaozheng Lan. Theoretical investigation on switchable [3 + 3] cycloaddition of vinyl sulfoxonnium ylide with cyclopropenone for divergent synthesis of phenol. Computational and Theoretical Chemistry 2023, 1230 , 114373. https://doi.org/10.1016/j.comptc.2023.114373
- Lin Min, Jiani Lin, Wei Shu. Rapid Access to Free Phenols by Photocatalytic Acceptorless Dehydrogenation of Cyclohexanones at Room Temperature. Chinese Journal of Chemistry 2023, 41
(21)
, 2773-2778. https://doi.org/10.1002/cjoc.202300363
- Tongyu Huo, Xinyi Zhao, Zengrui Cheng, Jialiang Wei, Minghui Zhu, Xiaodong Dou, Ning Jiao. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharmaceutica Sinica B 2023, 356 https://doi.org/10.1016/j.apsb.2023.11.021
- Weiqi Liu, Xinghao Jin, Dawei Ma. Assembly of (hetero)aryl thioethers
via
simple nucleophilic aromatic substitution and Cu-catalyzed coupling reactions with (hetero)aryl chlorides and bromides under mild conditions. Green Chemistry 2023, 25
(19)
, 7627-7634. https://doi.org/10.1039/D3GC02066E
- Shujing Tao, Minling Xü, Gang Zou. Co-catalytic borinate enables air-tolerant copper/oxalamide catalysis for cost-effective hydroxylation of aryl bromides. Tetrahedron Letters 2023, 123 , 154586. https://doi.org/10.1016/j.tetlet.2023.154586
- Lee Duff, Harry Meakin, Adam Richardson, Andrew J. Greener, George W. A. Smith, Ivan Ocaña, Victor Chechik, Michael J. James. Denitrative Hydroxylation of Unactivated Nitroarenes**. Chemistry – A European Journal 2023, 29
(16)
https://doi.org/10.1002/chem.202203807
- Zhengjiang Fu, Xuezheng Yi, Ziqi Fang, Tingting Zhong, Dongdong He, Shengmei Guo, Hu Cai. An Electrochemical Method for Deborylative Hydroxylation of Arylboronic Acids under Metal‐free Conditions. Chemistry – An Asian Journal 2022, 17
(24)
https://doi.org/10.1002/asia.202200780
- Qiaoli Li, Lanting Xu, Dawei Ma. Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero)Aryl Chlorides/Bromides. Angewandte Chemie 2022, 134
(43)
https://doi.org/10.1002/ange.202210483
- Qiaoli Li, Lanting Xu, Dawei Ma. Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero)Aryl Chlorides/Bromides. Angewandte Chemie International Edition 2022, 61
(43)
https://doi.org/10.1002/anie.202210483
- Rohit Das, K.R. Rohit, Gopinathan Anilkumar. Recent trends in non-noble metal-catalyzed hydroxylation reactions. Journal of Organometallic Chemistry 2022, 977 , 122456. https://doi.org/10.1016/j.jorganchem.2022.122456
- Dao Peng, Yu Zhang, Xiao-Qing Liu, Hang Shang, Gang Lin, Hong-Ying Jin, Xue-Fen Liu, Ran He, Ye-Han Shang, Yin-Hua Xu, Shu-Ping Luo. Highly active and reusable copper phthalocyanine derivatives catalyzed the hydroxylation of (hetero)aryl halides. Molecular Catalysis 2022, 525 , 112342. https://doi.org/10.1016/j.mcat.2022.112342
- Pooja Rani, Ahmad Husain, K. K. Bhasin, Girijesh Kumar. Coordination Polymers as a Functional Material for the Selective Molecular Recognition of Nitroaromatics and
ipso
‐Hydroxylation of Arylboronic Acids. Chemistry – An Asian Journal 2022, 17
(2)
https://doi.org/10.1002/asia.202101204
- David C. Leitch, Joseph Becica. High-Throughput Experimentation in Organometallic Chemistry and Catalysis. 2022, 502-555. https://doi.org/10.1016/B978-0-12-820206-7.00111-6
- Geyang Song, Dong Xue. Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. Chinese Journal of Organic Chemistry 2022, 42
(8)
, 2275. https://doi.org/10.6023/cjoc202202018
- Wei Huiqin, Mei Wu. Photocatalytic synthesis of phenols mediated by visible light using KI as catalyst. Tetrahedron Letters 2021, 87 , 153549. https://doi.org/10.1016/j.tetlet.2021.153549
- Andrew J. Greener, Patrycja Ubysz, Will Owens-Ward, George Smith, Ivan Ocaña, Adrian C. Whitwood, Victor Chechik, Michael J. James. Radical–anion coupling through reagent design: hydroxylation of aryl halides. Chemical Science 2021, 12
(43)
, 14641-14646. https://doi.org/10.1039/D1SC04748E
- Li Yang, Qinglong Zhuang, Mei Wu, Hua Long, Chen Lin, Mei Lin, Fang Ke. Electrochemical-induced hydroxylation of aryl halides in the presence of Et
3
N in water. Organic & Biomolecular Chemistry 2021, 19
(29)
, 6417-6421. https://doi.org/10.1039/D1OB00931A
- Shruti A. Biyani, Yuta W. Moriuchi, David H. Thompson. Advancement in Organic Synthesis Through High Throughput Experimentation. Chemistry–Methods 2021, 1
(7)
, 323-339. https://doi.org/10.1002/cmtd.202100023
- Xavi Ribas, Raül Xifra, Xavier Fontrodona. Bis-Phenoxo-CuII2 Complexes: Formal Aromatic Hydroxylation via Aryl-CuIII Intermediate Species. Molecules 2020, 25
(20)
, 4595. https://doi.org/10.3390/molecules25204595
- Reeta, T. M. Rangarajan, Raj Pal Singh, R. P. Singh, Manjula Singh. An Easy Access to Oxime Ethers by
Pd‐Catalyzed
C—O
Cross‐Coupling
of Activated Aryl Bromides with Ketoximes and Chalcone Oximes. Chinese Journal of Chemistry 2020, 38
(8)
, 830-836. https://doi.org/10.1002/cjoc.201900540
- Tatyana A. Tikhonova, Nikita V. Ilment, Konstantin A. Lyssenko, Igor V. Zavarzin, Yulia A. Volkova. Sulfur-mediated synthesis of unsymmetrically substituted
N
-aryl oxalamides by the cascade thioamidation/cyclocondensation and hydrolysis reaction. Organic & Biomolecular Chemistry 2020, 18
(26)
, 5050-5060. https://doi.org/10.1039/D0OB00811G
- Vincent S. Chan, Scott W. Krabbe, Changfeng Li, Lijie Sun, Yue Liu, Alex J. Nett. Identification of an Oxalamide Ligand for Copper‐Catalyzed C−O Couplings from a Pharmaceutical Compound Library. ChemCatChem 2019, 11
(23)
, 5748-5753. https://doi.org/10.1002/cctc.201900393
- Ruocheng Sang, Stamatis E. Korkis, Wanqi Su, Fei Ye, Pascal S. Engl, Florian Berger, Tobias Ritter. Site‐Selective C−H Oxygenation via Aryl Sulfonium Salts. Angewandte Chemie 2019, 131
(45)
, 16307-16312. https://doi.org/10.1002/ange.201908718
- Ruocheng Sang, Stamatis E. Korkis, Wanqi Su, Fei Ye, Pascal S. Engl, Florian Berger, Tobias Ritter. Site‐Selective C−H Oxygenation via Aryl Sulfonium Salts. Angewandte Chemie International Edition 2019, 58
(45)
, 16161-16166. https://doi.org/10.1002/anie.201908718
- Alexander S. Tikhomirov, Ivan V. Ivanov, Alexander M. Korolev, Andrey E. Shchekotikhin. β-Hydroxylation of anthraquinone derivatives with benzaldehyde oxime as a source of hydroxyl group. Tetrahedron 2019, 75
(43)
, 130623. https://doi.org/10.1016/j.tet.2019.130623
- Elahe Ghiasbeigi, Mohammad Soleiman‐Beigi. Copper Immobilized on Isonicotinic Acid Hydrazide Functionalized Nano‐Magnetite as a Novel Recyclable Catalyst for Direct Synthesis of Phenols and Anilines. ChemistrySelect 2019, 4
(12)
, 3611-3619. https://doi.org/10.1002/slct.201803770
- Xin Liu, Guo-En Wen, Jian-Chao Liu, Jin-Xi Liao, Jian-Song Sun. Total synthesis of scutellarin and apigenin 7-O-β-d-glucuronide. Carbohydrate Research 2019, 475 , 69-73. https://doi.org/10.1016/j.carres.2019.02.005
- Han-Sem Kim, Sung-Ryu Joo, Ueon Sang Shin, Seung-Hoi Kim. Recyclable CNT-chitosan nanohybrid film utilized in copper-catalyzed aerobic ipso-hydroxylation of arylboronic acids in aqueous media. Tetrahedron Letters 2018, 59
(52)
, 4597-4601. https://doi.org/10.1016/j.tetlet.2018.11.039
- Sang Hoon Han, Ashok Kumar Pandey, Heeyoung Lee, Saegun Kim, Dahye Kang, Young Hoon Jung, Hyung Sik Kim, Sungwoo Hong, In Su Kim. One-pot synthesis of 2-naphthols from nitrones and MBH adducts
via
decarboxylative N–O bond cleavage. Organic Chemistry Frontiers 2018, 5
(22)
, 3210-3218. https://doi.org/10.1039/C8QO00988K
- Liu Yang, Zhiyan Huang, Gang Li, Wei Zhang, Rui Cao, Chao Wang, Jianliang Xiao, Dong Xue. Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie 2018, 130
(7)
, 1986-1990. https://doi.org/10.1002/ange.201710698
- Liu Yang, Zhiyan Huang, Gang Li, Wei Zhang, Rui Cao, Chao Wang, Jianliang Xiao, Dong Xue. Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie International Edition 2018, 57
(7)
, 1968-1972. https://doi.org/10.1002/anie.201710698
- Marc Renom-Carrasco, Laurent Lefort. Ligand libraries for high throughput screening of homogeneous catalysts. Chemical Society Reviews 2018, 47
(13)
, 5038-5060. https://doi.org/10.1039/C7CS00844A
- Yongsheng Zhou. Facile and Metal-Free Synthesis of Phenols from Benzaldoxime and Diaryliodonium Salts. Journal of Chemical Research 2017, 41
(10)
, 591-593. https://doi.org/10.3184/174751917X15064232103119
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.