Plasma-Enhanced Atomic Layer Deposition of Low Resistivity and Ultrathin Manganese Oxynitride Films with Excellent Resistance to Copper Diffusion
- Yong-Ping WangYong-Ping WangState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaMore by Yong-Ping Wang
- ,
- Xiaohan WuXiaohan WuState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaMore by Xiaohan Wu
- ,
- Wen-Jun LiuWen-Jun LiuState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaMore by Wen-Jun Liu
- ,
- David Wei ZhangDavid Wei ZhangState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaMore by David Wei Zhang
- , and
- Shi-Jin Ding*Shi-Jin Ding*Email: [email protected]State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaMore by Shi-Jin Ding
Abstract

Low resistivity, high conformability, and ultrathin barriers against Cu diffusion have always been a critical challenge for fabrications of extremely large-scale integrated circuits. In this article, manganese oxynitride (MON) barriers against Cu diffusion are explored by plasma-enhanced atomic layer deposition (PE-ALD) with Mn(EtCp)2 and NH3 precursors, demonstrating a growth rate of ∼0.39 Å/cycle and a root-mean-square (RMS) roughness down to 0.38 nm in the temperature range of 225–300 °C. As the deposition temperature increases from 225 to 300 °C, the atomic ratio of Mn/N in the as-deposited film increases from 1.96 to 2.7; however, the percentage of oxygen always stabilizes at 19 ± 1%, which results from the residual oxygen in the chamber. The film resistivity reduces from 3.4 × 10–2 to 5.5 × 10–3 Ω·cm and the film density increases from 5.35 to 5.61 g/cm3 with the increase of deposition temperature. Only a 2.4 nm MON film can effectively prevent Cu atoms from diffusing through it even after annealing at 550 °C for 30 min, and the failure temperature can be elevated to 650 °C for the 3.7 nm MON barrier. Further, the failure mechanism of the MON diffusion barrier is also addressed. Owing to combined advantages of ultrathin and uniform thickness, good conductivity, and excellent barrier effect, the PE-ALD MON ultrathin film is thus very promising for nanoscale copper interconnection technologies.
Cited By
This article is cited by 6 publications.
- Harshavardhan Mohan, Sethumathavan Vadivel, Pavithra Muthukumar Sathya, Manabu Fujii, Ga Hyeon Ha, Gitae Kim, Taeho Shin. Visible-Light Photocatalytic Water Splitting and Norfloxacin Degradation by Reduced Graphene Oxide-Coupled MnON Nanospheres. ACS Applied Energy Materials 2022, 5 (10) , 12851-12859. https://doi.org/10.1021/acsaem.2c02455
- Sen Chen, Jiaxuan Ren, Douhao Yang, Lijun Sang, Bowen Liu, Qiang Chen, Zhongwei Liu. Plasma enhanced atomic layer deposition of manganese nitride thin film from manganese amidinate and ammonia plasma. Journal of Vacuum Science & Technology A 2023, 41 (4) https://doi.org/10.1116/6.0002484
- Giin-Shan Chen, Ching-En Lee, Yi-Lung Cheng, Jau-Shiung Fang, Chien-Nan Hsiao, Wei-Chun Chen, Yiu-Hsiang Chang, Yen-Chang Pan, Wei Lee, Ting-Hsun Su. Enhancement of Electromigration Reliability of Electroless-Plated Nanoscaled Copper Interconnects by Complete Encapsulation of a 1 nm-Thin Self-Assembled Monolayer. Journal of The Electrochemical Society 2022, 169 (8) , 082519. https://doi.org/10.1149/1945-7111/ac89b8
- JinHyok Ho, Yang Li, Yexin Dai, TongIl Kim, Jiao Wang, Jun Ren, HakSung Yun, Xianhua Liu. Ionothermal synthesis of N-doped carbon supported CoMn2O4 nanoparticles as ORR catalyst in direct glucose alkaline fuel cell. International Journal of Hydrogen Energy 2021, 46 (39) , 20503-20515. https://doi.org/10.1016/j.ijhydene.2021.03.145
- Tripurari Sharan Tripathi, Maarit Karppinen. Mixed‐Anion Compounds: An Unexplored Playground for ALD Fabrication. Advanced Materials Interfaces 2021, 8 (11) https://doi.org/10.1002/admi.202100146
- Yi-Cheng Li, Kun Cao, Yu-Xiao Lan, Jing-Ming Zhang, Miao Gong, Yan-Wei Wen, Bin Shan, Rong Chen. Inherently Area-Selective Atomic Layer Deposition of Manganese Oxide through Electronegativity-Induced Adsorption. Molecules 2021, 26 (10) , 3056. https://doi.org/10.3390/molecules26103056