ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

HCN on Tap: On-Demand Continuous Production of Anhydrous HCN for Organic Synthesis

  • Manuel Köckinger
    Manuel Köckinger
    Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
    Institute of Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria
  • Christopher A. Hone*
    Christopher A. Hone
    Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
    Institute of Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria
    *E-mail: [email protected]
  • , and 
  • C. Oliver Kappe*
    C. Oliver Kappe
    Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
    Institute of Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria
    *E-mail: [email protected]
Cite this: Org. Lett. 2019, 21, 13, 5326–5330
Publication Date (Web):June 19, 2019
https://doi.org/10.1021/acs.orglett.9b01941
Copyright © 2019 American Chemical Society

    Article Views

    1676

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (859 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A continuous process for the on-demand generation, separation, and reaction of hydrogen cyanide (HCN) using membrane separation technology was developed. The inner tube of the reactor is manufactured from a gas-permeable, hydrophobic fluoropolymer (Teflon AF-2400) membrane. HCN is formed from aqueous reagents within the inner tube and then diffuses through the membrane into an outer tubing containing organic solvent. This technique enabled the safe handling of HCN for three different organic transformations without the need for distillation.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b01941.

    • Description and images of the experimental setups, optimization data, and 1H NMR, 13C NMR, and 19F NMR spectra of all isolated products (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 17 publications.

    1. Michael Prieschl, Joerg Sedelmeier, Kurt Püntener, Stefan Hildbrand, Jason D. Williams, C. Oliver Kappe. Rediscovering Cyanogen Gas for Organic Synthesis: Formation of 2-Cyanothiazole Derivatives. The Journal of Organic Chemistry 2023, 88 (13) , 9594-9598. https://doi.org/10.1021/acs.joc.3c01110
    2. Kensuke Kiyokawa, Naruyo Urashima, Satoshi Minakata. Tris(pentafluorophenyl)borane-Catalyzed Formal Cyanoalkylation of Indoles with Cyanohydrins. The Journal of Organic Chemistry 2021, 86 (12) , 8389-8401. https://doi.org/10.1021/acs.joc.1c00808
    3. Doris Dallinger, Bernhard Gutmann, C. Oliver Kappe. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow. Accounts of Chemical Research 2020, 53 (7) , 1330-1341. https://doi.org/10.1021/acs.accounts.0c00199
    4. Michael B. Spano, Brandan H. Tran, Sudipta Majumdar, Gregory A. Weiss. 3D-Printed Labware for High-Throughput Immobilization of Enzymes. The Journal of Organic Chemistry 2020, 85 (13) , 8480-8488. https://doi.org/10.1021/acs.joc.0c00789
    5. Gulice Yiu Chung Leung, Shannon Thoi Rui Ying, Edwin Chia, Anqi Chen, Gabriel Loh, Balamurugan Ramalingam. Safe and on-demand protocol for the continuous generation of SO2 and Cl2 for subsequent utilization in organic synthesis. Journal of Flow Chemistry 2023, 20 https://doi.org/10.1007/s41981-023-00280-2
    6. Xiaofan Wang, Bingyue Zhao, Lingzhi Xu, Xuemin Li, Haofeng Shi, Yunfei Du. The application of NH 4 SCN as a nontoxic cyanide source for the divergent Strecker synthesis of aminonitriles and iminonitriles. Organic Chemistry Frontiers 2023, 10 (4) , 1009-1014. https://doi.org/10.1039/D2QO01692C
    7. Bence S. Nagy, Gang Fu, Christopher A. Hone, C. Oliver Kappe, Sándor B. Ötvös. Harnessing a Continuous‐Flow Persulfuric Acid Generator for Direct Oxidative Aldehyde Esterifications. ChemSusChem 2023, 16 (2) https://doi.org/10.1002/cssc.202201868
    8. Yuesu Chen, Jean‐Christophe M. Monbaliu. Continuous‐Flow Multistep Synthesis of Active Pharmaceutical Ingredients. 2022, 233-268. https://doi.org/10.1002/9783527824595.ch7
    9. Vladimir V. Kouznetsov, José G. Hernández. Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: status quo and quo vadis. RSC Advances 2022, 12 (32) , 20807-20828. https://doi.org/10.1039/D2RA03102G
    10. Arlene Bonner, Aisling Loftus, Alex C. Padgham, Marcus Baumann. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Organic & Biomolecular Chemistry 2021, 19 (36) , 7737-7753. https://doi.org/10.1039/D1OB01452H
    11. Francesco Ferlin, Ioannis Anastasiou, Luigi Carpisassi, Luigi Vaccaro. Aerobic waste-minimized Pd-catalysed C–H alkenylation in GVL using a tube-in-tube heterogeneous flow reactor. Green Chemistry 2021, 23 (17) , 6576-6582. https://doi.org/10.1039/D1GC01870A
    12. Fotios Kamatsos, Maria Drosou, Christiana A. Mitsopoulou. Heteroleptic thiolate diamine nickel complexes: Noble-free-metal catalysts in electrocatalytic and light-driven hydrogen evolution reaction. International Journal of Hydrogen Energy 2021, 46 (37) , 19705-19716. https://doi.org/10.1016/j.ijhydene.2021.02.005
    13. Victor-Emmanuel H. Kassin, Romain Morodo, Thomas Toupy, Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette, Jean-Christophe M. Monbaliu. A modular, low footprint and scalable flow platform for the expedient α-aminohydroxylation of enolizable ketones. Green Chemistry 2021, 23 (6) , 2336-2351. https://doi.org/10.1039/D0GC04395H
    14. Christopher A. Hone, C. Oliver Kappe. Membrane Microreactors for the On‐Demand Generation, Separation, and Reaction of Gases. Chemistry – A European Journal 2020, 26 (58) , 13108-13117. https://doi.org/10.1002/chem.202001942
    15. Joachim Demaerel, Cedrick Veryser, Wim M. De Borggraeve. Ex situ gas generation for lab scale organic synthesis. Reaction Chemistry & Engineering 2020, 5 (4) , 615-631. https://doi.org/10.1039/C9RE00497A
    16. Jennifer N. Andexer, Uwe Beifuss, Florian Beuerle, Malte Brasholz, Rolf Breinbauer, Martin Ernst, Julian Greb, Tobias Gulder, Wolfgang Hüttel, Stephanie Kath‐Schorr, Markus Kordes, Matthias Lehmann, Thomas Lindel, Burkhard Luy, Christian Mück‐Lichtenfeld, Claudia Muhle, Arun Narine, Jörg Niemeyer, Jan Paradies, Roland Pfau, Jörg Pietruszka, Norbert Schaschke, Mathias Senge, Bernd F. Straub, Thomas Werner, Daniel B. Werz, Christian Winter. Organische Chemie. Nachrichten aus der Chemie 2020, 68 (3) , 42-72. https://doi.org/10.1002/nadc.20204095515
    17. Anderson R. Aguillón, Marco A. de M. Bezerra, Mauro R.B.P. Gomez, Rodrigo O.M.A. de Souza. Continuous-flow chemistry toward sustainable chemical synthesis. 2020, 49-69. https://doi.org/10.1016/B978-0-12-819539-0.00003-8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect