ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi

  • Yohei Morishita
    Yohei Morishita
    Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
  • Huiping Zhang
    Huiping Zhang
    NMR Science and Development Division, RIKEN Spring-8 Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
  • Tohru Taniguchi
    Tohru Taniguchi
    Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
  • Keiji Mori
    Keiji Mori
    Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
    More by Keiji Mori
  • , and 
  • Teigo Asai*
    Teigo Asai
    Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
    *E-mail: [email protected]
    More by Teigo Asai
Cite this: Org. Lett. 2019, 21, 12, 4788–4792
Publication Date (Web):June 10, 2019
https://doi.org/10.1021/acs.orglett.9b01674
Copyright © 2019 American Chemical Society

    Article Views

    2498

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Heterologous expression of a unique biosynthetic gene cluster (BGC) comprising a highly reducing polyketide synthase and stand-alone thioesterase genes in Aspergillus oryzae enabled us to isolate a novel 34-membered polyene macrolide, phaeospelide A (1). This is the first isolation of a fungal polyene macrolide and the first demonstration of fungal aliphatic macrolide biosynthetic machinery. In addition, sequence similarity network analysis demonstrated the existence of a large number of BGCs for novel fungal macrolides.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b01674.

    • Experimental details, figures and additional information, full spectroscopic data, and NMR spectra of new compounds (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 31 publications.

    1. Sho Furumura, Taro Ozaki, Akihiro Sugawara, Yohei Morishita, Kento Tsukada, Tatsuya Ikuta, Asuka Inoue, Teigo Asai. Identification and Functional Characterization of Fungal Chalcone Synthase and Chalcone Isomerase. Journal of Natural Products 2023, 86 (2) , 398-405. https://doi.org/10.1021/acs.jnatprod.2c01027
    2. Yuto Homma, Akihiro Sugawara, Yohei Morishita, Kento Tsukada, Taro Ozaki, Teigo Asai. Discovery of a Cyclic Depsipeptide from Chaetomium mollipilium by the Genome Mining Approach. Organic Letters 2022, 24 (19) , 3504-3509. https://doi.org/10.1021/acs.orglett.2c01172
    3. Qiyao Shen, Haibo Zhou, Guangzhi Dai, Guannan Zhong, Liujie Huo, Aiying Li, Yang Liu, Ming Yang, Vinothkannan Ravichandran, Zhihui Zheng, Ya-Jie Tang, Nianzhi Jiao, Youming Zhang, Xiaoying Bian. Characterization of a Cryptic NRPS Gene Cluster in Bacillus velezensis FZB42 Reveals a Discrete Oxidase Involved in Multithiazole Biosynthesis. ACS Catalysis 2022, 12 (6) , 3371-3381. https://doi.org/10.1021/acscatal.1c05131
    4. Yohei Morishita, Kento Tsukada, Kazuma Murakami, Kazuhiro Irie, Teigo Asai. Synthetic Biology-Based Discovery of Diterpenoid Pyrones from the Genome of Eupenicillium shearii. Journal of Natural Products 2022, 85 (2) , 384-390. https://doi.org/10.1021/acs.jnatprod.1c00973
    5. Yohei Morishita, Yu Aoki, Mei Ito, Daisuke Hagiwara, Kensho Torimaru, Daichi Morita, Teruo Kuroda, Hanako Fukano, Yoshihiko Hoshino, Masato Suzuki, Tohru Taniguchi, Keiji Mori, Teigo Asai. Genome Mining-Based Discovery of Fungal Macrolides Modified by glycosylphosphatidylinositol (GPI)–Ethanolamine Phosphate Transferase Homologues. Organic Letters 2020, 22 (15) , 5876-5879. https://doi.org/10.1021/acs.orglett.0c01975
    6. Jialiang Wang, Zixin Deng, Jingdan Liang, Zhijun Wang. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Natural Product Reports 2023, 40 (9) , 1498-1520. https://doi.org/10.1039/D3NP00015J
    7. Jiaming Liu, Ming Chen. Stereoselective syntheses of 2-methyl-1,3-diol acetals via Re-catalyzed [1,3]-allylic alcohol transposition. Chemical Science 2023, 14 (30) , 8103-8108. https://doi.org/10.1039/D2SC07059F
    8. Marie L. Overgaard, Trine Aalborg, Emil J. Zeuner, Klaus R. Westphal, Frederik A. Lau, Vibeke S. Nielsen, Kasper B. Carstensen, Emil A. Hundebøll, Tia A. Westermann, Gustav G. Rathsach, Jens L. Sørensen, Jens C. Frisvad, Reinhard Wimmer, Teis E. Sondergaard. Quick guide to secondary metabolites from Apiospora and Arthrinium. Fungal Biology Reviews 2023, 43 , 100288. https://doi.org/10.1016/j.fbr.2022.10.001
    9. Russell J. Cox. Curiouser and curiouser: progress in understanding the programming of iterative highly-reducing polyketide synthases. Natural Product Reports 2023, 40 (1) , 9-27. https://doi.org/10.1039/D2NP00007E
    10. Teigo Asai. Synthetic Biology-Based Natural Product Discovery. 2023, 3-16. https://doi.org/10.1007/978-981-99-1714-3_1
    11. Atsushi Minami. A New Trend in Biosynthetic Studies of Natural Products: The Bridge Between the Amino Acid Sequence Data and the Chemical Structure. 2023, 123-145. https://doi.org/10.1007/978-981-99-1714-3_7
    12. Eric Kuhnert, Jérôme Collemare. A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Current Opinion in Microbiology 2022, 69 , 102178. https://doi.org/10.1016/j.mib.2022.102178
    13. Mohammad Sayari, Aria Dolatabadian, Mohamed El-Shetehy, Pawanpuneet Kaur Rehal, Fouad Daayf. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. Biology 2022, 11 (9) , 1252. https://doi.org/10.3390/biology11091252
    14. José Rivera-Chávez, Corina-Diana Ceapă, Mario Figueroa. Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products. Planta Medica 2022, 88 (09/10) , 702-720. https://doi.org/10.1055/a-1795-0562
    15. Patrícia Sequeira, Maika Rothkegel, Patrícia Domingos, Isabel Martins, Céline C. Leclercq, Jenny Renaut, Gustavo H. Goldman, Cristina Silva Pereira. Untargeted Metabolomics Sheds Light on the Secondary Metabolism of Fungi Triggered by Choline-Based Ionic Liquids. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.946286
    16. Teigo Asai. Discovery of Diverse Natural Products from Undeveloped Fungal Gene Resource by Using Epigenetic Regulation. YAKUGAKU ZASSHI 2022, 142 (5) , 439-446. https://doi.org/10.1248/yakushi.21-00218
    17. Elizabeth Skellam. Biosynthesis of fungal polyketides by collaborating and trans -acting enzymes. Natural Product Reports 2022, 39 (4) , 754-783. https://doi.org/10.1039/D1NP00056J
    18. Mohamad Zarif Mohd Zubir, Nurul Fajry Maulida, Yoshihiro Abe, Yuta Nakamura, Mariam Abdelrasoul, Tohru Taniguchi, Kenji Monde. Deuterium labelling to extract local stereochemical information by VCD spectroscopy in the C–D stretching region: a case study of sugars. Organic & Biomolecular Chemistry 2022, 20 (5) , 1067-1072. https://doi.org/10.1039/D1OB02317A
    19. Bruno Perlatti, Nan Lan, Meichun Xiang, Cody E Earp, Joseph E Spraker, Colin J B Harvey, Connie B Nichols, J Andrew Alspaugh, James B Gloer, Gerald F Bills. Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. Journal of Industrial Microbiology and Biotechnology 2021, 48 (9-10) https://doi.org/10.1093/jimb/kuab022
    20. Junya Takino, Akari Kotani, Taro Ozaki, Wenquan Peng, Jie Yu, Yian Guo, Susumu Mochizuki, Kazuya Akimitsu, Masaru Hashimoto, Tao Ye, Atsushi Minami, Hideaki Oikawa. Biochemistry‐Guided Prediction of the Absolute Configuration of Fungal Reduced Polyketides. Angewandte Chemie 2021, 133 (43) , 23591-23599. https://doi.org/10.1002/ange.202110658
    21. Junya Takino, Akari Kotani, Taro Ozaki, Wenquan Peng, Jie Yu, Yian Guo, Susumu Mochizuki, Kazuya Akimitsu, Masaru Hashimoto, Tao Ye, Atsushi Minami, Hideaki Oikawa. Biochemistry‐Guided Prediction of the Absolute Configuration of Fungal Reduced Polyketides. Angewandte Chemie International Edition 2021, 60 (43) , 23403-23411. https://doi.org/10.1002/anie.202110658
    22. Sen Yin, Steffen Friedrich, Vjaceslavs Hrupins, Russell J. Cox. In vitro studies of maleidride-forming enzymes. RSC Advances 2021, 11 (25) , 14922-14931. https://doi.org/10.1039/D1RA02118D
    23. Teigo Asai. Synthetic Biology Based Construction of Fungal Diterpenoid Pyrone Library. Journal of Synthetic Organic Chemistry, Japan 2021, 79 (4) , 322-332. https://doi.org/10.5059/yukigoseikyokaishi.79.322
    24. Yalong Zhang, Jian Bai, Le Zhang, Chen Zhang, Bingyu Liu, Youcai Hu. Self‐Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation. Angewandte Chemie 2021, 133 (12) , 6713-6719. https://doi.org/10.1002/ange.202015442
    25. Yalong Zhang, Jian Bai, Le Zhang, Chen Zhang, Bingyu Liu, Youcai Hu. Self‐Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation. Angewandte Chemie International Edition 2021, 60 (12) , 6639-6645. https://doi.org/10.1002/anie.202015442
    26. Kento Tsukada, Shono Shinki, Akiho Kaneko, Kazuma Murakami, Kazuhiro Irie, Masatoshi Murai, Hideto Miyoshi, Shingo Dan, Kumi Kawaji, Hironori Hayashi, Eiichi N. Kodama, Aki Hori, Emil Salim, Takayuki Kuraishi, Naoya Hirata, Yasunari Kanda, Teigo Asai. Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15664-4
    27. Yan-Fei Liu, Shi-Shan Yu. Survey of natural products reported by Asian research groups in 2019. Journal of Asian Natural Products Research 2020, 22 (12) , 1101-1120. https://doi.org/10.1080/10286020.2020.1844675
    28. Francesco Trenti, Karen E. Lebe, Emilie Adelin, Jamal Ouazzani, Carsten Schotte, Russell J. Cox. Investigating the biosynthesis of Sch-642305 in the fungus Phomopsis sp. CMU-LMA. RSC Advances 2020, 10 (46) , 27369-27376. https://doi.org/10.1039/D0RA05311B
    29. Yohei Morishita, Terutaka Sonohara, Tohru Taniguchi, Kiyohiro Adachi, Makoto Fujita, Teigo Asai. Synthetic-biology-based discovery of a fungal macrolide from Macrophomina phaseolina. Organic & Biomolecular Chemistry 2020, 18 (15) , 2813-2816. https://doi.org/10.1039/D0OB00519C
    30. J. Houbraken, S. Kocsubé, C.M. Visagie, N. Yilmaz, X.-C. Wang, M. Meijer, B. Kraak, V. Hubka, K. Bensch, R.A. Samson, J.C. Frisvad. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 2020, 95 , 5-169. https://doi.org/10.1016/j.simyco.2020.05.002
    31. Robert A. Hill, Andrew Sutherland. Hot off the Press. Natural Product Reports 2019, 36 (8) , 1039-1043. https://doi.org/10.1039/C9NP90031D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect