ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Four-Terminal Tandem Solar Cell with Dye-Sensitized and PbS Colloidal Quantum-Dot-Based Subcells

Cite this: ACS Appl. Energy Mater. 2020, 3, 4, 3157–3161
Publication Date (Web):March 25, 2020
https://doi.org/10.1021/acsaem.0c00030

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY.

  • Open Access

Article Views

2268

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

In this work, high-performance four-terminal solution-processed tandem solar cells were fabricated by using dye-sensitized solar cells (DSSCs) as top-cells and lead sulfide (PbS) colloidal quantum dot solar cells (CQDSCs) as bottom-cells. For dye-sensitized top-cells, three different dye combinations were used while the titanium dioxide (TiO2) scattering layer was removed to maximize the transmission. For the PbS bottom-cells, quantum dots with different sizes were compared. Over 12% power conversion efficiency has been achieved by using the XL dye mixture and 890 nm PbS QDs, which shows a significant efficiency enhancement when compared to single DSSC or CQDSC subcells.

Colloidal quantum dot (CQD)-based materials have an excellent potential for many different optoelectronic applications, (1) such as solar cells, (2−5) light-emitting diodes, (6,7) gas sensors, (8,9) and photodetectors. (10,11) CQDs have attracted a lot of attention because of the tunable band gap, low-cost earth-abundant materials, and possibility for solution-based preparation processes. A PbS colloidal quantum dot solar cell (CQDSC) was first reported in 2005, (12) and it achieved over 1% power conversion efficiency (PCE) in 2008 by K. W. Johnston. (13) After a decade, the efficiency of the PbS CQDSC is beyond 12% by using a solution-phase ligand exchange method, and the efficiency was stable for over several weeks under ambient conditions without encapsulation. (14) Moreover, the PbS CQD also offers a possibility to fabricate other advanced photovoltaic devices, such as flexible solar cells, (15) semitransparent devices, (5) as well as hot-carrier or multiple exciton generation devices. (16)

The dye-sensitized solar cell, DSSC, has attracted researchers’ attention since the early 1990s due to low-cost materials, a simple fabrication process, low toxicity, and excellent ambient light harvesting ability. (17) Around 12% PCE under AM 1.5 condition has been achieved for DSSCs, and over 28% under ambient light condition, (18) but the large band gap of the most efficient DSSCs may be a drawback to achieve a higher performance because the photons with energy lower than the band gap are wasted. Therefore, it is important to find a way to take advantage of those photons with lower energy to generate more power.

Multijunction solar cells, or tandem solar cells, have been shown to be an effective way to harvest light from a large part of the solar spectrum. It has been proven that increasing the number of junctions in a multijunction device is an efficient way to overcome the Shockley–Queisser limit, which is 33% PCE for a single junction device. (19) The PbS CQD has shown an excellent ability of harvesting the near-infrared spectrum, which allows researchers to use this material to fabricate bottom-cells for tandem structure devices. Within the literature, researchers have combined different top-cell materials with PbS subcells. For example, the CdTe/PbS tandem solar cell has achieved over 9% PCE; (20) the PbS/PbS tandem structure approaches 9% by using the PbS CQD with a different band gap as subcells, (21,22) while a theoretical simulation has shown that a perovskite/PbS tandem structure can achieve 43% PCE. (19,23) Also, a tandem structure DSSC has been proven as a reliable tandem structure photovoltaic device in recent years. (24−27) However, to the best of our knowledge, the DSSC/PbS tandem structure has not previously been investigated.

This work investigates the possibility of making a four-terminal tandem solar cell by using a DSSC and PbS CQDSC as the top-cell and bottom-cell, respectively. We comprehensively test and analyze the combination of three different dye mixtures (Y123, XY1, and XL) and three different sizes of PbS CQD (absorbance peak 790, 890, and 940 nm) in tandem solar cells under one-sun conditions.

The four-terminal tandem system contains a DSSC as the top-cell and a PbS CQDSC as the bottom-cell. For the DSSC, we fabricated the cell with a structure of FTO/c-TiO2/mp-TiO2/dye with a redox electrolyte and PEDOT/FTO back-contact. The PbS CQDSC was fabricated with the ITO/AZO/PbS–PbI2/PbS-EDT/Au structure. The PbS–PbI2 layer was deposited by a one-step method after solution ligand exchange.

The schematic of the four-terminal tandem solar cell is shown in Figure 1a. Usually DSSCs are fabricated with a TiO2 light scattering layer to improve the absorption of light in the devices. However, the scattering layer reduces the light transmission because it is not transparent. To improve the transmission of light to the PbS-based bottom-cell, we removed the TiO2 scattering layer, and the transmission was increased from less than 30% to over 40%, which was mainly due to the reduction of reflectance (see Figure 1b). However, the overall transmission was still low when compared with top-cells with other materials, e.g., perovskite. (28,29) The main transmission loss was due to poor transmission of the PEDOT back-contact, which caused over 30% optical losses. It should also be noticed that the reduction of transmission of light through the DSSC without a scattering layer after 700 nm was due to the light absorption and reflection from the FTO front contact.

Figure 1

Figure 1. (a) Schematic of the four-terminal tandem structure based on the DSSC and CQDSC. (b) Transmission, reflectance, and absorption spectra for XL DSSCs with and without the scattering layer. (c) UV–vis–NIR absorbance for different dye mixtures and quantum dots with different sizes.

We first compared the performance of the DSSCs with different dye combinations and the effect of the removal of the scattering layer for the DSSCs. As shown in Figure 2, after the scattering layer was removed, the PCE of XL, XY1, and Y123 dye decreased from 10.20%, 9.0%, and 8.11% to 8.85%, 7.17%, and 7.19%, respectively. For the DSSC with Y123 dye, the main reason for the efficiency reduction is that the Y123 dye has a poor light absorption, and removing the scattering layer will therefore reduce the Jsc dramatically. On the other hand, though XY1 dye has a better light absorption, the removal of the scattering layer reduces the fill factor (FF) significantly which causes a lower efficiency. By using the XY1 and L1 dye cocktail, the light absorption is enhanced dramatically, so removing the scattering layer will not cause a significant impact on Jsc.

Figure 2

Figure 2. Current–voltage (JV) measurements under illumination (1000 W/m2, AM 1.5G) for DSSCs with different dye combinations both for devices with a scattering layer (“scattering”) and for devices without the scattering layer (“transparent”).

We then measured the performance of differently sized PbS CQDSCs and also measured the performance for the CQDSCs as bottom-cells with an XL DSSC top-cell. As shown in Figure 3a, without the top-cell, the PCE of PbS CQDSC was 8.53%, 10.85%, and 5.23% for devices based on CQDs with peak light absorption at 940, 890, and 790 nm, respectively. Previous reports have shown that PbS CQDs with peak absorption around 900 nm result in the highest efficiency for the PbS CQD solar cells. (3,30,31) When the DSSC top-cell was applied on top of the CQDSCs, the PCE of these PbS CQDSCs decreased to 3.64%, 1.82%, and 1.78%, for devices based on CQDs with peak light absorption at 890, 940, and 790 nm, respectively. The main loss of the performance was due to the significant reduction of Jsc, which is expected, since the incident-power-to-current-efficiency (IPCE) shows that the visible light blocked by the DSSC top-cell contributes to over 60% of Jsc in the CQDSC (Figure 3b). By combining the XL DSSC top-cell and the CQDSC bottom-cell based on CQDs with peak light absorption at 890 nm, the best overall efficiency for the 4-terminal system is 11.7%, which is about a 7.4% and 41% relative enhancement when compared to the single junction PbS CQDSC and DSSC, respectively (Table 1). We can therefore observe a clear enhancement of the performance due to the better utilization of the infrared light by combining the DSSC with a CQDSC, and this first demonstration paves the way for future DSSC/CQDSC tandem cells with further improved performance. Furthermore, the rather similar currents from the DSSC top-cell and PbS bottom-cell is interesting, and gives a possibility to fabricate a two-terminal tandem structure in the future. However, to achieve very highly performing tandem cells, further work is needed on the light management to reduce the infrared light reflection and absorption within the DSSC device.

Table 1. Performance of Single Cells and of Subcells in the Four-Terminal Tandem Solar Cell, and the Total Efficiency of the Four-Terminal Tandem Solar Cell
 Voc (mV)Jsc (mA/cm2)FF (%)PCE (%)
single XL DSSC with scattering layer105012.9075.010.20
single PbS CQDSC (based on CQDs with 890 nm abs. peak)59228.3364.710.85
single XL DSSC without scattering layer101812.3071.08.85
PbS CQDSC as bottom-cell (with XL DSSC as top-cell)5349.8866.73.52
4-terminal tandem solar cell based on the XL DSSC (without scattering layer) and PbS CQDSC (based on CQDs with 890 nm abs. peak)   12.37

Figure 3

Figure 3. (a) Current density–voltage (JV) measurements under illumination (1000 W/m2, AM 1.5G) for different size PbS CQDSCs with and without the XL DSSC top-cell. (b) IPCE and calculated Jsc of XL DSSC and 890 nm PbS CQDSC under different conditions.

In conclusion, we have demonstrated a high-performance four-terminal tandem solar cell by applying a dye-sensitized solar cell as the top-cell and a PbS colloidal quantum dot solar cell as the bottom-cell. Three different types of dyes (XL, XY1, and Y123) and three different PbS CQDs (with absorbance peak at 790, 890, and 940 nm) have been examined. The PbS CQDSC with CQDS absorption peak at 890 nm shows the best performance, which boosts the performance of the DSSC by ∼41% relative for the XL mixed dye, ∼21% for XY1, and ∼31% for Y123. We therefore observe a clear enhancement of the performance due to the better utilization of the infrared light by combining the DSSC with a CQDSC, which shows that DSSC/CQDSC tandem cells may be a very interesting alternative for future high-efficiency devices.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.0c00030.

  • Experimental details, JV plot, and a summary of solar cell performance (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Lin Yuan - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, SwedenOrcidhttp://orcid.org/0000-0003-1038-9980
    • Hannes Michaels - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden
    • Rajarshi Roy - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden
    • Malin Johansson - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, SwedenOrcidhttp://orcid.org/0000-0003-2046-1229
    • Viktor Öberg - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden
    • Aneta Andruszkiewicz - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden
    • Xiaoliang Zhang - Department of Chemistry—Ångström, Physical Chemistry, Uppsala University, 75120 Uppsala, SwedenSchool of Materials Science and Engineering, Beihang University, Beijing 100191, ChinaOrcidhttp://orcid.org/0000-0002-2847-7359
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

The authors acknowledge the financial support obtained from the Swedish Energy Agency, Olle Engkvist Foundation, and ÅForsk. This work was also supported by the National Natural Science Foundation of China (51872014), Recruitment Program of Global Experts, and the 111 Project (B17002). We acknowledge experimental assistance from Leif Häggman (Physical Chemistry, Uppsala).

References

ARTICLE SECTIONS
Jump To

This article references 31 other publications.

  1. 1
    Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science (Washington, DC, U. S.) 2016, 353 (6302), aac5523,  DOI: 10.1126/science.aac5523
  2. 2
    Zhang, Z.; Chen, Z.; Zhang, J.; Chen, W.; Yang, J.; Wen, X.; Wang, B.; Kobamoto, N.; Yuan, L.; Stride, J. A.; Conibeer, G. J.; Patterson, R. J.; Huang, S. Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr3Perovskite Colloidal Nanocrystal Back Layer. Adv. Energy Mater. 2017, 7 (5), 1601773,  DOI: 10.1002/aenm.201601773
  3. 3
    Hu, L.; Huang, S.; Patterson, R.; Halpert, J. E. Enhanced mobility in PbS quantum dot films: Via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. C 2019, 7 (15), 4497502,  DOI: 10.1039/C8TC06495D
  4. 4
    Chen, Z.; Zhang, Z.; Yang, J.; Chen, W.; Teh, Z. L.; Wang, D.; Yuan, L.; Zhang, J.; Stride, J. A.; Conibeer, G. J.; Patterson, R. J.; Huang, S. Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO2buffer layer. J. Mater. Chem. C 2018, 6 (37), 98616,  DOI: 10.1039/C8TC03599G
  5. 5
    Zhang, X.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 2018, 11 (2), 35464,  DOI: 10.1039/C7EE02772A
  6. 6
    Pradhan, S.; Di Stasio, F.; Bi, Y.; Gupta, S.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72,  DOI: 10.1038/s41565-018-0312-y
  7. 7
    Li, G.; Rivarola, F. W. R.; Davis, N.J.L.K.; Bai, S.; Jellicoe, T. C.; De La Peña, F.; Hou, S.; Ducati, C.; Gao, F.; Friend, R. H.; Greenham, N. C.; Tan, Z. K. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28 (18), 352834,  DOI: 10.1002/adma.201600064
  8. 8
    Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E. H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26 (17), 271824,  DOI: 10.1002/adma.201304366
  9. 9
    Song, Z.; Huang, Z.; Liu, J.; Hu, Z.; Zhang, J.; Zhang, G.; Yi, F.; Jiang, S.; Lian, J.; Yan, J.; Zang, J.; Liu, H. Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors. ACS Sensors. 2018, 3 (5), 104855,  DOI: 10.1021/acssensors.8b00263
  10. 10
    Tang, X.; Ackerman, M. M.; Chen, M.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13 (4), 27782,  DOI: 10.1038/s41566-019-0362-1
  11. 11
    Wei, Y.; Ren, Z.; Zhang, A.; Mao, P.; Li, H.; Zhong, X.; Li, W.; Yang, S.; Wang, J. Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Adv. Funct. Mater. 2018, 28 (11), 1706690,  DOI: 10.1002/adfm.201706690
  12. 12
    MCDONALD, S. A.; KONSTANTATOS, G.; ZHANG, S.; CYR, P. W.; KLEM, E. J. D.; LEVINA, L.; SARGENT, A. E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4 (2), 138,  DOI: 10.1038/nmat1299
  13. 13
    Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 2008, 92 (15), 151115,  DOI: 10.1063/1.2912340
  14. 14
    Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; Arquer, F. P. G.; Wei, M.; Sun, B.; Liu, M.; Ouellette, O.; Quintero-bermudez, R.; Li, J.; Fan, J.; Quan, L.; Todorovic, P.; Tan, H.; Hoogland, S.; Kelley, S. O.; Stefik, M.; Amassian, A.; Sargent, E. H. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13 (6), 456,  DOI: 10.1038/s41565-018-0117-z
  15. 15
    Zhang, X.; Jia, D.; Hägglund, C.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy 2018, 53, 37382,  DOI: 10.1016/j.nanoen.2018.08.068
  16. 16
    Zhang, Z.; Yang, J.; Wen, X.; Yuan, L.; Shrestha, S.; Stride, J. A.; Conibeer, G. J.; Patterson, R. J.; Huang, S. Effect of Halide Treatments on PbSe Quantum Dot Thin Films: Stability, Hot Carrier Lifetime, and Application to Photovoltaics. J. Phys. Chem. C 2015, 119 (42), 2414955,  DOI: 10.1021/acs.jpcc.5b08021
  17. 17
    O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 73740,  DOI: 10.1038/353737a0
  18. 18
    Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M.; Hagfeldt, A. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11 (6), 3728,  DOI: 10.1038/nphoton.2017.60
  19. 19
    Karani, A.; Yang, L.; Bai, S.; Futscher, M. H.; Snaith, H. J.; Ehrler, B.; Greenham, N. C.; Di, D. Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure. ACS Energy Lett. 2018, 3 (4), 86974,  DOI: 10.1021/acsenergylett.8b00207
  20. 20
    Crisp, R. W.; Pach, G. F.; Kurley, J. M.; France, R. M.; Reese, M. O.; Nanayakkara, S. U.; Macleod, B. A.; Talapin, D. V.; Beard, M. C.; Luther, J. M. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. Nano Lett. 2017, 17 (2), 10207,  DOI: 10.1021/acs.nanolett.6b04423
  21. 21
    Shi, G.; Wang, Y.; Liu, Z.; Han, L.; Liu, J.; Wang, Y.; Lu, K.; Chen, S.; Ling, X.; Li, Y.; Cheng, S.; Ma, W. Stable and Highly Efficient PbS Quantum Dot Tandem Solar Cells Employing a Rationally Designed Recombination Layer. Adv. Energy Mater. 2017, 7 (15), 1602667,  DOI: 10.1002/aenm.201602667
  22. 22
    Gao, Y.; Zheng, J.; Chen, W.; Yuan, L.; Teh, Z. L.; Yang, J.; Cui, X.; Conibeer, G.; Patterson, R.; Huang, S. Enhancing PbS Colloidal Quantum Dot Tandem Solar Cell Performance by Graded Band Alignment. J. Phys. Chem. Lett. 2019, 10 (19), 572934,  DOI: 10.1021/acs.jpclett.9b02423
  23. 23
    Zhang, Y.; Gu, M.; Li, N.; Xu, Y.; Ling, X.; Wang, Y.; Zhou, S.; Li, F.; Yang, F.; Ji, K.; Yuan, J.; Ma, W. Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. J. Mater. Chem. A 2018, 6 (48), 24693701,  DOI: 10.1039/C8TA09164A
  24. 24
    Eom, Y. K.; Kang, S. H.; Choi, I. T.; Yoo, Y.; Kim, J.; Kim, H. K. Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. J. Mater. Chem. A 2017, 5 (5), 2297308,  DOI: 10.1039/C6TA09836C
  25. 25
    Kwon, J.; Im, M. J.; Kim, C. U.; Won, S. H.; Kang, S. B.; Kang, S. H.; Choi, I. T.; Kim, H. K.; Kim, I. H.; Park, J. H.; Choi, K. J. Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy Environ. Sci. 2016, 9 (12), 365765,  DOI: 10.1039/C6EE02296K
  26. 26
    Baranwal, A. K.; Shiki, T.; Ogomi, Y.; Pandey, S. S.; Ma, T.; Hayase, S. Tandem dye-sensitized solar cells with a back-contact bottom electrode without a transparent conductive oxide layer. RSC Adv. 2014, 4 (88), 4773542,  DOI: 10.1039/C4RA07539K
  27. 27
    Baranwal, A. K.; Fujikawa, N.; Hayat, A.; Ogomi, Y.; Pandey, S. S.; Ma, T.; Hayase, S. Combining novel device architecture and NIR dye towards the fabrication of transparent conductive oxide-less tandem dye sensitized solar cells. Appl. Phys. Express 2015, 8 (10), 102301,  DOI: 10.7567/APEX.8.102301
  28. 28
    Sheng, R.; Ho-Baillie, A. W. Y.; Huang, S.; Keevers, M.; Hao, X.; Jiang, L.; Cheng, Y. B.; Green, M. A. Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting. J. Phys. Chem. Lett. 2015, 6 (19), 39314,  DOI: 10.1021/acs.jpclett.5b01608
  29. 29
    Zhao, D.; Wang, C.; Song, Z.; Yu, Y.; Chen, C.; Zhao, X.; Zhu, K.; Yan, Y. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Lett. 2018, 3 (2), 3056,  DOI: 10.1021/acsenergylett.7b01287
  30. 30
    Hu, L.; Patterson, R. J.; Hu, Y.; Chen, W.; Zhang, Z.; Yuan, L.; Chen, Z.; Conibeer, G. J.; Wang, G.; Huang, S. High Performance PbS Colloidal Quantum Dot Solar Cells by Employing Solution-Processed CdS Thin Films from a Single-Source Precursor as the Electron Transport Layer. Adv. Funct. Mater. 2017, 27, 17036871703687,  DOI: 10.1002/adfm.201703687
  31. 31
    Hu, L.; Zhang, Z.; Patterson, R. J.; Hu, Y.; Chen, W.; Chen, C.; Li, D.; Hu, C.; Ge, C.; Chen, Z.; Yuan, L.; Yan, C.; Song, N.; Teh, Z. L.; Conibeer, G. J.; Tang, J.; Huang, S. Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 2018, 46 (Nov), 212219,  DOI: 10.1016/j.nanoen.2018.01.047

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 28 publications.

  1. David Ndaleh, Ravinder Kaur, Abigail Hogue, Jared H. Delcamp. Benzothiophene-Based Cross-Conjugated Organic Dyes for High-Photocurrent Dye-Sensitized Solar Cells with Photocurrents up to 27 mA/cm2. ACS Applied Energy Materials 2023, 6 (20) , 10376-10388. https://doi.org/10.1021/acsaem.3c01231
  2. Ahmad R. Kirmani, Joseph M. Luther, Milad Abolhasani, Aram Amassian. Colloidal Quantum Dot Photovoltaics: Current Progress and Path to Gigawatt Scale Enabled by Smart Manufacturing. ACS Energy Letters 2020, 5 (9) , 3069-3100. https://doi.org/10.1021/acsenergylett.0c01453
  3. Siyu Zheng, Xinyi Mei, Jingxuan Chen, Erik M. J. Johansson, Xiaoliang Zhang. Colloidal quantum dot for infrared-absorbing solar cells: State-of-the-art and prospects. Nano Research Energy 2024, 3 , e9120095. https://doi.org/10.26599/NRE.2023.9120095
  4. Jing Li, Xiaoyu Zhang, Zeke Liu, Hua Wu, Anran Wang, Zhao Luo, Jianxun Wang, Wei Dong, Chen Wang, Shanpeng Wen, Qingfeng Dong, William W. Yu, Weitao Zheng. Optimizing Energy Levels and Improving Film Compactness in PbS Quantum Dot Solar Cells by Silver Doping. Small 2024, 12 https://doi.org/10.1002/smll.202311461
  5. Jessica Barichello, Paolo Mariani, Luigi Vesce, Donatella Spadaro, Ilaria Citro, Fabio Matteocci, Antonino Bartolotta, Aldo Di Carlo, Giuseppe Calogero. Bifacial dye-sensitized solar cells for indoor and outdoor renewable energy-based application. Journal of Materials Chemistry C 2024, 12 (7) , 2317-2349. https://doi.org/10.1039/D3TC03220E
  6. Sehar Nadeem, Muhammad Usman Khan, Riaz Hussain, Faiza Shafiq, Norah Alhokbany. Novel cyano functional small molecule photosensitizers with amplified electron injection and photovoltaic attributes: molecular modelling towards efficient dye‐sensitized solar cells. Journal of Chemical Technology & Biotechnology 2024, 20 https://doi.org/10.1002/jctb.7595
  7. Jorge Martins, Marta Pereira, Seyedali Emami, Dzmitry Ivanou, Adélio Mendes. Decal Ni mesh to enhance the conductivity of carbon back contacts in dye sensitized and perovskite solar cells. Energy Advances 2024, 3 (1) , 307-315. https://doi.org/10.1039/D3YA00476G
  8. Giulia Gianola, Roberto Speranza, Federico Bella, Andrea Lamberti. Homo-tandem-bifacial dye-sensitized solar cell: A new paradigm to boost photoconversion efficiency above limit. Solar Energy 2023, 265 , 112116. https://doi.org/10.1016/j.solener.2023.112116
  9. Gomaa Mohamed Gomaa Khalaf, Mingyu Li, Jun Yan, Xinzhao Zhao, Tianjun Ma, Hsien-Yi Hsu, Haisheng Song. PbS Colloidal Quantum Dots Infrared Solar Cells: Defect Information and Passivation Strategies. Small Science 2023, 3 (11) https://doi.org/10.1002/smsc.202300062
  10. Hyojin Kang, Yujin Choi, Mengqi Wei, Junyoung Kwon, Huu-Quang Nguyen, Seoungyun Lee, Kyungmin Kim, Minsu Lee, Jaebeom Lee. Optimizing scalable synthesis of high-quality FeSe quantum dot in organic and aqueous states. Chemical Engineering Journal 2023, 473 , 145034. https://doi.org/10.1016/j.cej.2023.145034
  11. V. V. Tomaev, A. G. Syrkov, M. M. Sychev. Disordering and Conversion of Lead Selenide into an Efficient Ferroelectric Based on Lead Selenite. Glass Physics and Chemistry 2023, 49 (3) , 319-326. https://doi.org/10.1134/S1087659623600187
  12. Shanmuganathan Venkatesan, Tzu-Hsien Hsu, Xin-Wen Wong, Hsisheng Teng, Yuh-Lang Lee. Tandem dye-sensitized solar cells with efficiencies surpassing 33% under dim-light conditions. Chemical Engineering Journal 2022, 446 , 137349. https://doi.org/10.1016/j.cej.2022.137349
  13. Md Sariful Sheikh, Abyay Ghosh, Anurag Roy, Shubhranshu Bhandari, Senthilarasu Sundaram, Tapas K Mallick, Haranath Ghosh, T. P. Sinha. High Open-Circuit Voltage in Double Perovskite Oxide A2NdSbO6 (A = Ba, Sr) Photoanode-Based Dye-Sensitized Solar Cells. Journal of Electronic Materials 2022, 51 (8) , 4281-4287. https://doi.org/10.1007/s11664-022-09681-w
  14. Md. Abdul Alim, Md. Reazuddin Repon, Tarikul Islam, Kaniz Fatima Mishfa, Mohammad Abdul Jalil, Mahmood D. Aljabri, Mohammed M. Rahman. Mapping the Progress in Natural Dye‐Sensitized Solar Cells: Materials, Parameters and Durability. ChemistrySelect 2022, 7 (23) https://doi.org/10.1002/slct.202201557
  15. Tamara Sloboda, Sebastian Svanström, Fredrik O. L. Johansson, Erik Bryngelsson, Alberto García-Fernández, Andreas Lindblad, Ute B. Cappel. The impact of chemical composition of halide surface ligands on the electronic structure and stability of lead sulfide quantum dot materials. Physical Chemistry Chemical Physics 2022, 24 (20) , 12645-12657. https://doi.org/10.1039/D2CP01050J
  16. Anees Ur Rehman, Najeeb Ullah, Muhammad Abid Saeed, Usman Khan Khalil. Enhanced Absorption Performance of Dye-Sensitized Solar Cell with Composite Materials and Bilayer Structure of Nanorods and Nanospheres. Metals 2022, 12 (5) , 852. https://doi.org/10.3390/met12050852
  17. Yu Gao, Wenzhan Xu, Si‐Wei Zhang, Tianjie Fan, Meng Zhang, Aihua Ran, Xuan Zhang, Feiyu Kang, Guodan Wei. Double Cascading Charge Transfer at Integrated Perovskite/Organic Bulk Heterojunctions for Extended Near‐Infrared Photoresponse and Enhanced Photocurrent. Small 2022, 18 (12) https://doi.org/10.1002/smll.202106083
  18. Shao-Fu Chang, Xuan Zhou, Shih-Hsun Chen, Yao-Hsuan Tseng. Fabrication and characterization of well-ordered PbS nanowires in aluminum oxide template by sulfurization and vacuum injection molding processes. Nanotechnology 2022, 33 (7) , 075301. https://doi.org/10.1088/1361-6528/ac2763
  19. Mohan Yuan, Xia Wang, Xiao Chen, Jungang He, Kanghua Li, Boxiang Song, Huicheng Hu, Liang Gao, Xinzheng Lan, Chao Chen, Jiang Tang. Phase‐Transfer Exchange Lead Chalcogenide Colloidal Quantum Dots: Ink Preparation, Film Assembly, and Solar Cell Construction. Small 2022, 18 (2) https://doi.org/10.1002/smll.202102340
  20. Takaya Kubo, Haibin Wang, Hiroshi Segawa. Solution-Processed Quantum-Dot Solar Cells. 2022, 1215-1266. https://doi.org/10.1007/978-3-030-63713-2_40
  21. Yuh-Lang Lee, venkatesan shanmuganathan, Tzu-Hsien Hsu, Hsisheng Teng. Tandem Dye-Sensitized Solar Cells with Efficiencies Surpassing 33% Under Dim-Light Conditions. SSRN Electronic Journal 2022, 315 https://doi.org/10.2139/ssrn.4088093
  22. Xiaoliang Zhang. Emerging quantum dots spotlight on next-generation photovoltaics. Materials Lab 2022, 1 https://doi.org/10.54227/mlab.20220007
  23. María José Cortés Burgos, Simón Roa, Bayron Cerda, Paulraj Manidurai. Effects of PbS-NPs doping on the photovoltaic performance of natural dye-sensitized TiO2 photoelectrodes. Solid State Communications 2021, 340 , 114523. https://doi.org/10.1016/j.ssc.2021.114523
  24. Jaya Madan, Karanveer Singh, Rahul Pandey. Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-99098-y
  25. Yu Kong, Hongyu Sun, Siyu Zhang, Bing Zhao, Qing Zhao, Xuejiao Zhang, Haibo Li. Oxidation process of lead sulfide nanoparticle in the atmosphere or natural water and influence on toxicity toward Chlorella vulgaris. Journal of Hazardous Materials 2021, 417 , 126016. https://doi.org/10.1016/j.jhazmat.2021.126016
  26. Jaehyun Kim, Seungho Song, Yong-Hoon Kim, Sung Kyu Park. Recent Progress of Quantum Dot‐Based Photonic Devices and Systems: A Comprehensive Review of Materials, Devices, and Applications. Small Structures 2021, 2 (3) https://doi.org/10.1002/sstr.202000024
  27. Siyu Zheng, Jingxuan Chen, Erik M.J. Johansson, Xiaoliang Zhang. PbS Colloidal Quantum Dot Inks for Infrared Solar Cells. iScience 2020, 23 (11) , 101753. https://doi.org/10.1016/j.isci.2020.101753
  28. Swarup Biswas, Hyeok Kim. Solar Cells for Indoor Applications: Progress and Development. Polymers 2020, 12 (6) , 1338. https://doi.org/10.3390/polym12061338
  • Abstract

    Figure 1

    Figure 1. (a) Schematic of the four-terminal tandem structure based on the DSSC and CQDSC. (b) Transmission, reflectance, and absorption spectra for XL DSSCs with and without the scattering layer. (c) UV–vis–NIR absorbance for different dye mixtures and quantum dots with different sizes.

    Figure 2

    Figure 2. Current–voltage (JV) measurements under illumination (1000 W/m2, AM 1.5G) for DSSCs with different dye combinations both for devices with a scattering layer (“scattering”) and for devices without the scattering layer (“transparent”).

    Figure 3

    Figure 3. (a) Current density–voltage (JV) measurements under illumination (1000 W/m2, AM 1.5G) for different size PbS CQDSCs with and without the XL DSSC top-cell. (b) IPCE and calculated Jsc of XL DSSC and 890 nm PbS CQDSC under different conditions.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 31 other publications.

    1. 1
      Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science (Washington, DC, U. S.) 2016, 353 (6302), aac5523,  DOI: 10.1126/science.aac5523
    2. 2
      Zhang, Z.; Chen, Z.; Zhang, J.; Chen, W.; Yang, J.; Wen, X.; Wang, B.; Kobamoto, N.; Yuan, L.; Stride, J. A.; Conibeer, G. J.; Patterson, R. J.; Huang, S. Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr3Perovskite Colloidal Nanocrystal Back Layer. Adv. Energy Mater. 2017, 7 (5), 1601773,  DOI: 10.1002/aenm.201601773
    3. 3
      Hu, L.; Huang, S.; Patterson, R.; Halpert, J. E. Enhanced mobility in PbS quantum dot films: Via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. C 2019, 7 (15), 4497502,  DOI: 10.1039/C8TC06495D
    4. 4
      Chen, Z.; Zhang, Z.; Yang, J.; Chen, W.; Teh, Z. L.; Wang, D.; Yuan, L.; Zhang, J.; Stride, J. A.; Conibeer, G. J.; Patterson, R. J.; Huang, S. Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO2buffer layer. J. Mater. Chem. C 2018, 6 (37), 98616,  DOI: 10.1039/C8TC03599G
    5. 5
      Zhang, X.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 2018, 11 (2), 35464,  DOI: 10.1039/C7EE02772A
    6. 6
      Pradhan, S.; Di Stasio, F.; Bi, Y.; Gupta, S.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72,  DOI: 10.1038/s41565-018-0312-y
    7. 7
      Li, G.; Rivarola, F. W. R.; Davis, N.J.L.K.; Bai, S.; Jellicoe, T. C.; De La Peña, F.; Hou, S.; Ducati, C.; Gao, F.; Friend, R. H.; Greenham, N. C.; Tan, Z. K. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28 (18), 352834,  DOI: 10.1002/adma.201600064
    8. 8
      Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E. H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26 (17), 271824,  DOI: 10.1002/adma.201304366
    9. 9
      Song, Z.; Huang, Z.; Liu, J.; Hu, Z.; Zhang, J.; Zhang, G.; Yi, F.; Jiang, S.; Lian, J.; Yan, J.; Zang, J.; Liu, H. Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors. ACS Sensors. 2018, 3 (5), 104855,  DOI: 10.1021/acssensors.8b00263
    10. 10
      Tang, X.; Ackerman, M. M.; Chen, M.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13 (4), 27782,  DOI: 10.1038/s41566-019-0362-1
    11. 11
      Wei, Y.; Ren, Z.; Zhang, A.; Mao, P.; Li, H.; Zhong, X.; Li, W.; Yang, S.; Wang, J. Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Adv. Funct. Mater. 2018, 28 (11), 1706690,  DOI: 10.1002/adfm.201706690
    12. 12
      MCDONALD, S. A.; KONSTANTATOS, G.; ZHANG, S.; CYR, P. W.; KLEM, E. J. D.; LEVINA, L.; SARGENT, A. E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4 (2), 138,  DOI: 10.1038/nmat1299
    13. 13
      Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 2008, 92 (15), 151115,  DOI: 10.1063/1.2912340
    14. 14
      Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; Arquer, F. P. G.; Wei, M.; Sun, B.; Liu, M.; Ouellette, O.; Quintero-bermudez, R.; Li, J.; Fan, J.; Quan, L.; Todorovic, P.; Tan, H.; Hoogland, S.; Kelley, S. O.; Stefik, M.; Amassian, A.; Sargent, E. H. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13 (6), 456,  DOI: 10.1038/s41565-018-0117-z
    15. 15
      Zhang, X.; Jia, D.; Hägglund, C.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy 2018, 53, 37382,  DOI: 10.1016/j.nanoen.2018.08.068
    16. 16
      Zhang, Z.; Yang, J.; Wen, X.; Yuan, L.; Shrestha, S.; Stride, J. A.; Conibeer, G. J.; Patterson, R. J.; Huang, S. Effect of Halide Treatments on PbSe Quantum Dot Thin Films: Stability, Hot Carrier Lifetime, and Application to Photovoltaics. J. Phys. Chem. C 2015, 119 (42), 2414955,  DOI: 10.1021/acs.jpcc.5b08021
    17. 17
      O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 73740,  DOI: 10.1038/353737a0
    18. 18
      Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M.; Hagfeldt, A. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11 (6), 3728,  DOI: 10.1038/nphoton.2017.60
    19. 19
      Karani, A.; Yang, L.; Bai, S.; Futscher, M. H.; Snaith, H. J.; Ehrler, B.; Greenham, N. C.; Di, D. Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure. ACS Energy Lett. 2018, 3 (4), 86974,  DOI: 10.1021/acsenergylett.8b00207
    20. 20
      Crisp, R. W.; Pach, G. F.; Kurley, J. M.; France, R. M.; Reese, M. O.; Nanayakkara, S. U.; Macleod, B. A.; Talapin, D. V.; Beard, M. C.; Luther, J. M. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. Nano Lett. 2017, 17 (2), 10207,  DOI: 10.1021/acs.nanolett.6b04423
    21. 21
      Shi, G.; Wang, Y.; Liu, Z.; Han, L.; Liu, J.; Wang, Y.; Lu, K.; Chen, S.; Ling, X.; Li, Y.; Cheng, S.; Ma, W. Stable and Highly Efficient PbS Quantum Dot Tandem Solar Cells Employing a Rationally Designed Recombination Layer. Adv. Energy Mater. 2017, 7 (15), 1602667,  DOI: 10.1002/aenm.201602667
    22. 22
      Gao, Y.; Zheng, J.; Chen, W.; Yuan, L.; Teh, Z. L.; Yang, J.; Cui, X.; Conibeer, G.; Patterson, R.; Huang, S. Enhancing PbS Colloidal Quantum Dot Tandem Solar Cell Performance by Graded Band Alignment. J. Phys. Chem. Lett. 2019, 10 (19), 572934,  DOI: 10.1021/acs.jpclett.9b02423
    23. 23
      Zhang, Y.; Gu, M.; Li, N.; Xu, Y.; Ling, X.; Wang, Y.; Zhou, S.; Li, F.; Yang, F.; Ji, K.; Yuan, J.; Ma, W. Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. J. Mater. Chem. A 2018, 6 (48), 24693701,  DOI: 10.1039/C8TA09164A
    24. 24
      Eom, Y. K.; Kang, S. H.; Choi, I. T.; Yoo, Y.; Kim, J.; Kim, H. K. Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. J. Mater. Chem. A 2017, 5 (5), 2297308,  DOI: 10.1039/C6TA09836C
    25. 25
      Kwon, J.; Im, M. J.; Kim, C. U.; Won, S. H.; Kang, S. B.; Kang, S. H.; Choi, I. T.; Kim, H. K.; Kim, I. H.; Park, J. H.; Choi, K. J. Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy Environ. Sci. 2016, 9 (12), 365765,  DOI: 10.1039/C6EE02296K
    26. 26
      Baranwal, A. K.; Shiki, T.; Ogomi, Y.; Pandey, S. S.; Ma, T.; Hayase, S. Tandem dye-sensitized solar cells with a back-contact bottom electrode without a transparent conductive oxide layer. RSC Adv. 2014, 4 (88), 4773542,  DOI: 10.1039/C4RA07539K
    27. 27
      Baranwal, A. K.; Fujikawa, N.; Hayat, A.; Ogomi, Y.; Pandey, S. S.; Ma, T.; Hayase, S. Combining novel device architecture and NIR dye towards the fabrication of transparent conductive oxide-less tandem dye sensitized solar cells. Appl. Phys. Express 2015, 8 (10), 102301,  DOI: 10.7567/APEX.8.102301
    28. 28
      Sheng, R.; Ho-Baillie, A. W. Y.; Huang, S.; Keevers, M.; Hao, X.; Jiang, L.; Cheng, Y. B.; Green, M. A. Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting. J. Phys. Chem. Lett. 2015, 6 (19), 39314,  DOI: 10.1021/acs.jpclett.5b01608
    29. 29
      Zhao, D.; Wang, C.; Song, Z.; Yu, Y.; Chen, C.; Zhao, X.; Zhu, K.; Yan, Y. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Lett. 2018, 3 (2), 3056,  DOI: 10.1021/acsenergylett.7b01287
    30. 30
      Hu, L.; Patterson, R. J.; Hu, Y.; Chen, W.; Zhang, Z.; Yuan, L.; Chen, Z.; Conibeer, G. J.; Wang, G.; Huang, S. High Performance PbS Colloidal Quantum Dot Solar Cells by Employing Solution-Processed CdS Thin Films from a Single-Source Precursor as the Electron Transport Layer. Adv. Funct. Mater. 2017, 27, 17036871703687,  DOI: 10.1002/adfm.201703687
    31. 31
      Hu, L.; Zhang, Z.; Patterson, R. J.; Hu, Y.; Chen, W.; Chen, C.; Li, D.; Hu, C.; Ge, C.; Chen, Z.; Yuan, L.; Yan, C.; Song, N.; Teh, Z. L.; Conibeer, G. J.; Tang, J.; Huang, S. Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 2018, 46 (Nov), 212219,  DOI: 10.1016/j.nanoen.2018.01.047
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.0c00030.

    • Experimental details, JV plot, and a summary of solar cell performance (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect