ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Stainless Steel-Mediated Hydrogen Generation from Alkanes and Diethyl Ether and Its Application for Arene Reduction

  • Yoshinari Sawama*
    Yoshinari Sawama
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
    *E-mail: [email protected] (Y. Sawama).
  • Naoki Yasukawa
    Naoki Yasukawa
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
  • Kazuho Ban
    Kazuho Ban
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
    More by Kazuho Ban
  • Ryota Goto
    Ryota Goto
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
    More by Ryota Goto
  • Miki Niikawa
    Miki Niikawa
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
    More by Miki Niikawa
  • Yasunari Monguchi
    Yasunari Monguchi
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
  • Miki Itoh
    Miki Itoh
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
    More by Miki Itoh
  • , and 
  • Hironao Sajiki*
    Hironao Sajiki
    Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
    *E-mail: [email protected] (H. Sajiki).
Cite this: Org. Lett. 2018, 20, 10, 2892–2896
Publication Date (Web):May 1, 2018
https://doi.org/10.1021/acs.orglett.8b00931
Copyright © 2018 American Chemical Society

    Article Views

    2919

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (798 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Hydrogen gas can be generated from simple alkanes (e.g., n-pentane, n-hexane, etc.) and diethyl ether (Et2O) by mechanochemical energy using a planetary ball mill (SUS304, Fritsch Pulverisette 7), and the use of stainless steel balls and vessel is an important factor to generate the hydrogen. The reduction of organic compounds was also accomplished using the in-situ-generated hydrogen. While the use of pentane as the hydrogen source facilitated the reduction of the olefin moieties, the arene reduction could proceed using Et2O. Within the components (Fe, Cr, Ni, etc.) of the stainless steel, Cr was the metal factor for the hydrogen generation from the alkanes and Et2O, and Ni metal played the role of the hydrogenation catalyst.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.8b00931.

    • Synthetic procedures and spectroscopic data for the products (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 46 publications.

    1. Neha Antil, Ajay Kumar, Naved Akhtar, Wahida Begum, Manav Chauhan, Rajashree Newar, Manhar Singh Rawat, Kuntal Manna. Chemoselective and Tandem Reduction of Arenes Using a Metal–Organic Framework-Supported Single-Site Cobalt Catalyst. Inorganic Chemistry 2022, 61 (2) , 1031-1040. https://doi.org/10.1021/acs.inorgchem.1c03098
    2. Christian Schumacher, Claude Molitor, Sabrina Smid, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm. Mechanochemical Syntheses of N-Containing Heterocycles with TosMIC. The Journal of Organic Chemistry 2021, 86 (20) , 14213-14222. https://doi.org/10.1021/acs.joc.1c01529
    3. Andrew C. Jones, William I. Nicholson, Harry R. Smallman, Duncan L. Browne. A Robust Pd-Catalyzed C–S Cross-Coupling Process Enabled by Ball-Milling. Organic Letters 2020, 22 (19) , 7433-7438. https://doi.org/10.1021/acs.orglett.0c02418
    4. Andrea Porcheddu, Evelina Colacino, Lidia De Luca, Francesco Delogu. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis 2020, 10 (15) , 8344-8394. https://doi.org/10.1021/acscatal.0c00142
    5. Marie-Gabrielle Braun, , Alba Díaz-Rodríguez, , Louis Diorazio, , Kenneth Fraunhoffer, , John Hayler, , Matthew Hickey, , Lucie E. Lovelle, , Mark McLaws, , Andrew T. Parsons, , Paul Richardson, , Gheorghe-Doru Roiban, , Alan Steven, , Jack A. Terrett, , Timothy White, , Jingjun Yin. Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research & Development 2019, 23 (11) , 2287-2301. https://doi.org/10.1021/acs.oprd.9b00450
    6. Yoshinari Sawama, Kazuho Ban, Kazuhiro Akutsu-Suyama, Hiroki Nakata, Misato Mori, Tsuyoshi Yamada, Takahiro Kawajiri, Naoki Yasukawa, Kwihwan Park, Yasunari Monguchi, Yukio Takagi, Masatoshi Yoshimura, Hironao Sajiki. Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS Omega 2019, 4 (7) , 11522-11531. https://doi.org/10.1021/acsomega.9b01130
    7. Cameron B. Lennox, Tristan H. Borchers, Lori Gonnet, Christopher J. Barrett, Stefan G. Koenig, Karthik Nagapudi, Tomislav Friščić. Direct mechanocatalysis by resonant acoustic mixing (RAM). Chemical Science 2023, 14 (27) , 7475-7481. https://doi.org/10.1039/D3SC01591B
    8. Mennatullah M. Mokhtar, Joel M. Andersen, Ethan A. Kister, Jordan X. Hopkins, Tom Estier, Fiona Hamilton, Hairong Guan, James Mack, Rebecca A. Haley. A Mechanistic Perspective on the Mechanochemical Method To Reduce Carbonyl Groups with Stainless Steel and Water. European Journal of Organic Chemistry 2023, 26 (23) https://doi.org/10.1002/ejoc.202300149
    9. Lorenzo Pontini, Jamie A. Leitch, Duncan L. Browne. Mechanochemical Simmons–Smith cyclopropanation via ball-milling-enabled activation of zinc(0). Green Chemistry 2023, 25 (11) , 4319-4325. https://doi.org/10.1039/D3GC00649B
    10. Yoshinari Sawama, Kazuho Ban, Hironao Sajiki. Heterogeneously Catalyzed Aromatic Reduction. 2023, 883-918. https://doi.org/10.1002/9783527827992.ch30
    11. Andrew W. Tricker, Sean Najmi, Erin V. Phillips, Karoline L. Hebisch, Jason X. Kang, Carsten Sievers. Mechanocatalytic hydrogenolysis of benzyl phenyl ether over supported nickel catalysts. RSC Sustainability 2023, 1 (2) , 346-356. https://doi.org/10.1039/D2SU00089J
    12. Mostafa M. Amer, Renè Hommelsheim, Christian Schumacher, Deshen Kong, Carsten Bolm. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discussions 2023, 241 , 79-90. https://doi.org/10.1039/D2FD00075J
    13. Elena Boldyreva. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying – retrospect, achievements and challenges. Faraday Discussions 2023, 241 , 9-62. https://doi.org/10.1039/D2FD00149G
    14. Andrew C. Jones, Jamie A. Leitch, Sarah E. Raby-Buck, Duncan L. Browne. Mechanochemical techniques for the activation and use of zero-valent metals in synthesis. Nature Synthesis 2022, 1 (10) , 763-775. https://doi.org/10.1038/s44160-022-00106-4
    15. Vanessza Judit Kolcsár, György Szőllősi. Synthesis of a Pyrrolo[1,2-a]quinazoline-1,5-dione Derivative by Mechanochemical Double Cyclocondensation Cascade. Molecules 2022, 27 (17) , 5671. https://doi.org/10.3390/molecules27175671
    16. Deshen Kong, Carsten Bolm. Stainless steel-initiated thiosulfonylations of unactivated alkenes under solvent-free conditions in a mixer mill. Green Chemistry 2022, 24 (17) , 6476-6480. https://doi.org/10.1039/D2GC02519A
    17. Wilm Pickhardt, Claudio Beaković, Maike Mayer, Maximilian Wohlgemuth, Fabien Joel Leon Kraus, Martin Etter, Sven Grätz, Lars Borchardt. The Direct Mechanocatalytic Suzuki–Miyaura Reaction of Small Organic Molecules. Angewandte Chemie International Edition 2022, 61 (34) https://doi.org/10.1002/anie.202205003
    18. Wilm Pickhardt, Claudio Beaković, Maike Mayer, Maximilian Wohlgemuth, Fabien Joel Leon Kraus, Martin Etter, Sven Grätz, Lars Borchardt. Die direkte mechanokatalytische Suzuki–Miyaura‐Kupplung kleiner organischer Moleküle. Angewandte Chemie 2022, 134 (34) https://doi.org/10.1002/ange.202205003
    19. Sehye Min, Beomsoon Park, Jantakan Nedsaengtip, Soon Hyeok Hong. Mechanochemical Direct Fluorination of Unactivated C( sp 3 )−H Bonds. Advanced Synthesis & Catalysis 2022, 364 (12) , 1975-1981. https://doi.org/10.1002/adsc.202200206
    20. Deshen Kong, Mostafa M. Amer, Carsten Bolm. Stainless steel-initiated chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Green Chemistry 2022, 24 (8) , 3125-3129. https://doi.org/10.1039/D2GC00820C
    21. Vanessza Judit Kolcsár, György Szőllősi. Ru-catalyzed mechanochemical asymmetric transfer hydrogenations in aqueous media using chitosan as chirality source. Molecular Catalysis 2022, 520 , 112162. https://doi.org/10.1016/j.mcat.2022.112162
    22. Victoria S. Pfennig, Romina C. Villella, Julia Nikodemus, Carsten Bolm. Mechanochemical Grignard Reactions with Gaseous CO 2 and Sodium Methyl Carbonate**. Angewandte Chemie International Edition 2022, 61 (9) https://doi.org/10.1002/anie.202116514
    23. Victoria S. Pfennig, Romina C. Villella, Julia Nikodemus, Carsten Bolm. Mechanochemical Grignard Reactions with Gaseous CO 2 and Sodium Methyl Carbonate**. Angewandte Chemie 2022, 134 (9) https://doi.org/10.1002/ange.202116514
    24. Vanessza Judit Kolcsár, György Szőllősi. Mechanochemical, Water‐Assisted Asymmetric Transfer Hydrogenation of Ketones Using Ruthenium Catalyst. ChemCatChem 2022, 14 (3) https://doi.org/10.1002/cctc.202101501
    25. Suhmi Hwang, Sven Grätz, Lars Borchardt. A guide to direct mechanocatalysis. Chemical Communications 2022, 58 (11) , 1661-1671. https://doi.org/10.1039/D1CC05697B
    26. Jay Soni, Pankaj Teli, Nusrat Sahiba, Ayushi Sethiya, Shikha Agarwal. Metal Catalyzed Oxidation Reactions of Alkenes Using Eco-Friendly Oxidants. 2021https://doi.org/10.5772/intechopen.99267
    27. Rima Tedjini, Raquel Viveiros, Teresa Casimiro, Vasco D. B. Bonifácio. One-pot three-step mechanically assisted synthesis and catalytic performance of tripodal metallic complexes. Reaction Chemistry & Engineering 2021, 6 (11) , 2140-2145. https://doi.org/10.1039/D1RE00194A
    28. Adam A. L. Michalchuk, Elena V. Boldyreva, Ana M. Belenguer, Franziska Emmerling, Vladimir V. Boldyrev. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name?. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.685789
    29. Christian G. Vogt, Maike Oltermann, Wilm Pickhardt, Sven Grätz, Lars Borchardt. Bronze Age of Direct Mechanocatalysis: How Alloyed Milling Materials Advance Coupling in Ball Mills. Advanced Energy and Sustainability Research 2021, 2 (5) , 2100011. https://doi.org/10.1002/aesr.202100011
    30. Yoshinari Sawama. Hydrogen Generation from Water, Alcohols etc. and Its Application to Organic Reactions. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (3) , 188-196. https://doi.org/10.5059/yukigoseikyokaishi.79.188
    31. O. V. Lapshin, E. V. Boldyreva, V. V. Boldyrev. Role of Mixing and Milling in Mechanochemical Synthesis (Review). Russian Journal of Inorganic Chemistry 2021, 66 (3) , 433-453. https://doi.org/10.1134/S0036023621030116
    32. Blaine G. Fiss, Austin J. Richard, Tomislav Friščić, Audrey Moores. Mechanochemistry for sustainable and efficient dehydrogenation/hydrogenation. Canadian Journal of Chemistry 2021, 99 (2) , 93-112. https://doi.org/10.1139/cjc-2020-0408
    33. Miki Itoh, Yoshinari Sawama, Miki Niikawa, Kazuho Ban, Takahiro Kawajiri, Hironao Sajiki. Improvement Parameters of Hydrogen Generation from Water under Stainless-Steel-Mediated Ball Milling Conditions. Bulletin of the Chemical Society of Japan 2020, 93 (11) , 1366-1371. https://doi.org/10.1246/bcsj.20200179
    34. Wilm Pickhardt, Sven Grätz, Lars Borchardt. Direct Mechanocatalysis: Using Milling Balls as Catalysts. Chemistry – A European Journal 2020, 26 (57) , 12903-12911. https://doi.org/10.1002/chem.202001177
    35. Yoshinari Sawama, Miki Niikawa, Kazuho Ban, Kwihwan Park, Shin-yo Aibara, Miki Itoh, Hironao Sajiki. Quantitative Mechanochemical Methanation of CO 2 with H 2 O in a Stainless Steel Ball Mill. Bulletin of the Chemical Society of Japan 2020, 93 (9) , 1074-1078. https://doi.org/10.1246/bcsj.20200105
    36. Davor Margetić, Vjekoslav Štrukil. Recent Advances in Mechanochemical Organic Synthesis. 2020https://doi.org/10.5772/intechopen.90897
    37. Christian G. Vogt, Sven Grätz, Stipe Lukin, Ivan Halasz, Martin Etter, Jack D. Evans, Lars Borchardt. Direkte Mechanokatalyse: Palladium als Mahlmaterial und Katalysator in der mechanochemischen Suzuki‐Polymerisation. Angewandte Chemie 2019, 131 (52) , 19118-19123. https://doi.org/10.1002/ange.201911356
    38. Christian G. Vogt, Sven Grätz, Stipe Lukin, Ivan Halasz, Martin Etter, Jack D. Evans, Lars Borchardt. Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization. Angewandte Chemie International Edition 2019, 58 (52) , 18942-18947. https://doi.org/10.1002/anie.201911356
    39. Yoshinari Sawama, Miki Niikawa, Hironao Sajiki. Stainless Steel Ball Milling for Hydrogen Generation and its Application for Reduction. Journal of Synthetic Organic Chemistry, Japan 2019, 77 (11) , 1070-1077. https://doi.org/10.5059/yukigoseikyokaishi.77.1070
    40. Adam A. L. Michalchuk, Ivan A. Tumanov, Elena V. Boldyreva. Ball size or ball mass – what matters in organic mechanochemical synthesis?. CrystEngComm 2019, 21 (13) , 2174-2179. https://doi.org/10.1039/C8CE02109K
    41. Carsten Bolm, José G. Hernández. Mechanochemistry of Gaseous Reactants. Angewandte Chemie International Edition 2019, 58 (11) , 3285-3299. https://doi.org/10.1002/anie.201810902
    42. Carsten Bolm, José G. Hernández. Mechanochemie gasförmiger Reaktanten. Angewandte Chemie 2019, 131 (11) , 3320-3335. https://doi.org/10.1002/ange.201810902
    43. Katia Martina, Francesca Baricco, Silvia Tagliapietra, Maria Jesus Moran, Giancarlo Cravotto, Pedro Cintas. Highly efficient nitrobenzene and alkyl/aryl azide reduction in stainless steel jars without catalyst addition. New Journal of Chemistry 2018, 42 (23) , 18881-18888. https://doi.org/10.1039/C8NJ04240C
    44. Qun Cao, Joseph L. Howard, Emilie Wheatley, Duncan L. Browne. Mechanochemical Activation of Zinc and Application to Negishi Cross‐Coupling. Angewandte Chemie 2018, 130 (35) , 11509-11513. https://doi.org/10.1002/ange.201806480
    45. Qun Cao, Joseph L. Howard, Emilie Wheatley, Duncan L. Browne. Mechanochemical Activation of Zinc and Application to Negishi Cross‐Coupling. Angewandte Chemie International Edition 2018, 57 (35) , 11339-11343. https://doi.org/10.1002/anie.201806480
    46. Christian Schumacher, Deborah E. Crawford, Branimir Raguž, Robert Glaum, Stuart L. James, Carsten Bolm, José G. Hernández. Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson's catalyst. Chemical Communications 2018, 54 (60) , 8355-8358. https://doi.org/10.1039/C8CC04487B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect