ACS Publications. Most Trusted. Most Cited. Most Read
Long-Term Stable Organic Solar Cells through Amphiphilic Additives
My Activity

Figure 1Loading Img
  • Open Access
Article

Long-Term Stable Organic Solar Cells through Amphiphilic Additives
Click to copy article linkArticle link copied!

  • Yisak Tsegazab Gerase
    Yisak Tsegazab Gerase
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
    Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
  • Javier Garcia Lopez
    Javier Garcia Lopez
    Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, Germany
  • Jose Prince Madalaimuthu
    Jose Prince Madalaimuthu
    Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, Germany
    Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
  • Anna Elmanova
    Anna Elmanova
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
    Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
    Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
  • Sarah Jasmin Finkelmeyer
    Sarah Jasmin Finkelmeyer
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
    Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
  • Andrea Dellith
    Andrea Dellith
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
  • Daniel Blaschke
    Daniel Blaschke
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
  • Heidemarie Schmidt
    Heidemarie Schmidt
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
  • Kalina Peneva
    Kalina Peneva
    Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, Germany
    Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
    Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
  • Harald Hoppe
    Harald Hoppe
    Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, Germany
    Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
    More by Harald Hoppe
  • Martin Presselt*
    Martin Presselt
    Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
    Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
    Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany
    *Email: [email protected]
Open PDFSupporting Information (1)

ACS Applied Electronic Materials

Cite this: ACS Appl. Electron. Mater. 2024, 6, 4, 2258–2267
Click to copy citationCitation copied!
https://doi.org/10.1021/acsaelm.3c01722
Published April 8, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

Organic solar cells have recently experienced tremendous efficiency improvements, but their longevity is still limited by morphological degradation, among other factors. We demonstrate in this work that small amounts of amphiphilic small molecules such as perylene monoimide-diamine (PMIDA-C12) admixed to the active layer can dramatically improve the longevity of classical polymer solar cells (P3HT:PC60BM). While fill factors and efficiencies of classical reference solar cells without amphiphile dropped to 35 and 4% of their original values after 588 h of artificial aging (at 80 °C), respectively, these values are stable at 80% of their initial values for the solar cells containing 0.01 wt % PMIDA-C12. Spectroscopic and atomic force microscopy studies indicate that the amphiphiles stabilize the morphology of the active layers. Hence, the presented approach of doping the active layer with an amphiphilic molecule appears to be promising for improving the long-term stability of organic solar cells.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2024 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

The importance of photovoltaics in energy transition continues to grow. Alternative techniques for utilization of residential and road use areas must above all only involve nontoxic materials and yield lightweight and flexible devices, which must be inexpensive to produce. (1,2) In addition, efficiency and long-term stability are important factors for alternative solar cell technologies to establish themselves on the market. (3) Organic solar cells (OSCs) meet most of these requirements, meanwhile achieving efficiencies similar to those of classic multicrystalline silicon solar cells, (4) but not their operational lifetime. (5)
One of the degradation mechanisms limiting the operational lifetime is the segregation of the electron donor and acceptor material in the bulk-heterojunction (BHJ) active layer. (6) Because the morphology of this active layer critically determines the function of an organic solar cell, it is typically optimized to a certain degree of crystallinity and mixing between the donor and acceptor components. (7,8) To slow down or even inhibit segregation, i.e., to stabilize the morphology and thus increase long-term stability, (i) regio regular polymers (9,10) or (ii) those with tailored mesoscale order (9,11,12) have been developed, and (iii) cross-linking units, (13,14) (iv) aggregation inhibitors, (15) (v) amphiphilic additives, i.e., surfactants, (16,17) and (vi) ternary blends (18−22) have been employed.
In this work, we adopt the strategy of employing amphiphiles (23−26) to stabilize the interfaces in OSCs, as introduced by our group. (17) We now explore how an amphiphilic dye, representing an optoelectronically active component, stabilizes the morphology or interfaces of the prototype donor–acceptor OSC system P3HT:PC60BM. As shown in Figure 1, we focus on an amphiphilic perylene monoimide-diamine (27) as an additive. As the energy levels of this dye are located between those of the donor and acceptor materials (Figure 1B), they do not provide additional deactivation channels. Perylene chromophores have been used as additives in solar cells, similar to other additives, (28) and have been shown to facilitate charge transfer and enhance electron mobility. (29−34) Particularly, bay-functionalized perylenes were also employed as an acceptor material. (35) Perylene monoimide-diamine (PMIDA-C12) used in this study exhibits two amine groups at the peri-positions and four chloro substituents at the bay positions. These features combined with the imide group result in a push–pull chromophore that exhibits amphiphilic behavior due to the nonpolar dodecyl chain (36) attached to the imide group, as shown by the electrostatic potential distribution (37,38) at the solvent-accessible surface in Figure 1. In this work, we show how low concentrations of PMIDA-C12 affect the long-term stability of prototype P3HT:PC60BM-type solar cells.

Figure 1

Figure 1. Panel (A) Lewis structure and solvent-accessible surfaces (with solvent radius 1.4 Å, corresponding to water molecule radius) with electrostatic potentials of active layer materials (P3HT:PC60BM) and additive (PMIDA-C12). Panel (B) HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) or rather valence and conduction band energies (eV) vs vacuum energy of the materials used for this study; references: (a) Bishnoi et al. (3) Adv. Mater. Interfaces 2022, (b) derived from square wave voltammetry investigation as detailed in the Supporting Information, and (c) Mumyatov et al. (39) J. Mater. Chem. C 2015. Panel (C) Schematic of a classical BHJ solar cell. Interfaces that are potentially stabilized via the amphiphiles are shown in sections CI–CIII, and color codes are in accordance with panel (B).

Results and Discussion

Click to copy section linkSection link copied!

Solar Cell Performance

The PMIDA-C12 additive was added in doping concentrations of 0.010–0.025 wt % to classical P3HT:PC60BM solutions as detailed in the Methods section. The current density vs voltage (JV) curves (Figure 2) show less leakage in the reverse bias region for all the doped solar cells as compared to that in the undoped reference devices. As also shown in Table 1, the mean power conversion efficiency (PCE) slightly increases when adding PMIDA-C12 for all of the concentrations used, while the mean open-circuit voltage (VOC) steadily decreases with increasing amphiphile concentration. However, the individual VOC-values of the best performing cells are higher for the additive-containing cells than for that of the reference device. The mean series resistance, (RS), first decreases upon raising amphiphile concentration (from 0.000 to 0.010 wt %) and then increases (from 0.015 wt % onward). The RS values for the OSCs with 0.025 wt % additive are almost identical to those of the reference OSCs without the additive. The mean parallel resistance (RP) is constantly increasing with increasing additive amount (RP: from 0.000 wt % to 0.025 wt %). In the following, we focus on the blends with lowest RS, i.e., amphiphile concentrations up to 0.010 wt %.

Figure 2

Figure 2. Current density–voltage (JV) curves of PMIDA-C12 doped and undoped P3HT:PC60BM (3:2) solar cells, annealed at 80 °C for 10 min. Panel (A) illuminated with AM 1.5; panel (B) dark.

Table 1. Summary of Photovoltaic Parameters for the P3HT:PC60BM BHJ Solar Cell without and with PMIDA-C12 Additive (0.01–0.025 wt %)a
wt % PMIDA-C12JSC (mA/cm2)VOC (mV)FFRS (Ω)RP (Ω)PCE (%)
 bestØ + SDbestØ + SDbestØ + SDbestØ + SDbestØ + SDbestØ + SD
0.0008.17.1 ± 1.2432435.6 ± 3.23939.0 ± 1.23642.6 ± 6.5420445 ± 301.351.35 ± 0.05
0.0108.99.0 ± 0.2440431.9 ± 8.94240.5 ± 1.93833.3 ± 2.3601488 ± 961.671.6 (±0.1)
0.0158.68.8 ± 0.3422431.8 ± 164742.3 ± 2.32433.9 ± 7.0774531 ± 1151.691.6 (±0.1)
0.0208.38.5 ± 0.3443430.8 ± 104744.8 ± 1.53037.9 ± 7.9664563 ± 901.751.6 (±0.1)
0.0258.88.5 ± 0.3435430.0 ± 224543.3 ± 3.34542.6 ± 12.0625600 ± 1601.711.6 (±0.2)
a

Annealed at 80 °C for 10 min. The values of the best performing cells and the averages of 8 cells including standard deviation are given.

To investigate how the amphiphilic additive (17) influences the long-term thermal stability of the device, thermally accelerated aging experiment was conducted. The JV characteristics for selected doping concentrations and higher annealing temperatures before aging are shown in Figure 3. Under the higher annealing temperature of 160 °C for 5 min (cf. 80 °C for 10 min above), the reverse leakage current decreases with higher doping concentrations, i.e., improving the diode behavior in the dark. The prototype JV curves under light (Figure 3) and the photovoltaic parameters (Table 2) differ little between the devices with varied amphiphile concentration.

Figure 3

Figure 3. JV plot of P3HT:PC60BM (30 mg/mL (3:2) blend) conventional solar cell with and without the PMIDA-C12 additive, post annealing at 160 °C for 5 min. Panel (A) under illumination (AM 1.5) and panel (B) in the dark.

Table 2. Summary of Photovoltaic Parameters for P3HT:PC60BM BHJ Solar Cells without and with the PMIDA-C12 Additive (0.005 and 0.01 wt %), Post Annealing at 160 °C for 5 mina
wt % PMIDA-C12JSC (mA/cm2)VOC (mV)FFRS (Ω)RP (Ω)PCE (%)
 bestØ ± SDbestØ ± SDbestØ ± SDbestØ ± SDbestØ ± SDbestØ ± SD
0.0009.779.64 ± 0.12560560 ± 104948.3 ± 0.471212.6 ± 0.579921012 ± 1662.652.60 ± 0.05
0.0059.669.38 ± 0.21540530 ± 105149.3 ± 1.71010 ± 0.82915644 ± 4322.652.44 ± 0.22
0.01010.09.56 ± 0.28550550 ± 104849.8 ± 1.1910 ± 0.82870950 ± 942.672.61 ± 0.05
a

The values of the best performing cell and the averages of eight cells including standard deviation are given.

Thermal Stability under Continuous Annealing at 80 °C

As shown in Figure 4, the classical P3HT:PC60BM reference solar cell quickly degrades under continuous heating at 80 °C, and the power conversion efficiency reaches half of its initial value after approximately t1/2(PCE) ≈ 205 h due to a reduction of all other key photovoltaic parameters: JSC, FF, and VOC. The degradation is delayed remarkably by the addition of 0.005 wt % PMIDA-C12 to a half-life of t1/2(PCE) ≈ 512 h, whereas JSC decays even more slowly, and VOC remains almost constant at the initial voltage. At 0.010 wt % PMIDA-C12 doping concentration, JSC is even more stable, and the fill factor decreases minimally over time, thus resulting in an almost constant PCE, which retains 80% of its initial value after 588 h of continuous annealing.

Figure 4

Figure 4. Thermal stability of the photovoltaic parameters of a P3HT:PC60BM blend with and without the PMIDA-C12 additive during thermal aging (80 °C) in a nitrogen-filled glovebox. Averages and uncertainties are calculated from four cells. Panel (A) short-circuit current density, panel (B) open-circuit voltage, panel (C) fill factor, and panel (D) power conversion efficiency.

We hypothesize that the drastically prolonged lifetime of the P3HT:PC60BM solar cells is due to the stabilization of their morphology by the PMIDA-C12 amphiphile. This stabilization might be caused by the surfactant character of the PMIDA-C12 amphiphile, i.e., accumulation at interfaces, (40−43) and, hence, stabilization of the morphology. Such stabilization might involve impeding the clustering of PC60BM. (44) The latter effect has been reported for other additives, such as triphenylamines (45) and porphyrins, (15) whose presence improved long-term stability of the organic solar cells. To study the possible amphiphile-induced morphological stabilization, the morphologies were characterized by analyzing the vibrational progression of UV–vis absorption spectra, (46) disorder absorption tails (47,48) via photothermal deflection spectroscopy, (49−51) aggregation-dependent intensities of symmetry forbidden fullerene absorption peaks, (52,53) photoluminescence (PL) intensities, and atomic force microscopy (AFM), as discussed in the following (also see the Supporting Information).

UV–Vis Absorption Analysis

As shown in Figure 5, the classical UV–vis absorption spectrum of the P3HT:PC60BM blend is virtually unaffected by the amphiphile added in small concentrations. The artificial aging slightly alters the vibrational progression pattern, which is indicative of the ratio between crystalline and amorphous P3HT. (46) As shown in Figure 6A, the peaks originating from the vibrational progression of aggregated or crystalline P3HT are resolved at the major absorption band between 400 and 700 nm. (54) Absorption in the UV is dominated by PC60BM. (52,53)

Figure 5

Figure 5. Normalized absorption spectra of the P3HT:PC60BM films with and without the PMIDA-C12 additive as fabricated. Panel (A) 0 h and panel (B) 588 h of thermal aging (80 °C).

Figure 6

Figure 6. Panel (A) shows the vibrational progression in the UV–vis absorption spectrum of a P3HT:PC60BM film is modeled via Huang–Rhys coupled Gaussian functions. For details, see the Supporting Information. The model is fitted to the experimental data from 1.74 to 2.29 eV, while the area under the fitted curve (crystalline P3HT) and the difference from the experimental spectrum (amorphous P3HT) are evaluated in the range from 1.8 to 3.0 eV. The spectrum of a PC60BM film is shown for comparison. Panel (B) shows the ratio of crystalline to amorphous P3HT (areas under the respective curves) versus amphiphile concentration at different thermal aging times.

To probe the influence of the amphiphilic additive on the aggregate signatures, i.e., vibrational progression of P3HT, we modeled the vibrational progression with Huang–Rhys coupled Gaussian functions, see Figure 6A and Supporting Information, Figure S2. (46,55) The resulting ratio between the areas of the spectra assigned to crystalline (Acrystalline) and amorphous (Aamorphous) P3HT are shown in Figure 6B. Overall, as indicated by the Acrystalline/Aamorphous ratios, crystallinity increases markedly upon aging for the pristine P3HT:PC60BM reference. In contrast, the Acrystalline/Aamorphous ratios change a little upon adding the amphiphile, i.e., for the 0.005 and 0.010 wt % PMIDA-C12 doping. This implies the morphological stabilization of the P3HT domains in the presence of the amphiphilic additive.

Photoluminescence Analysis

The photoluminescence (PL) of the P3HT:PC60BM films with and without additive was measured to explore the charge transfer at the interface (16) between the donor and acceptor molecules. Higher PL intensity suggests that the photogenerated excitons recombine prior to reaching the interface, thus reducing the charge transfer. (45) As shown in Figure 7, the PL intensity significantly increases with increasing aging time, thus indicating the segregation of P3HT and PC60BM. This apparently segregation-induced gain in the PL intensity is diminished by the presence of the amphiphile additive. After 450 h of thermal aging, the PL intensities of the amphiphilic additive-containing films remain constant, while the intensity of the control (amphiphile-free film) is enhanced. This implies that the additive maintains the donor and acceptor domains by preventing undesired large-scale phase segregation.

Figure 7

Figure 7. PL spectra of P3HT:PC60BM (3:2 BHJ) film with and without the PMIDA-C12 additive at different thermal aging (80 °C) times; panel (A) 0 h, panel (B) 450 h, and panel (C) 588 h. PL data are normalized to the maximum of 0.010 wt % of additive which is relatively constant.

Atomic Force Microscopy Analysis

The morphological changes upon artificial aging were examined by analyzing the AFM topography and phase images shown in Figure 8. The height distribution graphs of the pristine reference blend show that larger features grow with increasing annealing time. The same was observed for the 0.005 wt % PMIDA-C12-doped film. However, the 0.010 wt % doped film shows constant feature sizes at all explored annealing times, thus indicating the morphological stabilization due to doping, as already hypothesized from analyzing the spectroscopic data above.

Figure 8

Figure 8. AFM topography and phase images (2.5 μm × 2.5 μm) of P3HT:PC60BM (3:2 BHJ) films and respective height histograms of the different topographies. Row (A) 0.000 wt % PMIDA-C12; row (B) 0.005 wt % PMIDA-C12; row (C) 0.010 wt % PMIDA-C12. Thermal aging was carried out at 80 °C for 0, 450, and 588 h.

Additionally, the AFM phase images (Figure 8), which depend on the interaction between the thin film and the AFM tip, indicate segregation for the pristine reference and the 0.005 wt % doped film but not for the 0.010 wt % doped film.

Conclusions

Click to copy section linkSection link copied!

In summary, we have shown that the morphological stability of classical P3HT:PC60BM polymer solar cells can be drastically improved by doping the active layer with small amounts of an amphiphilic additive. This result was obtained from extensive long-term annealing experiments. While UV–vis absorption spectra showed only small changes upon doping with amphiphiles and upon annealing with respect to shape, analysis of the vibrational progression and photoluminescence spectra showed clear stabilization of the morphology. This morphological stabilization due to the presence of the PMIDA-C12 amphiphile is supported by the AFM results, which showed the almost unchanged morphology for the P3HT:PC60BM blend film with 0.010 wt % PMIDA-C12 before and after annealing at 80 °C for 588 h. This stabilization results in retention of 80% of the original PCE after 588 h of annealing at 80 °C, while the PCE of the pristine reference solar cell decreased dramatically to approximately 4% of the initial value.
Following this initial proof of principle, extensive experiments are necessary to quantify this effect for other material systems and additives. Further, detailed morphological and spectroscopic studies of systematically varied amphiphile structures are imperative to reveal the mechanism of morphological stabilization on a supramolecular scale.

Experimental Details

Click to copy section linkSection link copied!

Materials

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS (PVPAl4083)), poly(3-hexylthiophene) P3HT (Plextronics, batch-698997-5G), phenyl-C60-butyric acid methyl ester (PC60BM), perylene monoimide-diamine-C12, (synthetic procedures for the preparation of the perylene monoamide derivative used in this work can be found in the Supporting Information), chlorobenzene, isopropanol, and distilled water were used as-received. The concentration of the active layer (P3HT:PC60BM) is 30 mg/mL in 3:2 ratio in all cases, and the composition of additive is varied.

Solar Cell Fabrication

Organic solar cells with photoactive areas of 0.42 cm2 were fabricated according to the architecture glass|ITO|PEDOT:PSS|P3HT:PC60BM|Al. The ITO-coated glass substrate was first wiped with toluene wetted cotton buds, then ultrasonicated in toluene and subsequently isopropanol for 15 min each at 40 °C, and subsequently stored in isopropyl alcohol overnight. The substrates were treated with argon plasma for 5 min before use. The hole transport layer PEDOT:PSS (PVPAl4083) was spin-coated at 3000 rpm for 60 s onto the ITO substrate and then annealed at 178 °C for 15 min under air. Immediately after annealing, the films were transferred into a N2-filled glovebox. The P3HT:PC60BM (3:2 wt/wt ratio) blend was dissolved in chlorobenzene by stirring at 50 °C until all materials dissolved over the weekend, and PMIDA-C12 was added into the blend solution in a certain weight ratio which varied from 0.005 to 0.025 (wt %) to the P3HT:PC60BM blend. Then, 60 μL of control or PMIDA-C12 doped solution was spin-coated at 800 rpm for 45 s onto the PEDOT:PSS layer. Subsequently, physical vapor deposition method was used to deposit aluminum (Al) (above 150 nm) on top of the active layer for contact. Finally, post annealing (56) was performed inside the glovebox at 160 °C for 5 min, and afterward, the solar cells were encapsulated inside the glovebox using the UV curable epoxy glue DELOLP 655.

IV Measurement

The photovoltaic parameters of the devices, short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE), were extracted from J–V characteristics, which were recorded under AM 1.5 conditions by using a Keithley 2400 SMU.

UV–Vis Absorption and Fluorescence Spectroscopy

Absorption spectra were measured using a Jasco V-780 spectrometer in transmission mode. The PL spectra were recorded with an Avantes AvaSpec ULS-2048 fiber spectrometer. PL excitation was performed using a laser diode emitting at 405 nm and with an integration time of 5 s and accumulation of two spectra.

Atomic Force Microscopy

AFM was performed on a Dimension Edge from Bruker. The silicon tip has a radius of approximately 10 nm and was used in tapping mode with a scan frequency (with respect to speed in reading lines) of 0.4 Hz. Resolution was 512 pixels × 512 pixels. Post data processing was performed using Gwyddion (2.61 version) software, and the following steps were applied sequentially: “base flatten”, “align rows” with the selection mean of differences, “remove scars”, “polynomial background”, set minimum value as zero point (“fix zero”). The color scale was used in a fixed range, and finally, the images were exported as pdf files and converted to PNG (300 DPI) images using Inkscape 1.2.

Electrochemical Measurements

For the square wave voltammetry (SWV) measurement, a grounded ZAHNER ZENNIUM PRO electrochemical workstation controlled via THALES software was used. The electrochemical cell was positioned inside a Faraday cage during the measurement. The electrochemical cell has three screw openings for inserting the electrodes and a gas inlet. The following electrodes were used: a glassy carbon disk electrode (3 mm diameter in PEEK body, eDAQ) as the working electrode, a platinum spiral as the counter electrode, and a leakless miniature Ag/AgCl electrode from eDAQ as the reference electrode. All electrodes were inserted through a septum. The SWV measurement was carried out under a nitrogen flow in TBABF4 (tetrabutylammonium tetrafluoroborate: 99% purity, Sigma-Aldrich, recrystallized once in deionized water, dried, and stored under an argon atmosphere before usage) 0.06 M in DCM (dichloromethane ROTISOLV, min. 99.8%, UV/IR-Grade from Carl Roth) electrolyte solution with ferrocene as internal standard and reference for determining the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) energy levels vs vacuum energy. Negative scans were run from 0 to −2 V vs Ag/AgCl, and positive scans were run from 0 to +2.0 V vs Ag/AgCl (eDAQ). The SWV scans were carried out with 10 Hz frequency, 50 mV amplitude, 2 mV step, and 25 ms integration time. An electrolyte solution containing the ferrocene reference was measured as background before adding the PMIDA-C12 molecule to the solution.
Data processing was carried out via a Mathematica routine. The ferrocene to ferrocenium (Fc/Fc+) oxidation peak E1/2ox was determined from the positive scan containing the PMIDA-C12. The SWV scan of the pure electrolyte with the internal standard (ferrocene ref.) was subtracted from the corresponding analyte SWV scans. The reduction peak maximum was determined via a Gaussian fit.
The respective HOMO and LUMO energies [eV vs vacuum energy level] were determined via the following equation (57)
EHOMO/LUMO=[Eabsolutepotential(FcFc+)E1/2ox(FcFc+)+Eonsetox/red(PMIDAC12)][eV]
as detailed in the Supporting Information. Eabsolute potential(Fc/Fc+): 5.1 V. (57)

Quantum Chemical Calculations

Quantum chemical structure optimizations along with the calculations of electrostatic potentials were carried out using density functional theory as implemented in the GPU-accelerated program TeraChem (58−60) with the 6-311 + g basis set and functionals B3LYP and CAM-B3LYP, which have shown to yield reasonable geometries, energies, electron density, and electrostatic potential distributions and spectra. (61−68) Electrostatic potentials were plotted on the solvent-accessible surface for solvent probe of radius 1.4 Å. (69)

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaelm.3c01722.

  • Comparison of JV plots for different concentrations of PMIDA-C12 additive, details of vibrational progression fittings of UV–vis absorption spectra, UV–vis and PL spectra of pristine P3HT and PC60BM films, comparison of photothermal deflection spectra of fresh and thermally aged films, and SWV analysis of PMIDA-C12 additive and details of the synthesis procedure of PMIDA-C12 additive molecule (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Martin Presselt - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, GermanyCenter for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, GermanySciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, GermanyOrcidhttps://orcid.org/0000-0002-5579-0260 Email: [email protected]
  • Authors
    • Yisak Tsegazab Gerase - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, GermanyInstitute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, GermanyOrcidhttps://orcid.org/0009-0002-4930-6935
    • Javier Garcia Lopez - Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, GermanyOrcidhttps://orcid.org/0000-0001-9697-0949
    • Jose Prince Madalaimuthu - Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, GermanyCenter for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
    • Anna Elmanova - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, GermanyInstitute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, GermanySciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, GermanyOrcidhttps://orcid.org/0000-0003-1866-7519
    • Sarah Jasmin Finkelmeyer - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, GermanyInstitute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, GermanyOrcidhttps://orcid.org/0000-0002-7153-0338
    • Andrea Dellith - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
    • Daniel Blaschke - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, GermanyOrcidhttps://orcid.org/0000-0002-7407-0453
    • Heidemarie Schmidt - Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
    • Kalina Peneva - Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, GermanyCenter for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, GermanyJena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, GermanyOrcidhttps://orcid.org/0000-0001-5578-3266
    • Harald Hoppe - Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessing Str. 8, 07743 Jena, GermanyCenter for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, GermanyOrcidhttps://orcid.org/0000-0002-7207-2279
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

Yisak T. Gerase acknowledges the funding from DAAD (Deutscher Akademischer Austauschdienst), funding program/-ID: 5750787. The German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) is gratefully acknowledged for the support of this work in the Collaborative Research Center (CRC) “CataLight” (Transregio SFB TRR 234, Project number 364549901, projects A3, B9). K.P. also acknowledges the financial support of the DFG for the support of this work (Project number 455748945). The authors further acknowledge the DFG for funding in the framework of FOR5301 “FuncHeal” (projects P3 and P4). We would like to acknowledge the NMR platform at the Friedrich Schiller University Jena for support in NMR spectroscopy.

References

Click to copy section linkSection link copied!

This article references 69 other publications.

  1. 1
    Berger, P. R.; Kim, M. Polymer Solar Cells: P3ht:Pcbm and Beyond. J. Renewable Sustainable Energy 2018, 10 (1), 013508,  DOI: 10.1063/1.5012992
  2. 2
    Cheng, P.; Yang, Y. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Acc. Chem. Res. 2020, 53 (6), 12181228,  DOI: 10.1021/acs.accounts.0c00157
  3. 3
    Bishnoi, S.; Datt, R.; Arya, S.; Gupta, S.; Gupta, R.; Tsoi, W. C.; Sharma, S. N.; Patole, S. P.; Gupta, V. Engineered Cathode Buffer Layers for Highly Efficient Organic Solar Cells: A Review. Adv. Mater. Interfaces 2022, 9 (19), 2101693,  DOI: 10.1002/admi.202101693
  4. 4
    Nrel - Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed on May 3, 2023).
  5. 5
    Cheng, P.; Zhan, X. Stability of Organic Solar Cells: Challenges and Strategies. Chem. Soc. Rev. 2016, 45 (9), 25442582,  DOI: 10.1039/C5CS00593K
  6. 6
    Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2004, 14 (10), 10051011,  DOI: 10.1002/adfm.200305026
  7. 7
    Bronstein, H.; Nielsen, C. B.; Schroeder, B. C.; McCulloch, I. The Role of Chemical Design in the Performance of Organic Semiconductors. Nat. Rev. Chem 2020, 4 (2), 6677,  DOI: 10.1038/s41570-019-0152-9
  8. 8
    Cui, C.; Li, Y. Morphology Optimization of Photoactive Layers in Organic Solar Cells. Aggregate 2021, 2 (2), e31  DOI: 10.1002/agt2.31
  9. 9
    Huang, Y.-C.; Liu, W.-S.; Tsao, C.-S.; Wang, L. Mechanistic Insights into the Effect of Polymer Regioregularity on the Thermal Stability of Polymer Solar Cells. ACS Appl. Mater. Interfaces 2019, 11 (43), 4031040319,  DOI: 10.1021/acsami.9b12482
  10. 10
    Urquhart, S. G.; Martinson, M.; Eger, S.; Murcia, V.; Ade, H.; Collins, B. A. Connecting Molecular Conformation to Aggregation in P3ht Using near Edge X-Ray Absorption Fine Structure Spectroscopy. J. Phys. Chem. C 2017, 121 (39), 2172021728,  DOI: 10.1021/acs.jpcc.7b07143
  11. 11
    Steyrleuthner, R.; Di Pietro, R.; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z. H.; Zhang, S. M.; Salleo, A.; Ade, H.; Facchetti, A.; Neher, D. The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility N-Type Copolymer. J. Am. Chem. Soc. 2014, 136 (11), 42454256,  DOI: 10.1021/ja4118736
  12. 12
    Wang, S.; Fabiano, S.; Himmelberger, S.; Puzinas, S.; Crispin, X.; Salleo, A.; Berggren, M. Experimental Evidence That Short-Range Intermolecular Aggregation Is Sufficient for Efficient Charge Transport in Conjugated Polymers. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (34), 1059910604,  DOI: 10.1073/pnas.1501381112
  13. 13
    Wang, Y.; Guo, M.; Yang, L.; Li, L.; Qin, W.; Yin, S. Toward Morphological Stabilization in Polymer Bulk Heterojunction Solar Cells by Crosslinking Using an Additive. IEEE J. Photovoltaics 2016, 6 (3), 710718,  DOI: 10.1109/JPHOTOV.2016.2545342
  14. 14
    Landerer, D.; Sprau, C.; Baumann, D.; Pingel, P.; Leonhard, T.; Zimmermann, D.; Chochos, C. L.; Krüger, H.; Janietz, S.; Colsmann, A. Thermal Stabilization of the Bulk-Heterojunction Morphology in Polymer: Fullerene Solar Cells Using a Bisazide Cross-Linker. Solar RRL 2019, 3 (2), 1800266,  DOI: 10.1002/solr.201800266
  15. 15
    Wang, S.; Qu, Y.; Li, S.; Ye, F.; Chen, Z.; Yang, X. Improved Thermal Stability of Polymer Solar Cells by Incorporating Porphyrins. Adv. Funct. Mater. 2015, 25 (5), 748757,  DOI: 10.1002/adfm.201403018
  16. 16
    Jia, Z.; Xia, X.; Wang, X.; Wang, T.; Xu, G.; Liu, B.; Zhou, J.; Li, F. All-Conjugated Amphiphilic Diblock Copolymers for Improving Morphology and Thermal Stability of Polymer/Nanocrystals Hybrid Solar Cells. Front. Mater. Sci. 2018, 12 (3), 225238,  DOI: 10.1007/s11706-018-0428-x
  17. 17
    Herrmann, F.; Muhsin, B.; Singh, C. R.; Shokhovets, S.; Gobsch, G.; Hoppe, H.; Presselt, M. Influence of Interface Doping on Charge-Carrier Mobilities and Sub-Bandgap Absorption in Organic Solar Cells. J. Phys. Chem. C 2015, 119 (17), 90369040,  DOI: 10.1021/acs.jpcc.5b00124
  18. 18
    Moustafa, E.; Torimtubun, A. A. A.; Pallares, J.; Marsal, L. F. Effect of Additives and Annealing on the Performance of Nonfullerene-Based Binary and Ternary Organic Photovoltaics. Sol. RRL 2022, 6 (5), 2100480,  DOI: 10.1002/solr.202100480
  19. 19
    Nam, M.; Yoo, J.; Park, Y.; Noh, H. Y.; Park, Y.; Cho, J.; Kim, J.-A.; Kim, J.; Lee, H. H.; Chang, R. Ternary Blend Organic Solar Cells with Improved Morphological Stability. J. Mater. Chem. A 2019, 7 (16), 96989707,  DOI: 10.1039/c9ta00382g
  20. 20
    Xu, X.; Li, Y.; Peng, Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. Adv. Mater. 2022, 34 (46), 2107476,  DOI: 10.1002/adma.202107476
  21. 21
    Liao, H.-C.; Chen, P.-H.; Chang, R. P.; Su, W.-F. Morphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells. Polymers 2014, 6 (11), 27842802,  DOI: 10.3390/polym6112784
  22. 22
    Park, S. A.; Kim, D. H.; Chung, D.; Kim, J.; Park, T.; Cho, S.; Kim, M. Asymmetric Polymer Additive for Morphological Regulation and Thermally Stable Organic Solar Cells. ACS Appl. Mater. Interfaces 2023, 15 (22), 2702627033,  DOI: 10.1021/acsami.3c04804
  23. 23
    Habenicht, S. H.; Schramm, S.; Fischer, S.; Sachse, T.; Herrmann-Westendorf, F.; Bellmann, A.; Dietzek, B.; Presselt, M.; Weiß, D.; Beckert, R.; Gorls, H. Tuning the Polarity and Surface Activity of Hydroxythiazoles - Extending the Applicability of Highly Fluorescent Self-Assembling Chromophores to Supra-Molecular Photonic Structures. J. Mater. Chem. C 2016, 4 (5), 958971,  DOI: 10.1039/C5TC03632A
  24. 24
    Hupfer, M. L.; Kaufmann, M.; Herrmann-Westendorf, F.; Sachse, T.; Roussille, L.; Feller, K. H.; Weiß, D.; Deckert, V.; Beckert, R.; Dietzek, B.; Presselt, M. On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol Upon Lateral Compression and Spacer Length Variation. ACS Appl. Mater. Interfaces 2017, 9 (50), 4418144191,  DOI: 10.1021/acsami.7b13042
  25. 25
    Hupfer, M. L.; Kaufmann, M.; May, S.; Preiß, J.; Weiß, D.; Dietzek, B.; Beckert, R.; Presselt, M. Enhancing the Supramolecular Stability of Monolayers by Combining Dipolar with Amphiphilic Motifs: A Case of Amphiphilic Push-Pull-Thiazole. Phys. Chem. Chem. Phys. 2019, 21 (24), 1324113247,  DOI: 10.1039/C9CP02013F
  26. 26
    Hupfer, M. L.; Kaufmann, M.; Roussille, L.; Preiß, J.; Weiß, D.; Hinrichs, K.; Deckert, V.; Dietzek, B.; Beckert, R.; Presselt, M. Arylic Versus Alkylic-Hydrophobic Linkers Determine the Supramolecular Structure and Optoelectronic Properties of Tripodal Amphiphilic Push-Pull Thiazoles. Langmuir 2019, 35 (7), 25612570,  DOI: 10.1021/acs.langmuir.8b03893
  27. 27
    Hupfer, M. L.; Meyer, R.; Deckert-Gaudig, T.; Ghosh, S.; Skabeev, A.; Peneva, K.; Deckert, V.; Dietzek, B.; Presselt, M. Supramolecular Reorientation During Deposition onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of Bifunctional Amphiphilic, Twisted Perylenes. Langmuir 2021, 37 (37), 1101811026,  DOI: 10.1021/acs.langmuir.1c01525
  28. 28
    Lin, Y.; Nugraha, M. I.; Firdaus, Y.; Scaccabarozzi, A. D.; Aniés, F.; Emwas, A.-H.; Yengel, E.; Zheng, X.; Liu, J.; Wahyudi, W. A Simple N-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%. ACS Energy Lett. 2020, 5 (12), 36633671,  DOI: 10.1021/acsenergylett.0c01949
  29. 29
    Jeong, S.; Woo, S.-H.; Lyu, H.-K.; Kim, C.; Kim, H.; Han, Y. S. Improvement of Photovoltaic Properties by Addition of a Perylene Compound in P3ht: Pcbm Bhj System. J. Nanosci. Nanotechnol. 2012, 12 (5), 41474153,  DOI: 10.1166/jnn.2012.5898
  30. 30
    Vivo, P.; Dubey, R.; Lehtonen, E.; Kivistö, H.; Vuorinen, T.; Lemmetyinen, H. Dipyrrolidinyl-Substituted Perylene Diimide as Additive for Poly (3-Hexylthiophene):[6, 6]-Phenyl C61 Butyric Acid Methylester Bulk-Heterojunction Blends. Thin Solid Films 2013, 548, 398405,  DOI: 10.1016/j.tsf.2013.08.106
  31. 31
    Li, F.; Werner, A.; Pfeiffer, M.; Leo, K.; Liu, X. Leuco Crystal Violet as a Dopant for N-Doping of Organic Thin Films of Fullerene C60. J. Phys. Chem. B 2004, 108 (44), 1707617082,  DOI: 10.1021/jp0478615
  32. 32
    Vivo, P.; Kaunisto, K.; Alekseev, A. S.; Pekkola, O.; Tolkki, A.; Chukharev, V.; Lemmetyinen, H. Vectorial Photoinduced Electron Transfer in Multicomponent Film Systems of Poly (3-Hexylthiophene), Porphyrin-Fullerene Dyad, and Perylenetetracarboxidiimide. Photochem. Photobiol. Sci. 2010, 9 (9), 12121217,  DOI: 10.1039/c0pp00180e
  33. 33
    Vivo, P.; Vuorinen, T.; Chukharev, V.; Tolkki, A.; Kaunisto, K.; Ihalainen, P.; Peltonen, J.; Lemmetyinen, H. Multicomponent Molecularly Controlled Langmuir- Blodgett Systems for Organic Photovoltaic Applications. J. Phys. Chem. C 2010, 114 (18), 85598567,  DOI: 10.1021/jp1009862
  34. 34
    Kaloyanova, S.; Zagranyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K. Water-Soluble Nir-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. J. Am. Chem. Soc. 2016, 138 (9), 28812884,  DOI: 10.1021/jacs.5b10425
  35. 35
    Fujimoto, K.; Takahashi, M.; Izawa, S.; Hiramoto, M. Development of Perylene-Based Non-Fullerene Acceptors through Bay-Functionalization Strategy. Materials 2020, 13 (9), 2148,  DOI: 10.3390/ma13092148
  36. 36
    Hupfer, M. L.; Ghosh, S.; Wang, Y.; Opsomer, T.; Mayerhöfer, T. G.; Dehaen, W.; Presselt, M. Dichroic Dipole Antenna Membranes from Aligned Linear Bophy Dyes. Adv. Mater. Interfaces 2021, 9 (1), 2101490,  DOI: 10.1002/admi.202101490
  37. 37
    Hupfer, M. L.; Koszarna, B.; Ghosh, S.; Gryko, D. T.; Presselt, M. Langmuir-Blodgett Films of Diketopyrrolopyrroles with Tunable Amphiphilicity. Langmuir 2021, 37 (34), 1027210278,  DOI: 10.1021/acs.langmuir.1c01113
  38. 38
    Presselt, M.; Dehaen, W.; Maes, W.; Klamt, A.; Martínez, T.; Beenken, W. J. D.; Kruk, M. Quantum Chemical Insights into the Dependence of Porphyrin Basicity on the Meso-Aryl Substituents: Thermodynamics, Buckling, Reaction Sites and Molecular Flexibility. Phys. Chem. Chem. Phys. 2015, 17 (21), 1409614106,  DOI: 10.1039/C5CP01808K
  39. 39
    Mumyatov, A.; Prudnov, F.; Inasaridze, L.; Mukhacheva, O.; Troshin, P. High Lumo Energy Pyrrolidinofullerenes as Promising Electron-Acceptor Materials for Organic Solar Cells. J. Mater. Chem. C 2015, 3 (44), 1161211617,  DOI: 10.1039/C5TC02509E
  40. 40
    Hupfer, M. L.; Kaufmann, M.; Preiß, J.; Weiß, D.; Beckert, R.; Dietzek, B.; Presselt, M. Assembly of T-Shaped Amphiphilic Thiazoles on the Air-Water Interface: Impact of Polar Chromophore Moieties, as Well as Dipolarity and Pi-Extension of the Chromophore on the Supramolecular Structure. Langmuir 2019, 35 (7), 25872600,  DOI: 10.1021/acs.langmuir.8b04063
  41. 41
    Hupfer, M. L.; Blaschke, D.; Schmidt, H.; Presselt, M. Embedding an Amphiphilic 4-Hydroxy Thiazole Dye in Langmuir Matrices: Studying Miscibilities with Arylic and Alkylic Matrix Amphiphiles Via Langmuir Isotherms and Photo-Induced Force Microscopy. Langmuir 2021, 37 (45), 1325513264,  DOI: 10.1021/acs.langmuir.1c01772
  42. 42
    Finkelmeyer, S. J.; Askins, E. J.; Eichhorn, J.; Ghosh, S.; Siegmund, C.; Tauscher, E.; Dellith, A.; Hupfer, M. L.; Dellith, J.; Ritter, U.; Strzalka, J.; Glusac, K.; Schacher, F. H.; Presselt, M. Tailoring the Weight of Surface and Intralayer Edge States to Control Lumo Energies. Adv. Mater. 2023, 35 (40), e2305006  DOI: 10.1002/adma.202305006
  43. 43
    Hupfer, M. L.; Dellith, J.; Seyring, M.; Diegel, M.; Dellith, A.; Ghosh, S.; Rettenmayr, M.; Dietzek-Ivanšić, B.; Presselt, M. Bifacial Dye Membranes: Ultrathin and Free-Standing Although Not Being Covalently Bound. Adv. Mater. 2023, 35 (1), 2204874,  DOI: 10.1002/adma.202204874
  44. 44
    Bertho, S.; Janssen, G.; Cleij, T. J.; Conings, B.; Moons, W.; Gadisa, A.; D’Haen, J.; Goovaerts, E.; Lutsen, L.; Manca, J. Effect of Temperature on the Morphological and Photovoltaic Stability of Bulk Heterojunction Polymer: Fullerene Solar Cells. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 753760,  DOI: 10.1016/j.solmat.2008.01.006
  45. 45
    Chao, Y.-C.; Chuang, C.-H.; Hsu, H.-L.; Wang, H.-J.; Hsu, Y.-C.; Chen, C.-P.; Jeng, R.-J. Enhanced Thermal Stability of Organic Photovoltaics Via Incorporating Triphenylamine Derivatives as Additives. Sol. Energy Mater. Sol. Cells 2016, 157, 666675,  DOI: 10.1016/j.solmat.2016.07.041
  46. 46
    Reinspach, J. A.; Diao, Y.; Giri, G.; Sachse, T.; England, K.; Zhou, Y.; Tassone, C.; Worfolk, B. J.; Presselt, M.; Toney, M. F.; Mannsfeld, S.; Bao, Z. Tuning the Morphology of Solution-Sheared P3ht:Pcbm Films. ACS Appl. Mater. Interfaces 2016, 8 (3), 17421751,  DOI: 10.1021/acsami.5b09349
  47. 47
    Presselt, M.; Herrmann, F.; Shokhovets, S.; Hoppe, H.; Runge, E.; Gobsch, G. Sub-Bandgap Absorption in Polymer-Fullerene Solar Cells Studied by Temperature-Dependent External Quantum Efficiency and Absorption Spectroscopy. Chem. Phys. Lett. 2012, 542, 7073,  DOI: 10.1016/j.cplett.2012.05.063
  48. 48
    Presselt, M.; Bärenklau, M.; Rösch, R.; Beenken, W. J. D.; Runge, E.; Shokhovets, S.; Hoppe, H.; Gobsch, G. Sub-Bandgap Absorption in Polymer-Fullerene Solar Cells. Appl. Phys. Lett. 2010, 97 (25), 253302,  DOI: 10.1063/1.3527077
  49. 49
    Presselt, M.; Herrmann, F.; Hoppe, H.; Shokhovets, S.; Runge, E.; Gobsch, G. Influence of Phonon Scattering on Exciton and Charge Diffusion in Polymer-Fullerene Solar Cells. Adv. Energy Mater. 2012, 2 (8), 9991003,  DOI: 10.1002/aenm.201100793
  50. 50
    Hupfer, M. L.; Herrmann-Westendorf, F.; Kaufmann, M.; Weiß, D.; Beckert, R.; Dietzek, B.; Presselt, M. Autonomous Supramolecular Interface Self-Healing Monitored by Restoration of Uv/Vis Absorption Spectra of Self-Assembled Thiazole Layers. Chem.─Eur. J. 2019, 25 (36), 86308634,  DOI: 10.1002/chem.201901549
  51. 51
    Hupfer, M.; Herrmann-Westendorf, F.; Dietzek, B.; Presselt, M. In Situ Photothermal Deflection Spectroscopy Revealing Intermolecular Interactions Upon Self-Assembly of Dye Monolayers. Analyst 2021, 146 (16), 50335036,  DOI: 10.1039/D1AN00582K
  52. 52
    Das, S.; Presselt, M. Progress and Development in Structural and Optoelectronic Tunability of Supramolecular Nonbonded Fullerene Assemblies. J. Mater. Chem. C 2019, 7 (21), 61946216,  DOI: 10.1039/C9TC00889F
  53. 53
    Das, S.; Herrmann-Westendorf, F.; Schacher, F. H.; Tauscher, E.; Ritter, U.; Dietzek, B.; Presselt, M. Controlling Electronic Transitions in Fullerene Van Der Waals Aggregates Via Supramolecular Assembly. ACS Appl. Mater. Interfaces 2016, 8 (33), 2151221521,  DOI: 10.1021/acsami.6b06800
  54. 54
    Ghosh, R.; Spano, F. C. Excitons and Polarons in Organic Materials. Acc. Chem. Res. 2020, 53 (10), 22012211,  DOI: 10.1021/acs.accounts.0c00349
  55. 55
    Clark, J.; Silva, C.; Friend, R. H.; Spano, F. C. Role of Intermolecular Coupling in the Photophysics of Disordered Organic Semiconductors: Aggregate Emission in Regioregular Polythiophene. Phys. Rev. Lett. 2007, 98 (20), 206406,  DOI: 10.1103/PhysRevLett.98.206406
  56. 56
    Alam, S.; Anand, A.; Islam, M. M.; Meitzner, R.; Djoumessi, A. S.; Slowik, J.; Teklu, Z.; Fischer, P.; Kästner, C.; Khan, J. I. P3ht: Pcbm Polymer Solar Cells from a Didactic Perspective. J. Photonics Energy 2022, 12 (3), 035501,  DOI: 10.1117/1.jpe.12.035501
  57. 57
    Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv. Mater. 2011, 23 (20), 23672371,  DOI: 10.1002/adma.201004554
  58. 58
    Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. Generating Efficient Quantum Chemistry Codes for Novel Architectures. J. Chem. Theory Comput. 2013, 9 (1), 213221,  DOI: 10.1021/ct300321a
  59. 59
    Beenken, W. J. D.; Sun, M.; Zhao, G.; Pullerits, T. Excited State Properties of Neutral and Charged Ter-Fluorene with and without a Keto-Defect. Phys. Status Solidi B 2008, 245 (5), 849853,  DOI: 10.1002/pssb.200743442
  60. 60
    Song, C.; Wang, L.-P.; Sachse, T.; Preiß, J.; Presselt, M.; Martínez, T. J. Efficient Implementation of Effective Core Potential Integrals and Gradients on Graphical Processing Units. J. Chem. Phys. 2015, 143 (1), 014114,  DOI: 10.1063/1.4922844
  61. 61
    Presselt, M.; Dietzek, B.; Schmitt, M.; Rau, S.; Winter, A.; Jäger, M.; Schubert, U. S.; Popp, J. A Concept to Tailor Electron Delocalization: Applying Qtaim Analysis to Phenyl-Terpyridine Compounds. J. Phys. Chem. A 2010, 114 (50), 1316313174,  DOI: 10.1021/jp107007a
  62. 62
    Presselt, M.; Schnedermann, C.; Muller, M.; Schmitt, M.; Popp, J. Derivation of Correlation Functions to Predict Bond Properties of Phenyl–CH Bonds Based on Vibrational and 1H NMR Spectroscopic Quantities. J. Phys. Chem. A 2010, 114 (37), 1028710296,  DOI: 10.1021/jp105348d
  63. 63
    Beenken, W.; Presselt, M.; Ngo, T. H.; Dehaen, W.; Maes, W.; Kruk, M. Molecular Structures and Absorption Spectra Assignment of Corrole Nh Tautomers. J. Phys. Chem. A 2014, 118 (5), 862871,  DOI: 10.1021/jp411033h
  64. 64
    Presselt, M.; Wojdyr, M.; Beenken, W. J. D.; Kruk, M.; Martinez, T. J. Steric and Electronic Contributions to the Core Reactivity of Monoprotonated 5-Phenylporphyrin: A Dft Study. Chem. Phys. Lett. 2014, 603 (0), 2127,  DOI: 10.1016/j.cplett.2014.04.011
  65. 65
    Preiß, J.; Jäger, M.; Rau, S.; Dietzek, B.; Popp, J.; Martínez, T.; Presselt, M. How Does Peripheral Functionalization of Ruthenium(Ii)-Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck-Condon Point?. ChemPhysChem 2015, 16 (7), 13951404,  DOI: 10.1002/cphc.201500223
  66. 66
    Fischer, S.; Vestfrid, J.; Mahammed, A.; Herrmann-Westendorf, F.; Schulz, M.; Muller, J.; Kiesewetter, O.; Dietzek, B.; Gross, Z.; Presselt, M. Photometric Detection of Nitric Oxide Using a Dissolved Iron(Iii) Corrole as a Sensitizer. ChemPlusChem 2016, 81 (7), 594603,  DOI: 10.1002/cplu.201500553
  67. 67
    Preiß, J.; Herrmann-Westendorf, F.; Ngo, T. H.; Martínez, T.; Dietzek, B.; Hill, J. P.; Ariga, K.; Kruk, M. M.; Maes, W.; Presselt, M. Absorption and Fluorescence Features of an Amphiphilic Meso-Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. J. Phys. Chem. A 2017, 121 (45), 86148624,  DOI: 10.1021/acs.jpca.7b08910
  68. 68
    Sachse, T.; Martinez, T. J.; Presselt, M. On Combining the Conductor-Like Screening Model and Optimally Tuned Range-Separated Hybrid Density Functionals. J. Chem. Phys. 2019, 150 (17), 174117,  DOI: 10.1063/1.5064730
  69. 69
    Kozlíková, B.; Krone, M.; Falk, M.; Lindow, N.; Baaden, M.; Baum, D.; Viola, I.; Parulek, J.; Hege, H.-C. Visualization of Biomolecular Structures: State of the Art Revisited. Computer Graphics Forum 2017, 36 (8), 178204,  DOI: 10.1111/cgf.13072

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 3 publications.

  1. Anna Elmanova, Burkhard O. Jahn, Martin Presselt. Catching the π-Stacks: Prediction of Aggregate Structures of Porphyrin. The Journal of Physical Chemistry A 2024, 128 (46) , 9917-9926. https://doi.org/10.1021/acs.jpca.4c05969
  2. Morongwa E. Ramoroka, Hayelom H. Tesfay, Precious Ekwere, Kefilwe V. Mokwebo, Vivian S. John-Denk, Kwena D. Modibane, Samantha F. Douman, Emmanuel I. Iwuoha. Electro-photovoltaics of grignard metathesis-derived poly(propylene imine) tetra(salicylaldimine)-co-poly(3-hexylthiophene-2,5-diyl) copolymer. Materials Chemistry and Physics 2025, 336 , 130549. https://doi.org/10.1016/j.matchemphys.2025.130549
  3. Yuhi Inada, Ryota Kuroda, Kahori Kiriyama, Masato Daijo, Toru Amaya, Takeshi Yamao, Toshikazu Hirao. Self-doped conducting polyaniline bearing phosphonic acid as a hole transport layer in organic photovoltaics. Japanese Journal of Applied Physics 2024, 63 (9) , 090902. https://doi.org/10.35848/1347-4065/ad7180

ACS Applied Electronic Materials

Cite this: ACS Appl. Electron. Mater. 2024, 6, 4, 2258–2267
Click to copy citationCitation copied!
https://doi.org/10.1021/acsaelm.3c01722
Published April 8, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

672

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Panel (A) Lewis structure and solvent-accessible surfaces (with solvent radius 1.4 Å, corresponding to water molecule radius) with electrostatic potentials of active layer materials (P3HT:PC60BM) and additive (PMIDA-C12). Panel (B) HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) or rather valence and conduction band energies (eV) vs vacuum energy of the materials used for this study; references: (a) Bishnoi et al. (3) Adv. Mater. Interfaces 2022, (b) derived from square wave voltammetry investigation as detailed in the Supporting Information, and (c) Mumyatov et al. (39) J. Mater. Chem. C 2015. Panel (C) Schematic of a classical BHJ solar cell. Interfaces that are potentially stabilized via the amphiphiles are shown in sections CI–CIII, and color codes are in accordance with panel (B).

    Figure 2

    Figure 2. Current density–voltage (JV) curves of PMIDA-C12 doped and undoped P3HT:PC60BM (3:2) solar cells, annealed at 80 °C for 10 min. Panel (A) illuminated with AM 1.5; panel (B) dark.

    Figure 3

    Figure 3. JV plot of P3HT:PC60BM (30 mg/mL (3:2) blend) conventional solar cell with and without the PMIDA-C12 additive, post annealing at 160 °C for 5 min. Panel (A) under illumination (AM 1.5) and panel (B) in the dark.

    Figure 4

    Figure 4. Thermal stability of the photovoltaic parameters of a P3HT:PC60BM blend with and without the PMIDA-C12 additive during thermal aging (80 °C) in a nitrogen-filled glovebox. Averages and uncertainties are calculated from four cells. Panel (A) short-circuit current density, panel (B) open-circuit voltage, panel (C) fill factor, and panel (D) power conversion efficiency.

    Figure 5

    Figure 5. Normalized absorption spectra of the P3HT:PC60BM films with and without the PMIDA-C12 additive as fabricated. Panel (A) 0 h and panel (B) 588 h of thermal aging (80 °C).

    Figure 6

    Figure 6. Panel (A) shows the vibrational progression in the UV–vis absorption spectrum of a P3HT:PC60BM film is modeled via Huang–Rhys coupled Gaussian functions. For details, see the Supporting Information. The model is fitted to the experimental data from 1.74 to 2.29 eV, while the area under the fitted curve (crystalline P3HT) and the difference from the experimental spectrum (amorphous P3HT) are evaluated in the range from 1.8 to 3.0 eV. The spectrum of a PC60BM film is shown for comparison. Panel (B) shows the ratio of crystalline to amorphous P3HT (areas under the respective curves) versus amphiphile concentration at different thermal aging times.

    Figure 7

    Figure 7. PL spectra of P3HT:PC60BM (3:2 BHJ) film with and without the PMIDA-C12 additive at different thermal aging (80 °C) times; panel (A) 0 h, panel (B) 450 h, and panel (C) 588 h. PL data are normalized to the maximum of 0.010 wt % of additive which is relatively constant.

    Figure 8

    Figure 8. AFM topography and phase images (2.5 μm × 2.5 μm) of P3HT:PC60BM (3:2 BHJ) films and respective height histograms of the different topographies. Row (A) 0.000 wt % PMIDA-C12; row (B) 0.005 wt % PMIDA-C12; row (C) 0.010 wt % PMIDA-C12. Thermal aging was carried out at 80 °C for 0, 450, and 588 h.

  • References


    This article references 69 other publications.

    1. 1
      Berger, P. R.; Kim, M. Polymer Solar Cells: P3ht:Pcbm and Beyond. J. Renewable Sustainable Energy 2018, 10 (1), 013508,  DOI: 10.1063/1.5012992
    2. 2
      Cheng, P.; Yang, Y. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Acc. Chem. Res. 2020, 53 (6), 12181228,  DOI: 10.1021/acs.accounts.0c00157
    3. 3
      Bishnoi, S.; Datt, R.; Arya, S.; Gupta, S.; Gupta, R.; Tsoi, W. C.; Sharma, S. N.; Patole, S. P.; Gupta, V. Engineered Cathode Buffer Layers for Highly Efficient Organic Solar Cells: A Review. Adv. Mater. Interfaces 2022, 9 (19), 2101693,  DOI: 10.1002/admi.202101693
    4. 4
      Nrel - Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed on May 3, 2023).
    5. 5
      Cheng, P.; Zhan, X. Stability of Organic Solar Cells: Challenges and Strategies. Chem. Soc. Rev. 2016, 45 (9), 25442582,  DOI: 10.1039/C5CS00593K
    6. 6
      Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2004, 14 (10), 10051011,  DOI: 10.1002/adfm.200305026
    7. 7
      Bronstein, H.; Nielsen, C. B.; Schroeder, B. C.; McCulloch, I. The Role of Chemical Design in the Performance of Organic Semiconductors. Nat. Rev. Chem 2020, 4 (2), 6677,  DOI: 10.1038/s41570-019-0152-9
    8. 8
      Cui, C.; Li, Y. Morphology Optimization of Photoactive Layers in Organic Solar Cells. Aggregate 2021, 2 (2), e31  DOI: 10.1002/agt2.31
    9. 9
      Huang, Y.-C.; Liu, W.-S.; Tsao, C.-S.; Wang, L. Mechanistic Insights into the Effect of Polymer Regioregularity on the Thermal Stability of Polymer Solar Cells. ACS Appl. Mater. Interfaces 2019, 11 (43), 4031040319,  DOI: 10.1021/acsami.9b12482
    10. 10
      Urquhart, S. G.; Martinson, M.; Eger, S.; Murcia, V.; Ade, H.; Collins, B. A. Connecting Molecular Conformation to Aggregation in P3ht Using near Edge X-Ray Absorption Fine Structure Spectroscopy. J. Phys. Chem. C 2017, 121 (39), 2172021728,  DOI: 10.1021/acs.jpcc.7b07143
    11. 11
      Steyrleuthner, R.; Di Pietro, R.; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z. H.; Zhang, S. M.; Salleo, A.; Ade, H.; Facchetti, A.; Neher, D. The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility N-Type Copolymer. J. Am. Chem. Soc. 2014, 136 (11), 42454256,  DOI: 10.1021/ja4118736
    12. 12
      Wang, S.; Fabiano, S.; Himmelberger, S.; Puzinas, S.; Crispin, X.; Salleo, A.; Berggren, M. Experimental Evidence That Short-Range Intermolecular Aggregation Is Sufficient for Efficient Charge Transport in Conjugated Polymers. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (34), 1059910604,  DOI: 10.1073/pnas.1501381112
    13. 13
      Wang, Y.; Guo, M.; Yang, L.; Li, L.; Qin, W.; Yin, S. Toward Morphological Stabilization in Polymer Bulk Heterojunction Solar Cells by Crosslinking Using an Additive. IEEE J. Photovoltaics 2016, 6 (3), 710718,  DOI: 10.1109/JPHOTOV.2016.2545342
    14. 14
      Landerer, D.; Sprau, C.; Baumann, D.; Pingel, P.; Leonhard, T.; Zimmermann, D.; Chochos, C. L.; Krüger, H.; Janietz, S.; Colsmann, A. Thermal Stabilization of the Bulk-Heterojunction Morphology in Polymer: Fullerene Solar Cells Using a Bisazide Cross-Linker. Solar RRL 2019, 3 (2), 1800266,  DOI: 10.1002/solr.201800266
    15. 15
      Wang, S.; Qu, Y.; Li, S.; Ye, F.; Chen, Z.; Yang, X. Improved Thermal Stability of Polymer Solar Cells by Incorporating Porphyrins. Adv. Funct. Mater. 2015, 25 (5), 748757,  DOI: 10.1002/adfm.201403018
    16. 16
      Jia, Z.; Xia, X.; Wang, X.; Wang, T.; Xu, G.; Liu, B.; Zhou, J.; Li, F. All-Conjugated Amphiphilic Diblock Copolymers for Improving Morphology and Thermal Stability of Polymer/Nanocrystals Hybrid Solar Cells. Front. Mater. Sci. 2018, 12 (3), 225238,  DOI: 10.1007/s11706-018-0428-x
    17. 17
      Herrmann, F.; Muhsin, B.; Singh, C. R.; Shokhovets, S.; Gobsch, G.; Hoppe, H.; Presselt, M. Influence of Interface Doping on Charge-Carrier Mobilities and Sub-Bandgap Absorption in Organic Solar Cells. J. Phys. Chem. C 2015, 119 (17), 90369040,  DOI: 10.1021/acs.jpcc.5b00124
    18. 18
      Moustafa, E.; Torimtubun, A. A. A.; Pallares, J.; Marsal, L. F. Effect of Additives and Annealing on the Performance of Nonfullerene-Based Binary and Ternary Organic Photovoltaics. Sol. RRL 2022, 6 (5), 2100480,  DOI: 10.1002/solr.202100480
    19. 19
      Nam, M.; Yoo, J.; Park, Y.; Noh, H. Y.; Park, Y.; Cho, J.; Kim, J.-A.; Kim, J.; Lee, H. H.; Chang, R. Ternary Blend Organic Solar Cells with Improved Morphological Stability. J. Mater. Chem. A 2019, 7 (16), 96989707,  DOI: 10.1039/c9ta00382g
    20. 20
      Xu, X.; Li, Y.; Peng, Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. Adv. Mater. 2022, 34 (46), 2107476,  DOI: 10.1002/adma.202107476
    21. 21
      Liao, H.-C.; Chen, P.-H.; Chang, R. P.; Su, W.-F. Morphological Control Agent in Ternary Blend Bulk Heterojunction Solar Cells. Polymers 2014, 6 (11), 27842802,  DOI: 10.3390/polym6112784
    22. 22
      Park, S. A.; Kim, D. H.; Chung, D.; Kim, J.; Park, T.; Cho, S.; Kim, M. Asymmetric Polymer Additive for Morphological Regulation and Thermally Stable Organic Solar Cells. ACS Appl. Mater. Interfaces 2023, 15 (22), 2702627033,  DOI: 10.1021/acsami.3c04804
    23. 23
      Habenicht, S. H.; Schramm, S.; Fischer, S.; Sachse, T.; Herrmann-Westendorf, F.; Bellmann, A.; Dietzek, B.; Presselt, M.; Weiß, D.; Beckert, R.; Gorls, H. Tuning the Polarity and Surface Activity of Hydroxythiazoles - Extending the Applicability of Highly Fluorescent Self-Assembling Chromophores to Supra-Molecular Photonic Structures. J. Mater. Chem. C 2016, 4 (5), 958971,  DOI: 10.1039/C5TC03632A
    24. 24
      Hupfer, M. L.; Kaufmann, M.; Herrmann-Westendorf, F.; Sachse, T.; Roussille, L.; Feller, K. H.; Weiß, D.; Deckert, V.; Beckert, R.; Dietzek, B.; Presselt, M. On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol Upon Lateral Compression and Spacer Length Variation. ACS Appl. Mater. Interfaces 2017, 9 (50), 4418144191,  DOI: 10.1021/acsami.7b13042
    25. 25
      Hupfer, M. L.; Kaufmann, M.; May, S.; Preiß, J.; Weiß, D.; Dietzek, B.; Beckert, R.; Presselt, M. Enhancing the Supramolecular Stability of Monolayers by Combining Dipolar with Amphiphilic Motifs: A Case of Amphiphilic Push-Pull-Thiazole. Phys. Chem. Chem. Phys. 2019, 21 (24), 1324113247,  DOI: 10.1039/C9CP02013F
    26. 26
      Hupfer, M. L.; Kaufmann, M.; Roussille, L.; Preiß, J.; Weiß, D.; Hinrichs, K.; Deckert, V.; Dietzek, B.; Beckert, R.; Presselt, M. Arylic Versus Alkylic-Hydrophobic Linkers Determine the Supramolecular Structure and Optoelectronic Properties of Tripodal Amphiphilic Push-Pull Thiazoles. Langmuir 2019, 35 (7), 25612570,  DOI: 10.1021/acs.langmuir.8b03893
    27. 27
      Hupfer, M. L.; Meyer, R.; Deckert-Gaudig, T.; Ghosh, S.; Skabeev, A.; Peneva, K.; Deckert, V.; Dietzek, B.; Presselt, M. Supramolecular Reorientation During Deposition onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of Bifunctional Amphiphilic, Twisted Perylenes. Langmuir 2021, 37 (37), 1101811026,  DOI: 10.1021/acs.langmuir.1c01525
    28. 28
      Lin, Y.; Nugraha, M. I.; Firdaus, Y.; Scaccabarozzi, A. D.; Aniés, F.; Emwas, A.-H.; Yengel, E.; Zheng, X.; Liu, J.; Wahyudi, W. A Simple N-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%. ACS Energy Lett. 2020, 5 (12), 36633671,  DOI: 10.1021/acsenergylett.0c01949
    29. 29
      Jeong, S.; Woo, S.-H.; Lyu, H.-K.; Kim, C.; Kim, H.; Han, Y. S. Improvement of Photovoltaic Properties by Addition of a Perylene Compound in P3ht: Pcbm Bhj System. J. Nanosci. Nanotechnol. 2012, 12 (5), 41474153,  DOI: 10.1166/jnn.2012.5898
    30. 30
      Vivo, P.; Dubey, R.; Lehtonen, E.; Kivistö, H.; Vuorinen, T.; Lemmetyinen, H. Dipyrrolidinyl-Substituted Perylene Diimide as Additive for Poly (3-Hexylthiophene):[6, 6]-Phenyl C61 Butyric Acid Methylester Bulk-Heterojunction Blends. Thin Solid Films 2013, 548, 398405,  DOI: 10.1016/j.tsf.2013.08.106
    31. 31
      Li, F.; Werner, A.; Pfeiffer, M.; Leo, K.; Liu, X. Leuco Crystal Violet as a Dopant for N-Doping of Organic Thin Films of Fullerene C60. J. Phys. Chem. B 2004, 108 (44), 1707617082,  DOI: 10.1021/jp0478615
    32. 32
      Vivo, P.; Kaunisto, K.; Alekseev, A. S.; Pekkola, O.; Tolkki, A.; Chukharev, V.; Lemmetyinen, H. Vectorial Photoinduced Electron Transfer in Multicomponent Film Systems of Poly (3-Hexylthiophene), Porphyrin-Fullerene Dyad, and Perylenetetracarboxidiimide. Photochem. Photobiol. Sci. 2010, 9 (9), 12121217,  DOI: 10.1039/c0pp00180e
    33. 33
      Vivo, P.; Vuorinen, T.; Chukharev, V.; Tolkki, A.; Kaunisto, K.; Ihalainen, P.; Peltonen, J.; Lemmetyinen, H. Multicomponent Molecularly Controlled Langmuir- Blodgett Systems for Organic Photovoltaic Applications. J. Phys. Chem. C 2010, 114 (18), 85598567,  DOI: 10.1021/jp1009862
    34. 34
      Kaloyanova, S.; Zagranyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K. Water-Soluble Nir-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. J. Am. Chem. Soc. 2016, 138 (9), 28812884,  DOI: 10.1021/jacs.5b10425
    35. 35
      Fujimoto, K.; Takahashi, M.; Izawa, S.; Hiramoto, M. Development of Perylene-Based Non-Fullerene Acceptors through Bay-Functionalization Strategy. Materials 2020, 13 (9), 2148,  DOI: 10.3390/ma13092148
    36. 36
      Hupfer, M. L.; Ghosh, S.; Wang, Y.; Opsomer, T.; Mayerhöfer, T. G.; Dehaen, W.; Presselt, M. Dichroic Dipole Antenna Membranes from Aligned Linear Bophy Dyes. Adv. Mater. Interfaces 2021, 9 (1), 2101490,  DOI: 10.1002/admi.202101490
    37. 37
      Hupfer, M. L.; Koszarna, B.; Ghosh, S.; Gryko, D. T.; Presselt, M. Langmuir-Blodgett Films of Diketopyrrolopyrroles with Tunable Amphiphilicity. Langmuir 2021, 37 (34), 1027210278,  DOI: 10.1021/acs.langmuir.1c01113
    38. 38
      Presselt, M.; Dehaen, W.; Maes, W.; Klamt, A.; Martínez, T.; Beenken, W. J. D.; Kruk, M. Quantum Chemical Insights into the Dependence of Porphyrin Basicity on the Meso-Aryl Substituents: Thermodynamics, Buckling, Reaction Sites and Molecular Flexibility. Phys. Chem. Chem. Phys. 2015, 17 (21), 1409614106,  DOI: 10.1039/C5CP01808K
    39. 39
      Mumyatov, A.; Prudnov, F.; Inasaridze, L.; Mukhacheva, O.; Troshin, P. High Lumo Energy Pyrrolidinofullerenes as Promising Electron-Acceptor Materials for Organic Solar Cells. J. Mater. Chem. C 2015, 3 (44), 1161211617,  DOI: 10.1039/C5TC02509E
    40. 40
      Hupfer, M. L.; Kaufmann, M.; Preiß, J.; Weiß, D.; Beckert, R.; Dietzek, B.; Presselt, M. Assembly of T-Shaped Amphiphilic Thiazoles on the Air-Water Interface: Impact of Polar Chromophore Moieties, as Well as Dipolarity and Pi-Extension of the Chromophore on the Supramolecular Structure. Langmuir 2019, 35 (7), 25872600,  DOI: 10.1021/acs.langmuir.8b04063
    41. 41
      Hupfer, M. L.; Blaschke, D.; Schmidt, H.; Presselt, M. Embedding an Amphiphilic 4-Hydroxy Thiazole Dye in Langmuir Matrices: Studying Miscibilities with Arylic and Alkylic Matrix Amphiphiles Via Langmuir Isotherms and Photo-Induced Force Microscopy. Langmuir 2021, 37 (45), 1325513264,  DOI: 10.1021/acs.langmuir.1c01772
    42. 42
      Finkelmeyer, S. J.; Askins, E. J.; Eichhorn, J.; Ghosh, S.; Siegmund, C.; Tauscher, E.; Dellith, A.; Hupfer, M. L.; Dellith, J.; Ritter, U.; Strzalka, J.; Glusac, K.; Schacher, F. H.; Presselt, M. Tailoring the Weight of Surface and Intralayer Edge States to Control Lumo Energies. Adv. Mater. 2023, 35 (40), e2305006  DOI: 10.1002/adma.202305006
    43. 43
      Hupfer, M. L.; Dellith, J.; Seyring, M.; Diegel, M.; Dellith, A.; Ghosh, S.; Rettenmayr, M.; Dietzek-Ivanšić, B.; Presselt, M. Bifacial Dye Membranes: Ultrathin and Free-Standing Although Not Being Covalently Bound. Adv. Mater. 2023, 35 (1), 2204874,  DOI: 10.1002/adma.202204874
    44. 44
      Bertho, S.; Janssen, G.; Cleij, T. J.; Conings, B.; Moons, W.; Gadisa, A.; D’Haen, J.; Goovaerts, E.; Lutsen, L.; Manca, J. Effect of Temperature on the Morphological and Photovoltaic Stability of Bulk Heterojunction Polymer: Fullerene Solar Cells. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 753760,  DOI: 10.1016/j.solmat.2008.01.006
    45. 45
      Chao, Y.-C.; Chuang, C.-H.; Hsu, H.-L.; Wang, H.-J.; Hsu, Y.-C.; Chen, C.-P.; Jeng, R.-J. Enhanced Thermal Stability of Organic Photovoltaics Via Incorporating Triphenylamine Derivatives as Additives. Sol. Energy Mater. Sol. Cells 2016, 157, 666675,  DOI: 10.1016/j.solmat.2016.07.041
    46. 46
      Reinspach, J. A.; Diao, Y.; Giri, G.; Sachse, T.; England, K.; Zhou, Y.; Tassone, C.; Worfolk, B. J.; Presselt, M.; Toney, M. F.; Mannsfeld, S.; Bao, Z. Tuning the Morphology of Solution-Sheared P3ht:Pcbm Films. ACS Appl. Mater. Interfaces 2016, 8 (3), 17421751,  DOI: 10.1021/acsami.5b09349
    47. 47
      Presselt, M.; Herrmann, F.; Shokhovets, S.; Hoppe, H.; Runge, E.; Gobsch, G. Sub-Bandgap Absorption in Polymer-Fullerene Solar Cells Studied by Temperature-Dependent External Quantum Efficiency and Absorption Spectroscopy. Chem. Phys. Lett. 2012, 542, 7073,  DOI: 10.1016/j.cplett.2012.05.063
    48. 48
      Presselt, M.; Bärenklau, M.; Rösch, R.; Beenken, W. J. D.; Runge, E.; Shokhovets, S.; Hoppe, H.; Gobsch, G. Sub-Bandgap Absorption in Polymer-Fullerene Solar Cells. Appl. Phys. Lett. 2010, 97 (25), 253302,  DOI: 10.1063/1.3527077
    49. 49
      Presselt, M.; Herrmann, F.; Hoppe, H.; Shokhovets, S.; Runge, E.; Gobsch, G. Influence of Phonon Scattering on Exciton and Charge Diffusion in Polymer-Fullerene Solar Cells. Adv. Energy Mater. 2012, 2 (8), 9991003,  DOI: 10.1002/aenm.201100793
    50. 50
      Hupfer, M. L.; Herrmann-Westendorf, F.; Kaufmann, M.; Weiß, D.; Beckert, R.; Dietzek, B.; Presselt, M. Autonomous Supramolecular Interface Self-Healing Monitored by Restoration of Uv/Vis Absorption Spectra of Self-Assembled Thiazole Layers. Chem.─Eur. J. 2019, 25 (36), 86308634,  DOI: 10.1002/chem.201901549
    51. 51
      Hupfer, M.; Herrmann-Westendorf, F.; Dietzek, B.; Presselt, M. In Situ Photothermal Deflection Spectroscopy Revealing Intermolecular Interactions Upon Self-Assembly of Dye Monolayers. Analyst 2021, 146 (16), 50335036,  DOI: 10.1039/D1AN00582K
    52. 52
      Das, S.; Presselt, M. Progress and Development in Structural and Optoelectronic Tunability of Supramolecular Nonbonded Fullerene Assemblies. J. Mater. Chem. C 2019, 7 (21), 61946216,  DOI: 10.1039/C9TC00889F
    53. 53
      Das, S.; Herrmann-Westendorf, F.; Schacher, F. H.; Tauscher, E.; Ritter, U.; Dietzek, B.; Presselt, M. Controlling Electronic Transitions in Fullerene Van Der Waals Aggregates Via Supramolecular Assembly. ACS Appl. Mater. Interfaces 2016, 8 (33), 2151221521,  DOI: 10.1021/acsami.6b06800
    54. 54
      Ghosh, R.; Spano, F. C. Excitons and Polarons in Organic Materials. Acc. Chem. Res. 2020, 53 (10), 22012211,  DOI: 10.1021/acs.accounts.0c00349
    55. 55
      Clark, J.; Silva, C.; Friend, R. H.; Spano, F. C. Role of Intermolecular Coupling in the Photophysics of Disordered Organic Semiconductors: Aggregate Emission in Regioregular Polythiophene. Phys. Rev. Lett. 2007, 98 (20), 206406,  DOI: 10.1103/PhysRevLett.98.206406
    56. 56
      Alam, S.; Anand, A.; Islam, M. M.; Meitzner, R.; Djoumessi, A. S.; Slowik, J.; Teklu, Z.; Fischer, P.; Kästner, C.; Khan, J. I. P3ht: Pcbm Polymer Solar Cells from a Didactic Perspective. J. Photonics Energy 2022, 12 (3), 035501,  DOI: 10.1117/1.jpe.12.035501
    57. 57
      Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv. Mater. 2011, 23 (20), 23672371,  DOI: 10.1002/adma.201004554
    58. 58
      Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. Generating Efficient Quantum Chemistry Codes for Novel Architectures. J. Chem. Theory Comput. 2013, 9 (1), 213221,  DOI: 10.1021/ct300321a
    59. 59
      Beenken, W. J. D.; Sun, M.; Zhao, G.; Pullerits, T. Excited State Properties of Neutral and Charged Ter-Fluorene with and without a Keto-Defect. Phys. Status Solidi B 2008, 245 (5), 849853,  DOI: 10.1002/pssb.200743442
    60. 60
      Song, C.; Wang, L.-P.; Sachse, T.; Preiß, J.; Presselt, M.; Martínez, T. J. Efficient Implementation of Effective Core Potential Integrals and Gradients on Graphical Processing Units. J. Chem. Phys. 2015, 143 (1), 014114,  DOI: 10.1063/1.4922844
    61. 61
      Presselt, M.; Dietzek, B.; Schmitt, M.; Rau, S.; Winter, A.; Jäger, M.; Schubert, U. S.; Popp, J. A Concept to Tailor Electron Delocalization: Applying Qtaim Analysis to Phenyl-Terpyridine Compounds. J. Phys. Chem. A 2010, 114 (50), 1316313174,  DOI: 10.1021/jp107007a
    62. 62
      Presselt, M.; Schnedermann, C.; Muller, M.; Schmitt, M.; Popp, J. Derivation of Correlation Functions to Predict Bond Properties of Phenyl–CH Bonds Based on Vibrational and 1H NMR Spectroscopic Quantities. J. Phys. Chem. A 2010, 114 (37), 1028710296,  DOI: 10.1021/jp105348d
    63. 63
      Beenken, W.; Presselt, M.; Ngo, T. H.; Dehaen, W.; Maes, W.; Kruk, M. Molecular Structures and Absorption Spectra Assignment of Corrole Nh Tautomers. J. Phys. Chem. A 2014, 118 (5), 862871,  DOI: 10.1021/jp411033h
    64. 64
      Presselt, M.; Wojdyr, M.; Beenken, W. J. D.; Kruk, M.; Martinez, T. J. Steric and Electronic Contributions to the Core Reactivity of Monoprotonated 5-Phenylporphyrin: A Dft Study. Chem. Phys. Lett. 2014, 603 (0), 2127,  DOI: 10.1016/j.cplett.2014.04.011
    65. 65
      Preiß, J.; Jäger, M.; Rau, S.; Dietzek, B.; Popp, J.; Martínez, T.; Presselt, M. How Does Peripheral Functionalization of Ruthenium(Ii)-Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck-Condon Point?. ChemPhysChem 2015, 16 (7), 13951404,  DOI: 10.1002/cphc.201500223
    66. 66
      Fischer, S.; Vestfrid, J.; Mahammed, A.; Herrmann-Westendorf, F.; Schulz, M.; Muller, J.; Kiesewetter, O.; Dietzek, B.; Gross, Z.; Presselt, M. Photometric Detection of Nitric Oxide Using a Dissolved Iron(Iii) Corrole as a Sensitizer. ChemPlusChem 2016, 81 (7), 594603,  DOI: 10.1002/cplu.201500553
    67. 67
      Preiß, J.; Herrmann-Westendorf, F.; Ngo, T. H.; Martínez, T.; Dietzek, B.; Hill, J. P.; Ariga, K.; Kruk, M. M.; Maes, W.; Presselt, M. Absorption and Fluorescence Features of an Amphiphilic Meso-Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. J. Phys. Chem. A 2017, 121 (45), 86148624,  DOI: 10.1021/acs.jpca.7b08910
    68. 68
      Sachse, T.; Martinez, T. J.; Presselt, M. On Combining the Conductor-Like Screening Model and Optimally Tuned Range-Separated Hybrid Density Functionals. J. Chem. Phys. 2019, 150 (17), 174117,  DOI: 10.1063/1.5064730
    69. 69
      Kozlíková, B.; Krone, M.; Falk, M.; Lindow, N.; Baaden, M.; Baum, D.; Viola, I.; Parulek, J.; Hege, H.-C. Visualization of Biomolecular Structures: State of the Art Revisited. Computer Graphics Forum 2017, 36 (8), 178204,  DOI: 10.1111/cgf.13072
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaelm.3c01722.

    • Comparison of JV plots for different concentrations of PMIDA-C12 additive, details of vibrational progression fittings of UV–vis absorption spectra, UV–vis and PL spectra of pristine P3HT and PC60BM films, comparison of photothermal deflection spectra of fresh and thermally aged films, and SWV analysis of PMIDA-C12 additive and details of the synthesis procedure of PMIDA-C12 additive molecule (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.