ACS Publications. Most Trusted. Most Cited. Most Read
Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase
My Activity

Figure 1Loading Img
    Article

    Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2018, 1, 4, 1534–1539
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.7b00330
    Published March 14, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We study the spontaneous polarization of the archetypal semiconducting halide perovskite methylammonium lead triiodide (CH3NH3PbI3) that is currently being investigated for use in thin film solar cells and light-emitting diodes. Using both lateral and vertical piezoresponse force microscopy (PFM) to image polycrystalline thin films, we observed domains in the piezoresponse that reversibly appear and disappear below and above the tetragonal-to-cubic phase transition temperature. Importantly, we observe these domains to exhibit a piezoresponse that is predominantly in-plane for films with the (110) plane oriented parallel to the substrate, providing a measure of the polarization associated with specific crystal planes. We characterize the polarization and its temporal response using both local switching spectroscopy and time-dependent PFM spectra. These data show hysteresis loops with the polarization switching with bias but relaxing back on time scales of several minutes. Our results suggest the existence of ferroelectric behavior due to off-center displacement of the Pb2+ cation, although the local polarization response is complicated by the presence of local ionic and electronic conductivity. Understanding the nature of these domains paves the way for further optimization of optoelectronic devices using CH3NH3PbI3 perovskite material.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsaem.7b00330.

    • Materials and methods, topography from AFM image, 2D-XRD, lines scans from PFM phase and amplitude images, temperature-dependent PFM amplitude images, PFM for CsPbI3, frequency- and temperature-dependent hysteresis loops from DART switching spectroscopy, time-resolved phase decays after polarization (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 49 publications.

    1. Pelayo Marín-Villa, Ana Arauzo, Kacper Drużbicki, Felix Fernandez-Alonso. Unraveling the Ordered Phase of the Quintessential Hybrid Perovskite MAPbI3─Thermophysics to the Rescue. The Journal of Physical Chemistry Letters 2022, 13 (36) , 8422-8428. https://doi.org/10.1021/acs.jpclett.2c02208
    2. Somnath Mahato, Arup Ghorai, Ajoy Mondal, Sanjeev Kumar Srivastava, Mantu Modak, Shreyasi Das, Samit K Ray. Atomic-Scale Imaging and Nano-Scale Mapping of Cubic α-CsPbI3 Perovskite Nanocrystals for Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2022, 14 (7) , 9711-9723. https://doi.org/10.1021/acsami.1c20794
    3. Feng Zhang, Izuru Karimata, Houng-Wei Wang, Takashi Tachikawa, Keisuke Tominaga, Michitoshi Hayashi, Tetsuo Sasaki. Terahertz Spectroscopic Measurements and Solid-State Density Functional Calculations on CH3NH3PbBr3 Perovskites: Short-Range Order of Methylammonium. The Journal of Physical Chemistry C 2022, 126 (1) , 339-348. https://doi.org/10.1021/acs.jpcc.1c06988
    4. Yongtao Liu, Patrick Trimby, Liam Collins, Mahshid Ahmadi, Aimo Winkelmann, Roger Proksch, Olga S. Ovchinnikova. Correlating Crystallographic Orientation and Ferroic Properties of Twin Domains in Metal Halide Perovskites. ACS Nano 2021, 15 (4) , 7139-7148. https://doi.org/10.1021/acsnano.1c00310
    5. Liam Collins, Yongtao Liu, Olga S. Ovchinnikova, Roger Proksch. Quantitative Electromechanical Atomic Force Microscopy. ACS Nano 2019, 13 (7) , 8055-8066. https://doi.org/10.1021/acsnano.9b02883
    6. Yihui Zou, Yi Ding, Haihua Hu, Jingji Zhang, Huilin Li, Ping Lin, Peng Wang, Xiaoping Wu, Lingbo Xu, Can Cui. Hysteresis related to ion migration rather than ferroelectric polarization in MAPbI3. Applied Physics Letters 2024, 125 (8) https://doi.org/10.1063/5.0222917
    7. Shun Cheng Chang, Po-Han Chen, Yu-Ching Chen, Jyh Ming Wu. Enhancement of piezophototronic hydrogen evolution reaction through the polarization of ferroelectric Bi4Ti3O12 microplates. International Journal of Hydrogen Energy 2024, 50 , 15-25. https://doi.org/10.1016/j.ijhydene.2023.06.197
    8. Arjun Ashoka, Satyawan Nagane, Nives Strkalj, Ashish Sharma, Bart Roose, Alexander J. Sneyd, Jooyoung Sung, Judith L. MacManus-Driscoll, Samuel D. Stranks, Sascha Feldmann, Akshay Rao. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. Nature Materials 2023, 22 (8) , 977-984. https://doi.org/10.1038/s41563-023-01550-z
    9. Bowen Jin, Jinguo Cao, Ruihan Yuan, Bing Cai, Congcong Wu, Xiaojia Zheng. Strain Relaxation for Perovskite Lattice Reconfiguration. Advanced Energy and Sustainability Research 2023, 4 (4) https://doi.org/10.1002/aesr.202200143
    10. Alexander Deniz Schulz, Max Oliver Schmitt, Moritz Braun, Alexander Colsmann, Manuel Hinterstein, Holger Röhm. Ferroelectricity and Crystal Phases in Mixed‐Cation Lead Iodide Perovskite Solar Cells. Solar RRL 2022, 6 (12) https://doi.org/10.1002/solr.202200808
    11. Yinan Jiao, Shengjian Qin, Bing Li, Weizhong Hao, Ye Wang, Hao Li, Zhanping Yang, Dejun Dong, Xiangyu Li, Jinjin Zhao. Ferroelasticity Mediated Energy Conversion in Strained Perovskite Films. Advanced Electronic Materials 2022, 8 (11) https://doi.org/10.1002/aelm.202200415
    12. Yenal Yalcinkaya, Ilka M. Hermes, Tobias Seewald, Katrin Amann‐Winkel, Lothar Veith, Lukas Schmidt‐Mende, Stefan A.L. Weber. Chemical Strain Engineering of MAPbI 3 Perovskite Films. Advanced Energy Materials 2022, 12 (37) https://doi.org/10.1002/aenm.202202442
    13. Joachim Breternitz. The “ferros” of MAPbI 3 : ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites. Zeitschrift für Kristallographie - Crystalline Materials 2022, 237 (4-5) , 135-140. https://doi.org/10.1515/zkri-2021-2063
    14. F B Minussi, S P Reis, E B Araújo. DC bias electric field effects on ac electrical conductivity of MAPbI 3 suggesting intrinsic changes on structure and charge carrier dynamics. Journal of Physics: Condensed Matter 2021, 33 (47) , 475702. https://doi.org/10.1088/1361-648X/ac2271
    15. Wolfgang Tress. Hysteresis in J–V Characteristics. 2021, 429-461. https://doi.org/10.1002/9783527825851.ch16
    16. Tobias Leonhard, Holger Röhm, Alexander D. Schulz, Alexander Colsmann. Ferroelectric Properties. 2021, 173-206. https://doi.org/10.1002/9783527825851.ch7
    17. Tobias Leonhard, Holger Röhm, Fabian J. Altermann, Michael J. Hoffmann, Alexander Colsmann. Evolution of ferroelectric domains in methylammonium lead iodide and correlation with the performance of perovskite solar cells. Journal of Materials Chemistry A 2021, 9 (38) , 21845-21858. https://doi.org/10.1039/D1TA06290E
    18. Shengjian Qin, Shenghui Yi, Yanqing Xu, Zhou Mi, Jinjin Zhao, Xiaobao Tian, Huajun Guo, Yinan Jiao, Guanglei Zhang, Jian Lu. Ferroic alternation in methylammonium lead triiodide perovskite. EcoMat 2021, 3 (5) https://doi.org/10.1002/eom2.12131
    19. F.B. Minussi, S.P. Reis, E.B. Araújo. Effects of frequency, temperature, and dc bias electric field on the dielectric properties of methylammonium lead iodide from the perspective of a relaxor-like ferroelectric. Acta Materialia 2021, 219 , 117235. https://doi.org/10.1016/j.actamat.2021.117235
    20. Yongtao Liu, Dohyung Kim, Anton V. Ievlev, Sergei V. Kalinin, Mahshid Ahmadi, Olga S. Ovchinnikova. Ferroic Halide Perovskite Optoelectronics. Advanced Functional Materials 2021, 31 (36) https://doi.org/10.1002/adfm.202102793
    21. Boyuan Huang, Zhenghao Liu, Changwei Wu, Yuan Zhang, Jinjin Zhao, Xiao Wang, Jiangyu Li. Polar or nonpolar? That is not the question for perovskite solar cells. National Science Review 2021, 8 (8) https://doi.org/10.1093/nsr/nwab094
    22. Yusheng Lei, Yimu Chen, Sheng Xu. Single-crystal halide perovskites: Opportunities and challenges. Matter 2021, 4 (7) , 2266-2308. https://doi.org/10.1016/j.matt.2021.05.002
    23. Chang‐Feng Wang, Haojin Li, Mao‐Guang Li, Yu Cui, Xin Song, Qin‐Wen Wang, Jia‐Ying Jiang, Miao‐Miao Hua, Qi Xu, Kui Zhao, Heng‐Yun Ye, Yi Zhang. Centimeter‐Sized Single Crystals of Two‐Dimensional Hybrid Iodide Double Perovskite (4,4‐Difluoropiperidinium) 4 AgBiI 8 for High‐Temperature Ferroelectricity and Efficient X‐Ray Detection. Advanced Functional Materials 2021, 31 (13) https://doi.org/10.1002/adfm.202009457
    24. Haian Qiu, Jeffrey M. Mativetsky. Nanoscale light- and voltage-induced lattice strain in perovskite thin films. Nanoscale 2021, 13 (2) , 746-752. https://doi.org/10.1039/D0NR07476D
    25. Joachim Breternitz, Michael Tovar, Susan Schorr. Twinning in MAPbI3 at room temperature uncovered through Laue neutron diffraction. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-73487-1
    26. Ilka M. Hermes, Andreas Best, Leonard Winkelmann, Julian Mars, Sarah M. Vorpahl, Markus Mezger, Liam Collins, Hans-Jürgen Butt, David S. Ginger, Kaloian Koynov, Stefan A. L. Weber. Anisotropic carrier diffusion in single MAPbI 3 grains correlates to their twin domains. Energy & Environmental Science 2020, 13 (11) , 4168-4177. https://doi.org/10.1039/D0EE01016B
    27. Owoong Kwon, Daehee Seol, Huimin Qiao, Yunseok Kim. Recent Progress in the Nanoscale Evaluation of Piezoelectric and Ferroelectric Properties via Scanning Probe Microscopy. Advanced Science 2020, 7 (17) https://doi.org/10.1002/advs.201901391
    28. Maxim Ziatdinov, Dohyung Kim, Sabine Neumayer, Liam Collins, Mahshid Ahmadi, Rama K. Vasudevan, Stephen Jesse, Myung Hyun Ann, Jong H. Kim, Sergei V. Kalinin. Super-resolution and signal separation in contact Kelvin probe force microscopy of electrochemically active ferroelectric materials. Journal of Applied Physics 2020, 128 (5) https://doi.org/10.1063/5.0013847
    29. Alexander Colsmann, Tobias Leonhard, Alexander D. Schulz, Holger Röhm. Comment on “ferroelectricity-free lead halide perovskites” by A. Gómez, Q. Wang, A. R. Goñi, M. Campoy-Quiles and A. Abate, Energy Environ. Sci. , 2019, 12 , 2537. Energy & Environmental Science 2020, 13 (6) , 1888-1891. https://doi.org/10.1039/C9EE04159A
    30. Andrés Gómez, Qiong Wang, Alejandro R. Goñi, Mariano Campoy-Quiles, Antonio Abate. Reply to the “Comment on the publication ‘Ferroelectricity-free lead halide perovskites’ by Gomez et al. ” by Colsmann et al.. Energy & Environmental Science 2020, 13 (6) , 1892-1895. https://doi.org/10.1039/D0EE00880J
    31. Il-Wook Cho, Mee-Yi Ryu. Effect of CdSe/ZnS quantum dots on temperature-dependent luminescence properties in mixed halide perovskites. Journal of Luminescence 2020, 219 , 116940. https://doi.org/10.1016/j.jlumin.2019.116940
    32. Xinyue Liu, Ganghua Zhang, Mingjun Zhu, Wenbo Chen, Qi Zou, Tao Zeng. Polarization-enhanced photoelectric performance in a molecular ferroelectric hexane-1,6-diammonium pentaiodobismuth (HDA-BiI 5 )-based solar device. RSC Advances 2020, 10 (2) , 1198-1203. https://doi.org/10.1039/C9RA10839D
    33. J. Breternitz, F. Lehmann, S. A. Barnett, H. Nowell, S. Schorr. Zur Rolle der Iodid‐Methylammonium‐Interaktion in der Ferroelektrizität in CH 3 NH 3 PbI 3. Angewandte Chemie 2020, 132 (1) , 432-436. https://doi.org/10.1002/ange.201910599
    34. J. Breternitz, F. Lehmann, S. A. Barnett, H. Nowell, S. Schorr. Role of the Iodide–Methylammonium Interaction in the Ferroelectricity of CH 3 NH 3 PbI 3. Angewandte Chemie International Edition 2020, 59 (1) , 424-428. https://doi.org/10.1002/anie.201910599
    35. Holger Röhm, Tobias Leonhard, Michael J. Hoffmann, Alexander Colsmann. Ferroelectric Poling of Methylammonium Lead Iodide Thin Films. Advanced Functional Materials 2020, 30 (5) https://doi.org/10.1002/adfm.201908657
    36. Alexander Colsmann, Holger Röhm. Ferroelectricity and stability measurements in perovskite solar cells. Journal of Physics: Energy 2020, 2 (1) , 011003. https://doi.org/10.1088/2515-7655/ab5b71
    37. Yongtao Liu, Anton V. Ievlev, Liam Collins, Nikolay Borodinov, Alex Belianinov, Jong K. Keum, Miaosheng Wang, Mahshid Ahmadi, Stephen Jesse, Kai Xiao, Bobby G. Sumpter, Bin Hu, Sergei V. Kalinin, Olga S. Ovchinnikova. Light‐Ferroic Interaction in Hybrid Organic–Inorganic Perovskites. Advanced Optical Materials 2019, 7 (23) https://doi.org/10.1002/adom.201901451
    38. Sarthak Jariwala, Hongyu Sun, Gede W.P. Adhyaksa, Andries Lof, Loreta A. Muscarella, Bruno Ehrler, Erik C. Garnett, David S. Ginger. Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites. Joule 2019, 3 (12) , 3048-3060. https://doi.org/10.1016/j.joule.2019.09.001
    39. Alexander D. Schulz, Holger Röhm, Tobias Leonhard, Susanne Wagner, Michael J. Hoffmann, Alexander Colsmann. On the ferroelectricity of CH3NH3PbI3 perovskites. Nature Materials 2019, 18 (10) , 1050-1050. https://doi.org/10.1038/s41563-019-0480-7
    40. Yongtao Liu, Liam Collins, Roger Proksch, Songkil Kim, Brianna R. Watson, Benjamin Doughty, Tessa R. Calhoun, Mahshid Ahmadi, Anton V. Ievlev, Stephen Jesse, Scott T. Retterer, Alex Belianinov, Kai Xiao, Jingsong Huang, Bobby G. Sumpter, Sergei V. Kalinin, Bin Hu, Olga S. Ovchinnikova. Reply to: On the ferroelectricity of CH3NH3PbI3 perovskites. Nature Materials 2019, 18 (10) , 1051-1053. https://doi.org/10.1038/s41563-019-0481-6
    41. Yongtao Liu, Alex Belianinov, Liam Collins, Roger Proksch, Anton V. Ievlev, Bin Hu, Sergei V. Kalinin, Olga S. Ovchinnikova. Ferroic twin domains in metal halide perovskites. MRS Advances 2019, 4 (51-52) , 2817-2830. https://doi.org/10.1557/adv.2019.358
    42. Andrés Gómez, Qiong Wang, Alejandro R. Goñi, Mariano Campoy-Quiles, Antonio Abate. Ferroelectricity-free lead halide perovskites. Energy & Environmental Science 2019, 12 (8) , 2537-2547. https://doi.org/10.1039/C9EE00884E
    43. Holger Röhm, Tobias Leonhard, Alexander D. Schulz, Susanne Wagner, Michael J. Hoffmann, Alexander Colsmann. Ferroelectric Properties of Perovskite Thin Films and Their Implications for Solar Energy Conversion. Advanced Materials 2019, 31 (26) https://doi.org/10.1002/adma.201806661
    44. Sampada Bodkhe, Paolo Ermanni. Challenges in 3D printing of piezoelectric materials. Multifunctional Materials 2019, 2 (2) , 022001. https://doi.org/10.1088/2399-7532/ab0c41
    45. S. Ashhab, M. Carignano, M. E. Madjet. Domain boundaries in Luttinger-Tisza ordered dipole lattices. Journal of Applied Physics 2019, 125 (16) https://doi.org/10.1063/1.5063713
    46. Tobias Leonhard, Alexander D. Schulz, Holger Röhm, Susanne Wagner, Fabian J. Altermann, Wolfgang Rheinheimer, Michael J. Hoffmann, Alexander Colsmann. Probing the Microstructure of Methylammonium Lead Iodide Perovskite Solar Cells. Energy Technology 2019, 7 (3) https://doi.org/10.1002/ente.201800989
    47. Timothy W. Jones, Anna Osherov, Mejd Alsari, Melany Sponseller, Benjamin C. Duck, Young-Kwang Jung, Charles Settens, Farnaz Niroui, Roberto Brenes, Camelia V. Stan, Yao Li, Mojtaba Abdi-Jalebi, Nobumichi Tamura, J. Emyr Macdonald, Manfred Burghammer, Richard H. Friend, Vladimir Bulović, Aron Walsh, Gregory J. Wilson, Samuele Lilliu, Samuel D. Stranks. Lattice strain causes non-radiative losses in halide perovskites. Energy & Environmental Science 2019, 12 (2) , 596-606. https://doi.org/10.1039/C8EE02751J
    48. Jacob N. Wilson, Jarvist M. Frost, Suzanne K. Wallace, Aron Walsh. Dielectric and ferroic properties of metal halide perovskites. APL Materials 2019, 7 (1) https://doi.org/10.1063/1.5079633
    49. Yongtao Liu, Liam Collins, Alex Belianinov, Sabine M. Neumayer, Anton V. Ievlev, Mahshid Ahmadi, Kai Xiao, Scott T. Retterer, Stephen Jesse, Sergei V. Kalinin, Bin Hu, Olga S. Ovchinnikova. Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters 2018, 113 (7) https://doi.org/10.1063/1.5041256

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2018, 1, 4, 1534–1539
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.7b00330
    Published March 14, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    2248

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.