ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis of Polycyclic Imidazolidinones via Amine Redox-Annulation
My Activity
  • Open Access
Letter

Synthesis of Polycyclic Imidazolidinones via Amine Redox-Annulation
Click to copy article linkArticle link copied!

View Author Information
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Open PDFSupporting Information (3)

Organic Letters

Cite this: Org. Lett. 2017, 19, 23, 6424–6427
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.orglett.7b03309
Published November 16, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

α-Ketoamides undergo redox-annulations with cyclic secondary amines, such as 1,2,3,4-tetrahydroisoquinoline, pyrrolidine, piperidine, and morpholine. Catalytic amounts of benzoic acid significantly accelerate these transformations. This approach provides polycyclic imidazolidinone derivatives in typically good yields.

Copyright © 2017 American Chemical Society

Imidazolidinones are frequently encountered as substructures of natural products and synthetic, biologically active compounds (Figure 1). (1-3) Among the most common methods used to build the imidazolidinone motif are condensations of α-aminoacetamide derivatives with aldehydes or ketones, various cycloadditions, ring expansions, and others. (1) Methods have also emerged that are particularly suitable for the preparation of ring-fused imidazolidinones (Scheme 1). One such approach involves an oxidative intramolecular coupling of α-aminoacetamide derivatives (eq 1). (4) A decarboxylative strategy involving the condensation of proline with α-ketoamides to build bicyclic imidazolidinones containing a pyrrolidine ring has also been established (eq 2). (5, 6) Here we report a redox-neutral annulation approach to polycyclic imidazolidinones (eq 3).

Figure 1

Figure 1. Selected 4-imidazolidinones.

Scheme 1

Scheme 1. Selected Routes to Polycyclic 4-Imidazolidinones

We (7) and others (8) have developed a range of redox-neutral annulation reactions that proceed via the condensation of a secondary amine with an aldehyde/ketone possessing a pendent (pro)nucleophile. These annulations feature concurrent N-alkylation and the functionalization of an amine α-C–H bond. (9, 10) The majority of these transformations proceed through azomethine ylide intermediates, utilize carboxylic acids as catalysts or promoters, and result in the formation of a new six-membered ring. (11) Although there are examples of redox-neutral amine α-C–H bond functionalizations of secondary amines that give rise to the formation of new five-membered rings, typically via (3 + 2) cycloaddition of azomethine ylide intermediates (12) or 1,5-electrocyclic ring-closure of conjugated azomethine ylides, (13, 14) this chemistry remains underdeveloped and has rarely been applied to C–N bond formation. (13c, 13i) We reasoned that such an annulation could be applied to the synthesis of bi- or polycyclic imidazolidinones via the condensation of cyclic amines with α-ketoamides (Scheme 1, eq 3). (15)

1,2,3,4-Tetrahydroisoquinoline (THIQ) and 2-oxo-N,2-diphenylacetamide (1a) were selected as model substrates in order to evaluate the proposed annulation process (Table 1). A 2:1 mixture of THIQ and 1a, upon heating under reflux in toluene for 2 days, resulted in an incomplete reaction and the isolation of desired product 2a as a single diastereomer in 50% yield (entry 1). Utilization of catalytic amounts of benzoic acid (20 mol %) resulted in a significant improvement (entry 2). Complete consumption of 1a was observed within 7 h, and 2a was obtained in 95% yield. Replacement of benzoic acid with either acetic acid or 2-ethylhexanoic acid (2-EHA) facilitated the formation of 2a in similar yields but required prolonged reaction times (entries 3 and 4). A reaction that was performed at 50 °C remained incomplete after 44 h and led to product in moderate yield (entry 5). A reduction of the amount of THIQ to 1.5 equiv was well tolerated (entry 6), whereas further reduction to 1.2 equiv led to a slight drop in yield (entry 7). Notably, the reaction performed equally well in the absence of molecular sieves (entry 8).

Table 1. Evaluation of Reaction Conditionsa
entryTHIQ (equiv)catalysttime (h)yield (%)
12 4850
22PhCOOH795
32AcOH2392
422-EHA2191
5b2PhCOOH4456
61.5PhCOOH1293
71.2PhCOOH1288
8c1.5PhCOOH1595
a

Reactions were performed on a 0.2 mmol scale. All yields correspond to isolated yields. dr >25:1 in all cases.

b

Reaction was run at 50 °C and remained incomplete.

c

Without 4 Å MS.

The scope of the redox-annulation was explored under the optimized conditions of Table 1 (entry 8). A range of α-ketoamides with different substitution patterns were investigated (Scheme 2). The corresponding 4-imidazolidinone products 2 were isolated in good to excellent yields. Both aromatic and aliphatic substituents on the amide nitrogen were tolerated. Likewise, nonenolizable and enolizable α-ketoamides participated in the annulation reaction. In the case of the primary amide-derived product 2n, which was obtained in 53% yield, a competing pathway was identified. Specifically, the corresponding transamidation product was obtained in 38% yield. (16) An enantiomerically pure α-ketoamide, derived from (S)-1-phenylethan-1-amine, provided product 2o in 86% yield as a 1.3:1 mixture of diastereomers.

Scheme 2

Scheme 2. Ketoamide Scopea

Scheme aReactions were performed on a 0.5 mmol scale. All yields correspond to isolated yields.

Scheme bTransamidation product (1-(3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylethane-1,2-dione) was obtained in 38% yield.

The scope of the amine component is summarized in Scheme 3. Benzylic amines other than THIQ, including the sterically hindered 1-phenyl-THIQ, readily formed annulation products upon reaction with α-ketoamide 1a. Amines with attenuated reactivities, such as pyrrolidine and azepane, provided 4-imidazolidinone products in good yields. Particularly challenging substrates such as piperidine, morpholine, and thiomorpholine underwent the title reaction at elevated temperatures.

Scheme 3

Scheme 3. Amine Scopea

Scheme aReactions were performed on a 0.5 mmol scale. All yields correspond to isolated yields.

Scheme bReaction was performed in PhMe (0.25 M) under microwave irradiation for 30 min at 220 °C.

Scheme cReaction was performed in PhMe (0.25 M) under microwave irradiation for 1 h at 220 °C.

As shown in Schemes 2 and 3, reactions involving THIQ, related benzylic amines, and pyrrolidine underwent redox-annulations with α-ketoamides in highly diastereoselective fashion. In contrast, reactions with azepane, piperidine, morpholine, and thiomorpholine were poorly diastereoselective. We suspected that the aminal stereogenic center might be configurationally unstable under the reaction conditions. Thus, product ratios may reflect the different thermodynamic stabilities of the two diastereomers. To test this hypothesis, the readily available pure diastereomers of product 3g were exposed to the reaction conditions (eqs 4 and 5). Upon extended heating, both mixtures converged to a final 2.1:1 ratio of diastereomers. These experiments establish that product isomerization can indeed occur under the reaction conditions.

Two plausible mechanistic scenarios are shown in Scheme 4, depicting pyrrolidine and α-ketoamide 1a as prototypical examples. Based on previous investigations, the initial formation of N,O-acetal 4 appears highly likely. Again based on precedent, 4 could lose benzoic acid to form azomethine ylide 5. Following the general mechanism of other redox-annulations, (11)5 could reengage benzoic acid to form N,O-acetal 6. The latter ultimately undergoes ring closure to final product 3e with loss of benzoic acid, possibly via the zwitterionic intermediate 7 (pathway A). In an alternate scenario, conjugated azomethine ylide 8, which represents a tautomer of azomethine ylide 5, undergoes ring closure in what is formally a 1,5-electrocyclization. (14g) The resulting intermediate 9 then undergoes tautomerization to product 3e (pathway B). (17)

Scheme 4

Scheme 4. Mechanistic Considerations

In conclusion, we have achieved high-yielding syntheses of polycyclic imidazolidinones via redox-annulations of cyclic amines with a range of α-ketoamides. These reactions are efficiently catalyzed by benzoic acid and are rare examples of redox-neutral transformations in which an amine α-C–H bond is replaced by a C–N bond in the context of five-membered ring formation.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b03309.

  • Experimental procedures and characterization data, including X-ray crystal structures of products 2a and 3d (PDF)

  • X-ray data for compound 2a (CIF)

  • X-ray data for compound 3d (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Zhengbo Zhu - Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
    • Xin Lv - Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United StatesDepartment of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
    • Jason E. Anesini - Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
  • Author Contributions

    Z.Z. and X.L. contributed equally.

  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

Financial support from the NIH–NIGMS (R01GM101389) is gratefully acknowledged. We thank Dr. Tom Emge (Rutgers University) for crystallographic analysis and Dr. Wazo Myint (Rutgers University) for assistance with NMR assignments.

References

Click to copy section linkSection link copied!

This article references 17 other publications.

  1. 1

    Review on the synthetic and medicinal chemistry of 4-imidazolidinones:

    Blackmore, T.; Thompson, P. Heterocycles 2011, 83, 1953 DOI: 10.3987/REV-11-707
  2. 2

    For a general review on the synthesis of aminal-type structures, see:

    Hiersemann, M. In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R. T.; Richard, J. K., Ed.; Elsevier Ltd.: Oxford, UK, 2005; Vol. 4, p 411.
  3. 3

    Selected reports on natural and synthetic, biologically active 4-imidazolidinones:

    (a) Smissman, E.; Inloes, R.; El-Antably, S.; Shaffer, P. J. Med. Chem. 1976, 19, 161 DOI: 10.1021/jm00223a028
    (b) Leysen, J.; Gommeren, W.; Laduron, P. Biochem. Pharmacol. 1978, 27, 307 DOI: 10.1016/0006-2952(78)90233-2
    (c) Nelson, D.; Taylor, E. Eur. J. Pharmacol. 1986, 124, 207 DOI: 10.1016/0014-2999(86)90147-0
    (d) Nikam, S.; Martin, A.; Nelson, D. J. Med. Chem. 1988, 31, 1965 DOI: 10.1021/jm00118a017
    (e) Rasmussen, G.; Bundgaard, H. Int. J. Pharm. 1991, 71, 45 DOI: 10.1016/0378-5173(91)90066-W
    (f) Pinza, M.; Farina, C.; Cerri, A.; Pfeiffer, U.; Riccaboni, M. T.; Banfi, S.; Biagetti, R.; Pozzi, O.; Magnani, M.; Dorigotti, L. J. Med. Chem. 1993, 36, 4214 DOI: 10.1021/jm00078a011
    (g) Thomsen, C.; Hohlweg, R. Br. J. Pharmacol. 2000, 131, 903 DOI: 10.1038/sj.bjp.0703661
    (h) Ijzendoorn, D. R.; Botman, P. N. M.; Blaauw, R. H. Org. Lett. 2006, 8, 239 DOI: 10.1021/ol052598r
    (i) Toumi, M.; Couty, F.; Marrot, J.; Evano, G. Org. Lett. 2008, 10, 5027 DOI: 10.1021/ol802155n
    (j) Vale, N.; Prudencio, M.; Marques, C.; Collins, M.; Gut, J.; Nogueira, F.; Matos, J.; Rosenthal, P.; Cushion, M.; Rosario, V.; Mota, M.; Moreira, R.; Gomes, P. J. Med. Chem. 2009, 52, 7800 DOI: 10.1021/jm900738c
    (k) Vale, N.; Nogueira, F.; Rosario, V.; Gomes, P.; Moreira, R. Eur. J. Med. Chem. 2009, 44, 2506 DOI: 10.1016/j.ejmech.2009.01.018
  4. 4
    (a) Vasvari-Debreczy, L.; Beckett, A.; Vutthikongsirigool, W. Tetrahedron 1981, 37, 4337 DOI: 10.1016/0040-4020(81)85031-4
    (b) Papadopoulos, A.; Lewall, B.; Steckhan, E.; Ginzel, K.; Knoch, F.; Nieger, M. Tetrahedron 1991, 47, 563 DOI: 10.1016/S0040-4020(01)87046-0
    (c) Yu, H.; Shen, J. RSC Adv. 2015, 5, 9815 DOI: 10.1039/C4RA15019H
    (d) Ren, X.; O’Hanlon, J.; Morris, M.; Robertson, J.; Wong, L. ACS Catal. 2016, 6, 6833 DOI: 10.1021/acscatal.6b02189
  5. 5
    Wu, J.-s.; Jiang, H.-j.; Yang, J.-g.; Jin, Z.-n.; Chen, D.-b. Tetrahedron Lett. 2017, 58, 546 DOI: 10.1016/j.tetlet.2016.12.079
  6. 6

    Examples of condensation-based approaches to polycyclic 4-imidazolidinones:

    (a) Katritzky, A. R.; He, H.-Y.; Wang, J. J. Org. Chem. 2002, 67, 4951 DOI: 10.1021/jo010842w
    (b) Ferraz, R.; Gomes, J. R. B.; de Oliveira, E.; Moreira, R.; Gomes, P. J. Org. Chem. 2007, 72, 4189 DOI: 10.1021/jo0703202
  7. 7
    (a) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 416 DOI: 10.1021/ja077473r
    (b) Zhang, C.; Das, D.; Seidel, D. Chem. Sci. 2011, 2, 233 DOI: 10.1039/C0SC00432D
    (c) Dieckmann, A.; Richers, M. T.; Platonova, A. Y.; Zhang, C.; Seidel, D.; Houk, K. N. J. Org. Chem. 2013, 78, 4132 DOI: 10.1021/jo400483h
    (d) Richers, M. T.; Deb, I.; Platonova, A. Y.; Zhang, C.; Seidel, D. Synthesis 2013, 45, 1730 DOI: 10.1055/s-0033-1338852
    (e) Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem. Soc. 2014, 136, 6123 DOI: 10.1021/ja501988b
    (f) Jarvis, C. L.; Richers, M. T.; Breugst, M.; Houk, K. N.; Seidel, D. Org. Lett. 2014, 16, 3556 DOI: 10.1021/ol501509b
    (g) Kang, Y.; Chen, W.; Breugst, M.; Seidel, D. J. Org. Chem. 2015, 80, 9628 DOI: 10.1021/acs.joc.5b01384
    (h) Ma, L.; Seidel, D. Chem. - Eur. J. 2015, 21, 12908 DOI: 10.1002/chem.201501667
    (i) Chen, W.; Seidel, D. Org. Lett. 2016, 18, 1024 DOI: 10.1021/acs.orglett.6b00151
    (j) Zhu, Z.; Seidel, D. Org. Lett. 2017, 19, 2841 DOI: 10.1021/acs.orglett.7b01047
  8. 8
    (a) Zheng, L.; Yang, F.; Dang, Q.; Bai, X. Org. Lett. 2008, 10, 889 DOI: 10.1021/ol703049j
    (b) Mahato, S.; Haque, M. A.; Dwari, S.; Jana, C. K. RSC Adv. 2014, 4, 46214 DOI: 10.1039/C4RA05045B
    (c) Li, J.; Qin, C.; Yu, Y.; Fan, H.; Fu, Y.; Li, H.; Wang, W. Adv. Synth. Catal. 2017, 359, 2191 DOI: 10.1002/adsc.201601423
    (d) Li, J.; Fu, Y.; Qin, C.; Yu, Y.; Li, H.; Wang, W. Org. Biomol. Chem. 2017, 15, 6474 DOI: 10.1039/C7OB01527E
  9. 9

    Selected reviews on amine C–H functionalization, including redox-neutral approaches:

    (a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443 DOI: 10.1002/anie.199524431
    (b) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2006, 2625 DOI: 10.1055/s-2006-942490
    (c) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069 DOI: 10.1039/B607547A
    (d) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490 DOI: 10.1039/b706709g
    (e) Li, C.-J. Acc. Chem. Res. 2009, 42, 335 DOI: 10.1021/ar800164n
    (f) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2010, 16, 2654 DOI: 10.1002/chem.200902374
    (g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215 DOI: 10.1021/cr100280d
    (h) Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374 DOI: 10.3762/bjoc.8.159
    (i) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem. - Eur. J. 2012, 18, 10092 DOI: 10.1002/chem.201201539
    (j) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464 DOI: 10.1039/c2cs15323h
    (k) Jones, K. M.; Klussmann, M. Synlett 2012, 2012, 159 DOI: 10.1055/s-0031-1290117
    (l) Peng, B.; Maulide, N. Chem. - Eur. J. 2013, 19, 13274 DOI: 10.1002/chem.201301522
    (m) Platonova, A. Y.; Glukhareva, T. V.; Zimovets, O. A.; Morzherin, Y. Y. Chem. Heterocycl. Compd. 2013, 49, 357 DOI: 10.1007/s10593-013-1257-6
    (n) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322 DOI: 10.1021/cr300503r
    (o) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74 DOI: 10.1002/anie.201304268
    (p) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010 DOI: 10.1002/anie.201306489
    (q) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137 DOI: 10.1002/adsc.201301153
    (r) Vo, C.-V. T.; Bode, J. W. J. Org. Chem. 2014, 79, 2809 DOI: 10.1021/jo5001252
    (s) Seidel, D. Org. Chem. Front. 2014, 1, 426 DOI: 10.1039/C4QO00022F
    (t) Qin, Y.; Lv, J.; Luo, S. Tetrahedron Lett. 2014, 55, 551 DOI: 10.1016/j.tetlet.2013.11.051
    (u) Seidel, D. Acc. Chem. Res. 2015, 48, 317 DOI: 10.1021/ar5003768
    (v) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474 DOI: 10.1021/acs.accounts.5b00068
    (w) Mahato, S.; Jana, C. K. Chem. Rec. 2016, 16, 1477 DOI: 10.1002/tcr.201600001
    (x) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433 DOI: 10.1021/acs.chemrev.6b00657
    (y) Cheng, M.-X.; Yang, S.-D. Synlett 2017, 28, 159 DOI: 10.1055/s-0036-1588342
  10. 10

    Selected reviews on various types of redox-neutral transformations:

    (a) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854 DOI: 10.1002/anie.200806086
    (b) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696 DOI: 10.1021/ar400239v
    (c) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142 DOI: 10.1002/anie.201403873
    (d) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155 DOI: 10.1039/C4CS00288A
  11. 11

    For detailed discussions on the mechanisms of these transformations, see refs 7c,7e−7g and 9u and the following reports:

    (a) Xue, X.; Yu, A.; Cai, Y.; Cheng, J.-P. Org. Lett. 2011, 13, 6054 DOI: 10.1021/ol2025247
    (b) Ma, L.; Paul, A.; Breugst, M.; Seidel, D. Chem. - Eur. J. 2016, 22, 18179 DOI: 10.1002/chem.201603839
  12. 12

    Examples of redox-neutral α-C–H functionalizations of secondary amines in the context of (3 + 2) cycloadditions:

    (a) Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S.; Thianpatanagul, S.; Kanajun, S. J. Chem. Soc., Chem. Commun. 1986, 602 DOI: 10.1039/c39860000602
    (b) Ardill, H.; Dorrity, M. J. R.; Grigg, R.; Leon-Ling, M. S.; Malone, J. F.; Sridharan, V.; Thianpatanagul, S. Tetrahedron 1990, 46, 6433 DOI: 10.1016/S0040-4020(01)96013-2
    (c) Ardill, H.; Fontaine, X. L. R.; Grigg, R.; Henderson, D.; Montgomery, J.; Sridharan, V.; Surendrakumar, S. Tetrahedron 1990, 46, 6449 DOI: 10.1016/S0040-4020(01)96014-4
    (d) Wang, B.; Mertes, M. P.; Mertes, K. B.; Takusagawa, F. Tetrahedron Lett. 1990, 31, 5543 DOI: 10.1016/S0040-4039(00)97892-4
    (e) Wittland, C.; Arend, M.; Risch, N. Synthesis 1996, 1996, 367 DOI: 10.1055/s-1996-4208
    (f) Marx, M. A.; Grillot, A.-L.; Louer, C. T.; Beaver, K. A.; Bartlett, P. A. J. Am. Chem. Soc. 1997, 119, 6153 DOI: 10.1021/ja9621051
    (g) Grigg, R.; Sridharan, V.; Thornton-Pett, M.; Wang, J.; Xu, J.; Zhang, J. Tetrahedron 2002, 58, 2627 DOI: 10.1016/S0040-4020(02)00129-1
    (h) Parmar, N. J.; Pansuriya, B. R.; Labana, B. M.; Kant, R.; Gupta, V. K. RSC Adv. 2013, 3, 17527 DOI: 10.1039/c3ra42220h
    (i) Rahman, M.; Bagdi, A. K.; Mishra, S.; Hajra, A. Chem. Commun. 2014, 50, 2951 DOI: 10.1039/c4cc00454j
    (j) Mantelingu, K.; Lin, Y.; Seidel, D. Org. Lett. 2014, 16, 5910 DOI: 10.1021/ol502918g
    (k) Pavan Kumar, C. S.; Harsha, K. B.; Mantelingu, K.; Rangappa, K. S. RSC Adv. 2015, 5, 61664 DOI: 10.1039/C5RA10030E
    (l) Safaei-Ghomi, J.; Masoomi, R. RSC Adv. 2015, 5, 15591 DOI: 10.1039/C4RA16020G
    (m) Yang, H.-T.; Tan, Y.-C.; Ge, J.; Wu, H.; Li, J.-X.; Yang, Y.; Sun, X.-Q.; Miao, C.-B. J. Org. Chem. 2016, 81, 11201 DOI: 10.1021/acs.joc.6b02193
    (n) Zheng, K.-L.; Shu, W.-M.; Ma, J.-R.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2016, 18, 3526 DOI: 10.1021/acs.orglett.6b01369
    (o) Du, Y.; Yu, A.; Jia, J.; Zhang, Y.; Meng, X. Chem. Commun. 2017, 53, 1684 DOI: 10.1039/C6CC08996H
    (p) Zheng, K.-L.; You, M.-Q.; Shu, W.-M.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2017, 19, 2262 DOI: 10.1021/acs.orglett.7b00769
  13. 13

    Examples of redox-neutral α-C–H bond annulations of secondary amines that result in the formation of 5-membered rings:

    (a) Grigg, R.; Nimal Gunaratne, H. Q.; Henderson, D.; Sridharan, V. Tetrahedron 1990, 46, 1599 DOI: 10.1016/S0040-4020(01)81969-4
    (b) Soeder, R. W.; Bowers, K.; Pegram, L. D.; Cartaya-Marin, C. P. Synth. Commun. 1992, 22, 2737 DOI: 10.1080/00397919208021537
    (c) Grigg, R.; Kennewell, P.; Savic, V.; Sridharan, V. Tetrahedron 1992, 48, 10423 DOI: 10.1016/S0040-4020(01)88345-9
    (d) Deb, I.; Seidel, D. Tetrahedron Lett. 2010, 51, 2945 DOI: 10.1016/j.tetlet.2010.03.086
    (e) Kang, Y.; Richers, M. T.; Sawicki, C. H.; Seidel, D. Chem. Commun. 2015, 51, 10648 DOI: 10.1039/C5CC03390J
    (f) Cheng, Y.-F.; Rong, H.-J.; Yi, C.-B.; Yao, J.-J.; Qu, J. Org. Lett. 2015, 17, 4758 DOI: 10.1021/acs.orglett.5b02298
    (g) Yang, Z.; Lu, N.; Wei, Z.; Cao, J.; Liang, D.; Duan, H.; Lin, Y. J. Org. Chem. 2016, 81, 11950 DOI: 10.1021/acs.joc.6b01781
    (h) Rong, H.-J.; Cheng, Y.-F.; Liu, F.-F.; Ren, S.-J.; Qu, J. J. Org. Chem. 2017, 82, 532 DOI: 10.1021/acs.joc.6b02562
    (i) Purkait, A.; Roy, S. K.; Srivastava, H. K.; Jana, C. K. Org. Lett. 2017, 19, 2540 DOI: 10.1021/acs.orglett.7b00832
  14. 14

    Selected reviews on azomethine ylide chemistry:

    (a) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, N. Y., 1984; Vol. 1.
    (b) Padwa, A., Ed. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984; Vol. 2.
    (c) Padwa, A.; Pearson, W. H.. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Wiley: Chichester, 2002; Vol. 59.
    (d) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105 DOI: 10.2174/1385272033486594
    (e) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765 DOI: 10.1021/cr040004c
    (f) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484 DOI: 10.1021/cr050011g
    (g) Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2006, 2873 DOI: 10.1002/ejoc.200500892
    (h) Bonin, M.; Chauveau, A.; Micouin, L. Synlett 2006, 2006, 2349 DOI: 10.1055/s-2006-949626
    (i) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247 DOI: 10.1016/j.tet.2007.09.065
    (j) Najera, C.; Sansano, J. M. Top. Heterocycl. Chem. 2008, 12, 117 DOI: 10.1007/7081_2007_099
    (k) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887 DOI: 10.1021/cr078371m
    (l) Nyerges, M.; Toth, J.; Groundwater, P. W. Synlett 2008, 2008, 1269 DOI: 10.1055/s-2008-1072743
    (m) Pineiro, M.; Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2009, 2009, 5287 DOI: 10.1002/ejoc.200900644
    (n) Burrell, A. J. M.; Coldham, I. Curr. Org. Synth. 2010, 7, 312 DOI: 10.2174/157017910791414472
    (o) Anac, O.; Gungor, F. S. Tetrahedron 2010, 66, 5931 DOI: 10.1016/j.tet.2010.05.058
    (p) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784 DOI: 10.1039/c1cc10779h
    (q) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434 DOI: 10.1039/C4CC04381B
    (r) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366 DOI: 10.1021/cr5007182
    (s) Meyer, A.; Ryan, J. Molecules 2016, 21, 935 DOI: 10.3390/molecules21080935

    See also ref 9u.

  15. 15

    For a review on the chemistry of ketoamides, see:

    De Risi, C.; Pollini, G. P.; Zanirato, V. Chem. Rev. 2016, 116, 3241 DOI: 10.1021/acs.chemrev.5b00443
  16. 16
    Lanigan, R. M.; Sheppard, T. D. Eur. J. Org. Chem. 2013, 2013, 7453 DOI: 10.1002/ejoc.201300573
  17. 17

    An alternative mechanism has also been proposed:

    Wang, J.-Y.; Hu, Y.; Wang, D.-X.; Pan, J.; Huang, Z.-T.; Wang, M.-X. Chem. Commun. 2009, 422 DOI: 10.1039/B816007D

Cited By

Click to copy section linkSection link copied!

This article is cited by 41 publications.

  1. Mohammad Saleem, Pandey Abhishek, Dongari Yadagiri. Light-Induced Reactivity of Nucleophilic Siloxycarbene with Heterocumulenes: Synthesis of α-Ketoamides, Hydantoins, Oxoacetamidines, and Amides. Organic Letters 2024, 26 (48) , 10291-10298. https://doi.org/10.1021/acs.orglett.4c03832
  2. Soumya Mondal, Suman Das, Subal Mondal, Siba P. Midya, Pradyut Ghosh. Photocatalytic Decarboxylative Cross-Coupling of α,β-Unsaturated Acids with Amines for α-Ketoamides via C–N Bond Formation. The Journal of Organic Chemistry 2024, 89 (22) , 16750-16758. https://doi.org/10.1021/acs.joc.4c02036
  3. Bing Yi, Wenhui Zhang, Zi-Qi Yi, Fei Chen, Qianqian Zeng, Niannian Yi, Li Lv, Fan Zhang, Yanjun Xie, Jian-Ping Tan. Photoinduced Radical Annulations of Tetrahydroisoquinoline Derivatives with 2-Benzothiazolimines: Highly Diastereoselective Synthesis of Fused Hexahydroimidazo[2,1-a]isoquinolines. The Journal of Organic Chemistry 2024, 89 (18) , 13491-13500. https://doi.org/10.1021/acs.joc.4c01691
  4. Rohit Kumar, Nitika Grover, Nidhi Jain. 1O2 Mediated Conversion of β-Enaminonitriles to α-Keto Amides Photosensitized by Recyclable H2TPP in Visible Light. The Journal of Organic Chemistry 2024, 89 (7) , 4722-4732. https://doi.org/10.1021/acs.joc.3c02965
  5. Lei Xie, Chenyi Zhao, Zhaoxue Wang, Zirui Chen, Yingying Zhao, Xinghan Liu, Xiangdong Xu, Wanxing Liu, Xiaojing Li, Lingang Wu. Synthesis of Polycyclic Imidazolidinones via Cascade [3 + 2]-Annulation of β-Oxo-acrylamides with Cyclic N-Sulfonyl Imines. The Journal of Organic Chemistry 2023, 88 (22) , 15805-15816. https://doi.org/10.1021/acs.joc.3c01878
  6. Suman Das, Soumya Mondal, Siba P. Midya, Subal Mondal, Eliza Ghosh, Pradyut Ghosh. Base-Promoted Tandem Pathway for Keto-Amides: Visible Light-Mediated Room-Temperature Amidation Using Molecular Oxygen as an Oxidant. The Journal of Organic Chemistry 2023, 88 (21) , 14847-14859. https://doi.org/10.1021/acs.joc.3c00686
  7. Shi-Yi Zhuang, Yong-Xing Tang, Jin-Yi Liu, Xiang-Long Chen, Jin-Tian Ma, Yan-Dong Wu, Kai-Lu Zheng, An-Xin Wu. I2-DMSO-Mediated N–H/α-C(sp3)–H Difunctionalization of Tetrahydroisoquinoline: Formal [2 + 2 + 1] Annulation for the Construction of Pyrrolo[2,1-a]isoquinoline Derivatives. Organic Letters 2022, 24 (15) , 2858-2862. https://doi.org/10.1021/acs.orglett.2c00813
  8. Jianting Ma, Xue Cui, Junyu Xu, Yinfeng Tan, Yan Wang, Xuesong Wang, Youbin Li. One-Pot Synthesis of α-Ketoamides from α-Keto Acids and Amines Using Ynamides as Coupling Reagents. The Journal of Organic Chemistry 2022, 87 (5) , 3661-3667. https://doi.org/10.1021/acs.joc.1c02453
  9. Anirudra Paul, Hemant S. Chandak, Longle Ma, Daniel Seidel. Redox-Annulations of Cyclic Amines with ortho-Cyanomethylbenzaldehydes. Organic Letters 2020, 22 (3) , 976-980. https://doi.org/10.1021/acs.orglett.9b04506
  10. Kyalo Stephen Kanyiva, Marina Tane, Takanori Shibata. Iodine-Catalyzed Synthesis of Chiral 4-Imidazolidinones Using α-Amino Acid Derivatives via Dehydrogenative N–H/C(sp3)–H Coupling. The Journal of Organic Chemistry 2019, 84 (20) , 12773-12783. https://doi.org/10.1021/acs.joc.9b01154
  11. Murugan Vijay, Sundaravel Vivek Kumar, Vanaparthi Satheesh, Periyasamy Ananthappan, Hemant Kumar Srivastava, Sundaram Ellairaja, Vairathevar Sivasamy Vasantha, Tharmalingam Punniyamurthy. Stereospecific Assembly of Fused Imidazolidines via Tandem Ring Opening/Oxidative Amination of Aziridines with Cyclic Secondary Amines Using Photoredox Catalysis. Organic Letters 2019, 21 (18) , 7649-7654. https://doi.org/10.1021/acs.orglett.9b02957
  12. Meng-Yang Chang, Yan-Shin Wu. HOAc-Mediated Cyclocondensation of 2-Formylazaarenes and Cyclic Amines. Synthesis of Pyrrolo[1,2-a]azaarenes. The Journal of Organic Chemistry 2019, 84 (6) , 3638-3646. https://doi.org/10.1021/acs.joc.8b03148
  13. Anirudra Paul, Alafate Adili, Daniel Seidel. Redox-Annulations of Cyclic Amines with Electron-Deficient o-Tolualdehydes. Organic Letters 2019, 21 (6) , 1845-1848. https://doi.org/10.1021/acs.orglett.9b00438
  14. Mallu Kesava Reddy, Isai Ramakrishna, Mahiuddin Baidya. Divergent Reactivity of gem-Difluoro-enolates toward Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of α-Ketoamides. Organic Letters 2018, 20 (15) , 4610-4613. https://doi.org/10.1021/acs.orglett.8b01900
  15. Zhengbo Zhu, Hemant S. Chandak, Daniel Seidel. Redox-Annulations of Cyclic Amines with 2-(2-Oxoethyl)malonates. Organic Letters 2018, 20 (13) , 4090-4093. https://doi.org/10.1021/acs.orglett.8b01642
  16. Jianyang Dong, Qing Xia, Changcun Yan, Hongjian Song, Yuxiu Liu, Qingmin Wang. C(sp3)–H Azidation Reaction: A Protocol for Preparation of Aminals. The Journal of Organic Chemistry 2018, 83 (8) , 4516-4524. https://doi.org/10.1021/acs.joc.8b00235
  17. Anirudra Paul, N. R. Thimmegowda, Thiago Galani Cruz, and Daniel Seidel . Decarboxylative Annulation of α-Amino Acids with β-Ketoaldehydes. Organic Letters 2018, 20 (3) , 602-604. https://doi.org/10.1021/acs.orglett.7b03721
  18. Nandini Ray, Chandan K Jana. Iminium and azonium-activated metal and oxidant-free C–H functionalization of aliphatic amines. Chemical Communications 2023, 59 (55) , 8504-8519. https://doi.org/10.1039/D3CC01299A
  19. Lesya M. Saliyeva, Irina V. Dyachenko, Ivanna Yu. Danyliuk, Mykhailo V. Vovk. Di-, tetra-, and perhydropyrrolo[1,2-a]imidazoles: The Methods of Synthesis and Some Aspects of Application. Chemistry of Heterocyclic Compounds 2022, 58 (12) , 661-680. https://doi.org/10.1007/s10593-023-03142-w
  20. Xiao-Hui Chen, Yu-Yi Pan, Wei-Xun Wang, Hai-Lei Cui. Iron-Catalyzed Synthesis of Pyrrolo[2,1-a]isoquinolines via 1,3-Dipolar Cycloaddition/Elimination/Aromatization Cascade and Modifications. Synlett 2022, 33 (16) , 1645-1654. https://doi.org/10.1055/a-1896-3512
  21. Jianlan Zhang, Youyu Zhu, Jiangtao Cai, Jia Jia, Guoyang Liu, Yongqiang Dang, Xuesong Wang, Yating Zhang. Copper‐Catalyzed Oxidative Amidation for the Synthesis of α‐Ketoamides from α‐Diazoketones with Amines Using Oxygen as Oxidant. Asian Journal of Organic Chemistry 2022, 11 (8) https://doi.org/10.1002/ajoc.202200264
  22. Kaikai Wang, Yanli Li, Wei Zhang, Rongxiang Chen, Xueji Ma, Mingyue Wang, Nan Zhou. Facile Synthesis of Tricyclic 1,2,4-Oxadiazolines-Fused Tetrahydro-Isoquinolines from Oxime Chlorides with 3,4-Dihydroisoquinoline Imines. Molecules 2022, 27 (10) , 3064. https://doi.org/10.3390/molecules27103064
  23. Yuhan Zhao, Xia Meng, Changqun Cai, Lingyun Wang, Hang Gong. Synthesis of α‐Ketoamides via Electrochemical Decarboxylative Acylation of Isocyanides Using α‐Ketoacids as an Acyl Source. Asian Journal of Organic Chemistry 2022, 11 (4) https://doi.org/10.1002/ajoc.202100748
  24. Emma G. L. Robert, Eliott Le Du, Jerome Waser. Synthesis of polycyclic aminal heterocycles via decarboxylative cyclisation of dipeptide derivatives. Chemical Communications 2022, 58 (21) , 3473-3476. https://doi.org/10.1039/D2CC00167E
  25. Xiao‐Hui Chen, Hai‐Lei Cui. Asymmetric Synthesis of Imidazo[2,1‐ a ]isoquinolin‐3‐ones with Dihydroisoquinolines and N ‐substituted Amino Acids. Asian Journal of Organic Chemistry 2022, 11 (2) https://doi.org/10.1002/ajoc.202100761
  26. Jean Suffert. Bicyclic 5-5 Systems With One Bridgehead (Ring Junction) Nitrogen Atom: One Extra Heteroatom 1:0. 2022, 38-94. https://doi.org/10.1016/B978-0-12-818655-8.00030-5
  27. Weijie Chen, Daniel Seidel. Condensation-Based Methods for the C–H Bond Functionalization of Amines. Synthesis 2021, 53 (21) , 3869-3908. https://doi.org/10.1055/a-1631-2140
  28. Yan He, Zhi Zheng, Jintao Yang, Xinying Zhang, Xuesen Fan. Recent advances in the functionalization of saturated cyclic amines. Organic Chemistry Frontiers 2021, 8 (16) , 4582-4606. https://doi.org/10.1039/D1QO00171J
  29. Hai‐Lei Cui, Jia‐Qin Li. Synthesis of Imidazo[2,3‐ a ]isoquinoline and Imidazo[3,2‐ a ]quinoline Derivatives with Ynones, Isoquinolines and Quinolines. Asian Journal of Organic Chemistry 2021, 10 (8) , 2170-2173. https://doi.org/10.1002/ajoc.202100372
  30. Junjie Huang, Baihui Liang, Xiuwen Chen, Yifu Liu, Yawen Li, Jingwen Liang, Weidong Zhu, Xiaodong Tang, Yibiao Li, Zhongzhi Zhu. Rapid assembly of α-ketoamides through a decarboxylative strategy of isocyanates with α-oxocarboxylic acids under mild conditions. Organic & Biomolecular Chemistry 2021, 19 (21) , 4783-4787. https://doi.org/10.1039/D1OB00562F
  31. Shi-Yi Zhuang, Yong-Xing Tang, Xiang-Long Chen, Yan-Dong Wu, An-Xin Wu. I 2 -DMSO mediated oxidative amidation of methyl ketones with anthranils for the synthesis of α -ketoamides. Organic & Biomolecular Chemistry 2021, 19 (19) , 4258-4262. https://doi.org/10.1039/D1OB00468A
  32. Suman Dana, Popuri Sureshbabu, Chandan Kumar Giri, Mahiuddin Baidya. Ruthenium(II)‐Catalyzed C−H Activation/Annulation of Aromatic Hydroxamic Acid Esters with Enamides Leading to Aminal Motifs. European Journal of Organic Chemistry 2021, 2021 (9) , 1385-1389. https://doi.org/10.1002/ejoc.202001632
  33. Hongyu Wu, Xianyong Yu, Zhong Cao. Electrochemical Multicomponent Synthesis of α -Ketoamides from α -Oxocarboxylic Acids, Isocyanides and Water. Chinese Journal of Organic Chemistry 2021, 41 (12) , 4712. https://doi.org/10.6023/cjoc202111010
  34. Béla Urbán, Enikő Nagy, Petra Nagy, Máté Papp, Rita Skoda-Földes. Double carbonylation of iodoarenes in the presence of a pyridinium SILP-Pd catalyst. Journal of Organometallic Chemistry 2020, 918 , 121287. https://doi.org/10.1016/j.jorganchem.2020.121287
  35. Figueroa‐Valverde Lauro, Diaz C. Francisco, Lopez‐Ramos Maria, Garcia‐Martinez Rolando, Rosas‐Nexticapa Marcela, Mateu‐Armand Virginia, Garcimarero‐Espino E. Alejandra, Borges‐Ballote Yaritza, Ortiz‐Ake Yazmin. Retracted: Design and synthesis of a bismethylsulfanyl‐steroid‐azetyl butanol derivative from 2‐nitroestradiol. Journal of Heterocyclic Chemistry 2020, 57 (4) , 1737-1747. https://doi.org/10.1002/jhet.3899
  36. Kai‐Kai Wang, Yan‐Li Li, Zhan‐Yong Wang, Xueji Ma, Ya‐Lei Mei, Shan‐Shan Zhang, Rongxiang Chen. Formal [3 + 2] cycloaddition of azomethine ylides generated in situ with unactivated cyclic imines: A facile approach to tricyclic imidazolines derivatives. Journal of Heterocyclic Chemistry 2020, 57 (3) , 1456-1463. https://doi.org/10.1002/jhet.3878
  37. Hao Tian, Yan He, Shaojin Liu, Zhikun Yang, Jine Wang, Jianmin Li, Jianjun Zhang, Liusheng Duan, Zhaohu Li, Weiming Tan. Improved synthetic route of exo ‐16,17‐dihydro‐gibberellin A5‐13‐acetate and the bioactivity of its derivatives towards Arabidopsis thaliana. Pest Management Science 2020, 76 (2) , 807-817. https://doi.org/10.1002/ps.5584
  38. Ya‐Kai Zhang, Bin Wang. Synthesis of α‐Ketoamides from β‐Ketonitriles and Primary Amines: A Catalyst‐Free Oxidative Decyanation–Amidation Reaction. European Journal of Organic Chemistry 2019, 2019 (33) , 5732-5735. https://doi.org/10.1002/ejoc.201900900
  39. Alagesan Muthukumar, Subramani Sangeetha, Govindasamy Sekar. Recent developments in functionalization of acyclic α-keto amides. Organic & Biomolecular Chemistry 2018, 16 (39) , 7068-7083. https://doi.org/10.1039/C8OB01423J
  40. Lou Shi, Mingshan Wang, Ling Pan, Yifei Li, Qun Liu. Csp 3 –H bond functionalization of amines via tunable iminium ions: divergent synthesis of trifluoromethylated arylamines. Chemical Communications 2018, 54 (63) , 8721-8724. https://doi.org/10.1039/C8CC04936J
  41. Jiaomei Guo, Yang Zhao, Dongmei Fang, Qilin Wang, Zhanwei Bu. Diastereoselective construction of pyrrolo[2,1- a ]isoquinoline-based bispirooxindoles through a three-component [3 + 2] cycloaddition. Organic & Biomolecular Chemistry 2018, 16 (33) , 6025-6034. https://doi.org/10.1039/C8OB01493K

Organic Letters

Cite this: Org. Lett. 2017, 19, 23, 6424–6427
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.orglett.7b03309
Published November 16, 2017

Copyright © 2017 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

5426

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Selected 4-imidazolidinones.

    Scheme 1

    Scheme 1. Selected Routes to Polycyclic 4-Imidazolidinones

    Scheme 2

    Scheme 2. Ketoamide Scopea

    Scheme aReactions were performed on a 0.5 mmol scale. All yields correspond to isolated yields.

    Scheme bTransamidation product (1-(3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylethane-1,2-dione) was obtained in 38% yield.

    Scheme 3

    Scheme 3. Amine Scopea

    Scheme aReactions were performed on a 0.5 mmol scale. All yields correspond to isolated yields.

    Scheme bReaction was performed in PhMe (0.25 M) under microwave irradiation for 30 min at 220 °C.

    Scheme cReaction was performed in PhMe (0.25 M) under microwave irradiation for 1 h at 220 °C.

    Scheme 4

    Scheme 4. Mechanistic Considerations
  • References


    This article references 17 other publications.

    1. 1

      Review on the synthetic and medicinal chemistry of 4-imidazolidinones:

      Blackmore, T.; Thompson, P. Heterocycles 2011, 83, 1953 DOI: 10.3987/REV-11-707
    2. 2

      For a general review on the synthesis of aminal-type structures, see:

      Hiersemann, M. In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R. T.; Richard, J. K., Ed.; Elsevier Ltd.: Oxford, UK, 2005; Vol. 4, p 411.
    3. 3

      Selected reports on natural and synthetic, biologically active 4-imidazolidinones:

      (a) Smissman, E.; Inloes, R.; El-Antably, S.; Shaffer, P. J. Med. Chem. 1976, 19, 161 DOI: 10.1021/jm00223a028
      (b) Leysen, J.; Gommeren, W.; Laduron, P. Biochem. Pharmacol. 1978, 27, 307 DOI: 10.1016/0006-2952(78)90233-2
      (c) Nelson, D.; Taylor, E. Eur. J. Pharmacol. 1986, 124, 207 DOI: 10.1016/0014-2999(86)90147-0
      (d) Nikam, S.; Martin, A.; Nelson, D. J. Med. Chem. 1988, 31, 1965 DOI: 10.1021/jm00118a017
      (e) Rasmussen, G.; Bundgaard, H. Int. J. Pharm. 1991, 71, 45 DOI: 10.1016/0378-5173(91)90066-W
      (f) Pinza, M.; Farina, C.; Cerri, A.; Pfeiffer, U.; Riccaboni, M. T.; Banfi, S.; Biagetti, R.; Pozzi, O.; Magnani, M.; Dorigotti, L. J. Med. Chem. 1993, 36, 4214 DOI: 10.1021/jm00078a011
      (g) Thomsen, C.; Hohlweg, R. Br. J. Pharmacol. 2000, 131, 903 DOI: 10.1038/sj.bjp.0703661
      (h) Ijzendoorn, D. R.; Botman, P. N. M.; Blaauw, R. H. Org. Lett. 2006, 8, 239 DOI: 10.1021/ol052598r
      (i) Toumi, M.; Couty, F.; Marrot, J.; Evano, G. Org. Lett. 2008, 10, 5027 DOI: 10.1021/ol802155n
      (j) Vale, N.; Prudencio, M.; Marques, C.; Collins, M.; Gut, J.; Nogueira, F.; Matos, J.; Rosenthal, P.; Cushion, M.; Rosario, V.; Mota, M.; Moreira, R.; Gomes, P. J. Med. Chem. 2009, 52, 7800 DOI: 10.1021/jm900738c
      (k) Vale, N.; Nogueira, F.; Rosario, V.; Gomes, P.; Moreira, R. Eur. J. Med. Chem. 2009, 44, 2506 DOI: 10.1016/j.ejmech.2009.01.018
    4. 4
      (a) Vasvari-Debreczy, L.; Beckett, A.; Vutthikongsirigool, W. Tetrahedron 1981, 37, 4337 DOI: 10.1016/0040-4020(81)85031-4
      (b) Papadopoulos, A.; Lewall, B.; Steckhan, E.; Ginzel, K.; Knoch, F.; Nieger, M. Tetrahedron 1991, 47, 563 DOI: 10.1016/S0040-4020(01)87046-0
      (c) Yu, H.; Shen, J. RSC Adv. 2015, 5, 9815 DOI: 10.1039/C4RA15019H
      (d) Ren, X.; O’Hanlon, J.; Morris, M.; Robertson, J.; Wong, L. ACS Catal. 2016, 6, 6833 DOI: 10.1021/acscatal.6b02189
    5. 5
      Wu, J.-s.; Jiang, H.-j.; Yang, J.-g.; Jin, Z.-n.; Chen, D.-b. Tetrahedron Lett. 2017, 58, 546 DOI: 10.1016/j.tetlet.2016.12.079
    6. 6

      Examples of condensation-based approaches to polycyclic 4-imidazolidinones:

      (a) Katritzky, A. R.; He, H.-Y.; Wang, J. J. Org. Chem. 2002, 67, 4951 DOI: 10.1021/jo010842w
      (b) Ferraz, R.; Gomes, J. R. B.; de Oliveira, E.; Moreira, R.; Gomes, P. J. Org. Chem. 2007, 72, 4189 DOI: 10.1021/jo0703202
    7. 7
      (a) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 416 DOI: 10.1021/ja077473r
      (b) Zhang, C.; Das, D.; Seidel, D. Chem. Sci. 2011, 2, 233 DOI: 10.1039/C0SC00432D
      (c) Dieckmann, A.; Richers, M. T.; Platonova, A. Y.; Zhang, C.; Seidel, D.; Houk, K. N. J. Org. Chem. 2013, 78, 4132 DOI: 10.1021/jo400483h
      (d) Richers, M. T.; Deb, I.; Platonova, A. Y.; Zhang, C.; Seidel, D. Synthesis 2013, 45, 1730 DOI: 10.1055/s-0033-1338852
      (e) Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem. Soc. 2014, 136, 6123 DOI: 10.1021/ja501988b
      (f) Jarvis, C. L.; Richers, M. T.; Breugst, M.; Houk, K. N.; Seidel, D. Org. Lett. 2014, 16, 3556 DOI: 10.1021/ol501509b
      (g) Kang, Y.; Chen, W.; Breugst, M.; Seidel, D. J. Org. Chem. 2015, 80, 9628 DOI: 10.1021/acs.joc.5b01384
      (h) Ma, L.; Seidel, D. Chem. - Eur. J. 2015, 21, 12908 DOI: 10.1002/chem.201501667
      (i) Chen, W.; Seidel, D. Org. Lett. 2016, 18, 1024 DOI: 10.1021/acs.orglett.6b00151
      (j) Zhu, Z.; Seidel, D. Org. Lett. 2017, 19, 2841 DOI: 10.1021/acs.orglett.7b01047
    8. 8
      (a) Zheng, L.; Yang, F.; Dang, Q.; Bai, X. Org. Lett. 2008, 10, 889 DOI: 10.1021/ol703049j
      (b) Mahato, S.; Haque, M. A.; Dwari, S.; Jana, C. K. RSC Adv. 2014, 4, 46214 DOI: 10.1039/C4RA05045B
      (c) Li, J.; Qin, C.; Yu, Y.; Fan, H.; Fu, Y.; Li, H.; Wang, W. Adv. Synth. Catal. 2017, 359, 2191 DOI: 10.1002/adsc.201601423
      (d) Li, J.; Fu, Y.; Qin, C.; Yu, Y.; Li, H.; Wang, W. Org. Biomol. Chem. 2017, 15, 6474 DOI: 10.1039/C7OB01527E
    9. 9

      Selected reviews on amine C–H functionalization, including redox-neutral approaches:

      (a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443 DOI: 10.1002/anie.199524431
      (b) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2006, 2625 DOI: 10.1055/s-2006-942490
      (c) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069 DOI: 10.1039/B607547A
      (d) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490 DOI: 10.1039/b706709g
      (e) Li, C.-J. Acc. Chem. Res. 2009, 42, 335 DOI: 10.1021/ar800164n
      (f) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2010, 16, 2654 DOI: 10.1002/chem.200902374
      (g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215 DOI: 10.1021/cr100280d
      (h) Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374 DOI: 10.3762/bjoc.8.159
      (i) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem. - Eur. J. 2012, 18, 10092 DOI: 10.1002/chem.201201539
      (j) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464 DOI: 10.1039/c2cs15323h
      (k) Jones, K. M.; Klussmann, M. Synlett 2012, 2012, 159 DOI: 10.1055/s-0031-1290117
      (l) Peng, B.; Maulide, N. Chem. - Eur. J. 2013, 19, 13274 DOI: 10.1002/chem.201301522
      (m) Platonova, A. Y.; Glukhareva, T. V.; Zimovets, O. A.; Morzherin, Y. Y. Chem. Heterocycl. Compd. 2013, 49, 357 DOI: 10.1007/s10593-013-1257-6
      (n) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322 DOI: 10.1021/cr300503r
      (o) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74 DOI: 10.1002/anie.201304268
      (p) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010 DOI: 10.1002/anie.201306489
      (q) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137 DOI: 10.1002/adsc.201301153
      (r) Vo, C.-V. T.; Bode, J. W. J. Org. Chem. 2014, 79, 2809 DOI: 10.1021/jo5001252
      (s) Seidel, D. Org. Chem. Front. 2014, 1, 426 DOI: 10.1039/C4QO00022F
      (t) Qin, Y.; Lv, J.; Luo, S. Tetrahedron Lett. 2014, 55, 551 DOI: 10.1016/j.tetlet.2013.11.051
      (u) Seidel, D. Acc. Chem. Res. 2015, 48, 317 DOI: 10.1021/ar5003768
      (v) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48, 1474 DOI: 10.1021/acs.accounts.5b00068
      (w) Mahato, S.; Jana, C. K. Chem. Rec. 2016, 16, 1477 DOI: 10.1002/tcr.201600001
      (x) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433 DOI: 10.1021/acs.chemrev.6b00657
      (y) Cheng, M.-X.; Yang, S.-D. Synlett 2017, 28, 159 DOI: 10.1055/s-0036-1588342
    10. 10

      Selected reviews on various types of redox-neutral transformations:

      (a) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854 DOI: 10.1002/anie.200806086
      (b) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696 DOI: 10.1021/ar400239v
      (c) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142 DOI: 10.1002/anie.201403873
      (d) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155 DOI: 10.1039/C4CS00288A
    11. 11

      For detailed discussions on the mechanisms of these transformations, see refs 7c,7e−7g and 9u and the following reports:

      (a) Xue, X.; Yu, A.; Cai, Y.; Cheng, J.-P. Org. Lett. 2011, 13, 6054 DOI: 10.1021/ol2025247
      (b) Ma, L.; Paul, A.; Breugst, M.; Seidel, D. Chem. - Eur. J. 2016, 22, 18179 DOI: 10.1002/chem.201603839
    12. 12

      Examples of redox-neutral α-C–H functionalizations of secondary amines in the context of (3 + 2) cycloadditions:

      (a) Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S.; Thianpatanagul, S.; Kanajun, S. J. Chem. Soc., Chem. Commun. 1986, 602 DOI: 10.1039/c39860000602
      (b) Ardill, H.; Dorrity, M. J. R.; Grigg, R.; Leon-Ling, M. S.; Malone, J. F.; Sridharan, V.; Thianpatanagul, S. Tetrahedron 1990, 46, 6433 DOI: 10.1016/S0040-4020(01)96013-2
      (c) Ardill, H.; Fontaine, X. L. R.; Grigg, R.; Henderson, D.; Montgomery, J.; Sridharan, V.; Surendrakumar, S. Tetrahedron 1990, 46, 6449 DOI: 10.1016/S0040-4020(01)96014-4
      (d) Wang, B.; Mertes, M. P.; Mertes, K. B.; Takusagawa, F. Tetrahedron Lett. 1990, 31, 5543 DOI: 10.1016/S0040-4039(00)97892-4
      (e) Wittland, C.; Arend, M.; Risch, N. Synthesis 1996, 1996, 367 DOI: 10.1055/s-1996-4208
      (f) Marx, M. A.; Grillot, A.-L.; Louer, C. T.; Beaver, K. A.; Bartlett, P. A. J. Am. Chem. Soc. 1997, 119, 6153 DOI: 10.1021/ja9621051
      (g) Grigg, R.; Sridharan, V.; Thornton-Pett, M.; Wang, J.; Xu, J.; Zhang, J. Tetrahedron 2002, 58, 2627 DOI: 10.1016/S0040-4020(02)00129-1
      (h) Parmar, N. J.; Pansuriya, B. R.; Labana, B. M.; Kant, R.; Gupta, V. K. RSC Adv. 2013, 3, 17527 DOI: 10.1039/c3ra42220h
      (i) Rahman, M.; Bagdi, A. K.; Mishra, S.; Hajra, A. Chem. Commun. 2014, 50, 2951 DOI: 10.1039/c4cc00454j
      (j) Mantelingu, K.; Lin, Y.; Seidel, D. Org. Lett. 2014, 16, 5910 DOI: 10.1021/ol502918g
      (k) Pavan Kumar, C. S.; Harsha, K. B.; Mantelingu, K.; Rangappa, K. S. RSC Adv. 2015, 5, 61664 DOI: 10.1039/C5RA10030E
      (l) Safaei-Ghomi, J.; Masoomi, R. RSC Adv. 2015, 5, 15591 DOI: 10.1039/C4RA16020G
      (m) Yang, H.-T.; Tan, Y.-C.; Ge, J.; Wu, H.; Li, J.-X.; Yang, Y.; Sun, X.-Q.; Miao, C.-B. J. Org. Chem. 2016, 81, 11201 DOI: 10.1021/acs.joc.6b02193
      (n) Zheng, K.-L.; Shu, W.-M.; Ma, J.-R.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2016, 18, 3526 DOI: 10.1021/acs.orglett.6b01369
      (o) Du, Y.; Yu, A.; Jia, J.; Zhang, Y.; Meng, X. Chem. Commun. 2017, 53, 1684 DOI: 10.1039/C6CC08996H
      (p) Zheng, K.-L.; You, M.-Q.; Shu, W.-M.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2017, 19, 2262 DOI: 10.1021/acs.orglett.7b00769
    13. 13

      Examples of redox-neutral α-C–H bond annulations of secondary amines that result in the formation of 5-membered rings:

      (a) Grigg, R.; Nimal Gunaratne, H. Q.; Henderson, D.; Sridharan, V. Tetrahedron 1990, 46, 1599 DOI: 10.1016/S0040-4020(01)81969-4
      (b) Soeder, R. W.; Bowers, K.; Pegram, L. D.; Cartaya-Marin, C. P. Synth. Commun. 1992, 22, 2737 DOI: 10.1080/00397919208021537
      (c) Grigg, R.; Kennewell, P.; Savic, V.; Sridharan, V. Tetrahedron 1992, 48, 10423 DOI: 10.1016/S0040-4020(01)88345-9
      (d) Deb, I.; Seidel, D. Tetrahedron Lett. 2010, 51, 2945 DOI: 10.1016/j.tetlet.2010.03.086
      (e) Kang, Y.; Richers, M. T.; Sawicki, C. H.; Seidel, D. Chem. Commun. 2015, 51, 10648 DOI: 10.1039/C5CC03390J
      (f) Cheng, Y.-F.; Rong, H.-J.; Yi, C.-B.; Yao, J.-J.; Qu, J. Org. Lett. 2015, 17, 4758 DOI: 10.1021/acs.orglett.5b02298
      (g) Yang, Z.; Lu, N.; Wei, Z.; Cao, J.; Liang, D.; Duan, H.; Lin, Y. J. Org. Chem. 2016, 81, 11950 DOI: 10.1021/acs.joc.6b01781
      (h) Rong, H.-J.; Cheng, Y.-F.; Liu, F.-F.; Ren, S.-J.; Qu, J. J. Org. Chem. 2017, 82, 532 DOI: 10.1021/acs.joc.6b02562
      (i) Purkait, A.; Roy, S. K.; Srivastava, H. K.; Jana, C. K. Org. Lett. 2017, 19, 2540 DOI: 10.1021/acs.orglett.7b00832
    14. 14

      Selected reviews on azomethine ylide chemistry:

      (a) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, N. Y., 1984; Vol. 1.
      (b) Padwa, A., Ed. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984; Vol. 2.
      (c) Padwa, A.; Pearson, W. H.. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Wiley: Chichester, 2002; Vol. 59.
      (d) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105 DOI: 10.2174/1385272033486594
      (e) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765 DOI: 10.1021/cr040004c
      (f) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484 DOI: 10.1021/cr050011g
      (g) Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2006, 2873 DOI: 10.1002/ejoc.200500892
      (h) Bonin, M.; Chauveau, A.; Micouin, L. Synlett 2006, 2006, 2349 DOI: 10.1055/s-2006-949626
      (i) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247 DOI: 10.1016/j.tet.2007.09.065
      (j) Najera, C.; Sansano, J. M. Top. Heterocycl. Chem. 2008, 12, 117 DOI: 10.1007/7081_2007_099
      (k) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887 DOI: 10.1021/cr078371m
      (l) Nyerges, M.; Toth, J.; Groundwater, P. W. Synlett 2008, 2008, 1269 DOI: 10.1055/s-2008-1072743
      (m) Pineiro, M.; Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2009, 2009, 5287 DOI: 10.1002/ejoc.200900644
      (n) Burrell, A. J. M.; Coldham, I. Curr. Org. Synth. 2010, 7, 312 DOI: 10.2174/157017910791414472
      (o) Anac, O.; Gungor, F. S. Tetrahedron 2010, 66, 5931 DOI: 10.1016/j.tet.2010.05.058
      (p) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784 DOI: 10.1039/c1cc10779h
      (q) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434 DOI: 10.1039/C4CC04381B
      (r) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366 DOI: 10.1021/cr5007182
      (s) Meyer, A.; Ryan, J. Molecules 2016, 21, 935 DOI: 10.3390/molecules21080935

      See also ref 9u.

    15. 15

      For a review on the chemistry of ketoamides, see:

      De Risi, C.; Pollini, G. P.; Zanirato, V. Chem. Rev. 2016, 116, 3241 DOI: 10.1021/acs.chemrev.5b00443
    16. 16
      Lanigan, R. M.; Sheppard, T. D. Eur. J. Org. Chem. 2013, 2013, 7453 DOI: 10.1002/ejoc.201300573
    17. 17

      An alternative mechanism has also been proposed:

      Wang, J.-Y.; Hu, Y.; Wang, D.-X.; Pan, J.; Huang, Z.-T.; Wang, M.-X. Chem. Commun. 2009, 422 DOI: 10.1039/B816007D
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b03309.

    • Experimental procedures and characterization data, including X-ray crystal structures of products 2a and 3d (PDF)

    • X-ray data for compound 2a (CIF)

    • X-ray data for compound 3d (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.