ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process
My Activity

Figure 1Loading Img
    Article

    Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process
    Click to copy article linkArticle link copied!

    • Graziela C. Sedenho
      Graziela C. Sedenho
      São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos, São Paulo 13560-970, Brazil
      Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
    • Diana De Porcellinis
      Diana De Porcellinis
      Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
    • Yan Jing
      Yan Jing
      Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
      More by Yan Jing
    • Emily Kerr
      Emily Kerr
      Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
      More by Emily Kerr
    • Luis Martin Mejia-Mendoza
      Luis Martin Mejia-Mendoza
      Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
    • Álvaro Vazquez-Mayagoitia
      Álvaro Vazquez-Mayagoitia
      Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States
    • Alán Aspuru-Guzik
      Alán Aspuru-Guzik
      Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
      Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
    • Roy G. Gordon
      Roy G. Gordon
      Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
    • Frank N. Crespilho*
      Frank N. Crespilho
      São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos, São Paulo 13560-970, Brazil
      Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
      *E-mail [email protected]
    • Michael J. Aziz*
      Michael J. Aziz
      Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
      *E-mail [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2020, 3, 2, 1933–1943
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.9b02357
    Published January 28, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Quinones can undergo thermodynamically reversible proton-coupled electron transfer reactions and are being applied as electroactive compounds in aqueous organic batteries. However, the electrochemical reversibility of these compounds is affected not only by their molecular structure but also by the properties of a carbon-based electrode surface. This study combines experimental and theoretical approaches to understand this dependence. We study the electron transfer kinetics of two synthesized quinone derivatives and two commercially available ones with a glassy carbon, a highly ordered pyrolytic graphite, and a high-edge-density graphite electrode (HEDGE). The electrochemical reversibility is notably improved on the HEDGE, which shows a higher density of defects and presents oxygenated functional groups at its surface. The electron transfer kinetics are controlled by adsorbed species onto the HEDGE. Molecular dynamics simulation and quantum mechanics calculations suggest defects with oxygen-containing functional groups, such as C–O and C═O, on HEDGE surfaces drive the interaction with the functional groups of the molecules, during physisorption from van der Waals forces. The presence of sulfonic acid side groups and a greater number of aromatic rings in the molecular structure may contribute to a higher stabilization of quinone derivatives on HEDGEs. We propose that high-performance carbon-based electrodes can be obtained without catalysts for organic batteries, by the engineering of carbon-based surfaces with edge-like defects and oxygenated functional groups.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.9b02357.

    • Synthesis and characterization of the FQ and CQ; detailed experimental procedures and computational calculations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 48 publications.

    1. Mathieu Vidal, Maryam S. Dehaghani, Javier Navarro-Ruiz, Takeharu Yoshii, Keigo Wakabayashi, Hirotomo Nishihara, Mathias Barreau, Fabrice Bournel, Jérôme Volkman, Guillaume Clet, Spirydon Zafeiratos, Nolwenn Le Breton, Pascal Puech, Iann C. Gerber, Athanassios K. Boudalis, Thomas Blon, Philippe Serp. Generation of Electronically Unsaturated Carbon Sites on Carbon Materials and Study of Their Magnetic and Chemical Properties. The Journal of Physical Chemistry C 2025, 129 (7) , 3539-3560. https://doi.org/10.1021/acs.jpcc.4c07975
    2. José Eduardo dos Santos Clarindo, Rafael Neri Prystaj Colombo, Graziela Cristina Sedenho, Luana Cristina Italiano Faria, Thiago Bertaglia, Filipe Camargo Dalmatti Alves Lima, Roberto da Silva Gomes, Michael J. Aziz, Frank Nelson Crespilho. Molecular Mechanism and Electrostatic Effect Enabling Symmetric All-Quinone Aqueous Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2024, 12 (31) , 11488-11497. https://doi.org/10.1021/acssuschemeng.3c08218
    3. Charlotte O. Wilhelmsen, Alexandros Pasadakis-Kavounis, Johan V. Christiansen, Thomas Isbrandt, Mads R. Almind, Thomas O. Larsen, Johan Hjelm, Jens Laurids Sørensen, Jens Muff. On the Capacity and Stability of a Biosynthesized Bis-quinone Flow Battery Negolyte. ACS Sustainable Chemistry & Engineering 2023, 11 (24) , 9206-9215. https://doi.org/10.1021/acssuschemeng.3c02136
    4. Fiki V. Owhoso, Sanat V. Modak, Partha Saha, David G. Kwabi. Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes. The Journal of Physical Chemistry C 2023, 127 (6) , 3165-3175. https://doi.org/10.1021/acs.jpcc.2c06356
    5. Rafael N. P. Colombo, Graziela C. Sedenho, Frank N. Crespilho. Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy. Chemistry of Materials 2022, 34 (23) , 10211-10222. https://doi.org/10.1021/acs.chemmater.2c02080
    6. Chinmaya Mirle, Kothandaraman Ramanujam. On Capacity Upgradation and In Situ Capacity Rebalancing in Anthrarufin-Based Alkaline Redox Flow Batteries. ACS Applied Energy Materials 2022, 5 (8) , 9711-9721. https://doi.org/10.1021/acsaem.2c01392
    7. Daisuke Takimoto, Keisuke Suzuki, Ryusuke Futamura, Taku Iiyama, Sho Hideshima, Wataru Sugimoto. Zero-Overpotential Redox Reactions of Quinone-Based Molecules Confined in Carbon Micropores. ACS Applied Materials & Interfaces 2022, 14 (27) , 31131-31139. https://doi.org/10.1021/acsami.2c07429
    8. Lixing Xia, Wenbo Huo, Heng Zhang, Kunxiang Xu, Yizhao Qing, Fengming Chu, Chao Zou, Hao Liu, Zhan’ao Tan. Enhancing the Cycling Stability of Anthraquinone-Based Redox Flow Batteries by Using Thermally Oxidized Carbon Felt. ACS Applied Energy Materials 2022, 5 (2) , 1984-1991. https://doi.org/10.1021/acsaem.1c03507
    9. Yan Jing, Eric M. Fell, Min Wu, Shijian Jin, Yunlong Ji, Daniel A. Pollack, Zhijiang Tang, Dian Ding, Meisam Bahari, Marc-Antoni Goulet, Tatsuhiro Tsukamoto, Roy G. Gordon, Michael J. Aziz. Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method. ACS Energy Letters 2022, 7 (1) , 226-235. https://doi.org/10.1021/acsenergylett.1c02504
    10. Li Luo, Liangkun Hou, Yingying Liu, Kejing Wu, Yingming Zhu, Houfang Lu, Bin Liang. Regeneration of Na2Q in an Electrochemical CO2 Capture System. Energy & Fuels 2021, 35 (15) , 12260-12269. https://doi.org/10.1021/acs.energyfuels.1c00960
    11. Saeed Mardi, Ujwala Ail, Mikhail Vagin, Jaywant Phopase, Reverant Crispin. On the Reversibility of Sustainable Symmetric Aqueous Organic Redox Flow Batteries. Advanced Energy and Sustainability Research 2025, 6 (4) https://doi.org/10.1002/aesr.202400324
    12. Frank N. Crespilho, Carlos M. Costa, Senentxu Lanceros‐Méndez. Sustainable Battery Biomaterials. ChemElectroChem 2025, 12 (3) https://doi.org/10.1002/celc.202400530
    13. Golfer Muedas-Taipe, Michael Badawi, Angélica María Baena-Moncada, Miguel Ponce-Vargas. Rational design of electrochemical sensors based on quinone derivatives adsorbed on graphene for the detection of [Cd(CN) 4 ] 2−. Physical Chemistry Chemical Physics 2025, 627 https://doi.org/10.1039/D5CP00218D
    14. Zahid Manzoor Bhat, Mohammad Furquan, Muhammad Aurang Zeb Gul Sial, Umair Alam, Atif Saeed Alzahrani, Mohammad Qamar. Implications of electrode modifications in aqueous organic redox flow batteries. Journal of Energy Chemistry 2024, 95 , 499-510. https://doi.org/10.1016/j.jechem.2024.03.058
    15. Renata G. Almeida, Oshadie De Silva, Fábio G. Delolo, Maria H. Araujo, Subashani Maniam, Eufrânio N. da Silva Júnior. The Use of the Mannich Reaction toward Amino‐Based Anthraquinone Applied in Aqueous Redox Flow Battery. Advanced Energy and Sustainability Research 2024, 14 https://doi.org/10.1002/aesr.202400118
    16. Azhar Atchabarova, Saken Abdimomyn, Dinara Abduakhytova, Kanagat Kishibayev, Yelena Zlobina, Andrey Kurbatov, Graziella Liana Turdean, Thierry Djenizian. Electrochemical modification of the carbon material surface by hydroxyl groups. Journal of Solid State Electrochemistry 2024, 28 (7) , 2425-2436. https://doi.org/10.1007/s10008-023-05780-8
    17. Dorothee Schmiemann, Florian Bicks, Indra Bartels, Arno Cordes, Martin Jäger, Jochen Stefan Gutmann, Kerstin Hoffmann-Jacobsen. Enzymatic degradability of diclofenac ozonation products: A mechanistic analysis. Chemosphere 2024, 358 , 142112. https://doi.org/10.1016/j.chemosphere.2024.142112
    18. Graziela C. Sedenho, Rafael N. P. Colombo, Rodrigo M. Iost, Filipe C. D. A. Lima, Frank N. Crespilho. Exploring electron transfer: Bioinspired, biomimetics, and bioelectrochemical systems for sustainable energy and Value-Added compound synthesis. Applied Physics Reviews 2024, 11 (2) https://doi.org/10.1063/5.0204996
    19. Luana C.I. Faria, Graziela C. Sedenho, Thiago Bertaglia, Lucyano J.A. Macedo, Frank N. Crespilho. A comparative study of chemically oxidized carbon cloth and thermally treated carbon paper electrodes applied on aqueous organic redox flow batteries. Electrochimica Acta 2024, 485 , 144086. https://doi.org/10.1016/j.electacta.2024.144086
    20. Fawaz Ali, David Bilger, Evan D. Patamia, Trisha L. Andrew, David G. Kwabi. Towards Immobilized Proton-Coupled Electron Transfer Agents for Electrochemical Carbon Capture from Air and Seawater. Journal of The Electrochemical Society 2024, 171 (5) , 053505. https://doi.org/10.1149/1945-7111/ad4a0f
    21. Guillaume Longatte, Olivier Buriez, Eric Labbé, Manon Guille‐Collignon, Frédéric Lemaître. Electrochemical Behavior of Quinones Classically Used for Bioenergetical Applications: Considerations and Insights about the Anodic Side. ChemElectroChem 2024, 11 (5) https://doi.org/10.1002/celc.202300542
    22. Andy A. Cardenas‐Riojas, Sandy L. Calderon‐Zavaleta, Ulises Quiroz‐Aguinaga, Golfer Muedas‐Taipe, Adolfo La Rosa‐Toro Gómez, Miguel Ponce‐Vargas, Angélica M. Baena‐Moncada. Monitoring WAD cyanide concentration in river waters with a glassy carbon electrode modified with 9,10‐Phenanthroquinone. Electroanalysis 2024, 36 (3) https://doi.org/10.1002/elan.202300208
    23. Salma Zouhair, Charlotte Clegg, Irina Valitova, Samuel March, Javith Mohammed Jailani, Vincenzo Pecunia. Carbon Electrodes for Perovskite Photovoltaics: Interfacial Properties, Meta‐analysis, and Prospects. Solar RRL 2024, 8 (6) https://doi.org/10.1002/solr.202300929
    24. Harsh Agarwal, Esha Roy, Nirala Singh, Peter A.A. Klusener, Ryan M. Stephens, Qin Tracy Zhou. Electrode Treatments for Redox Flow Batteries: Translating Our Understanding from Vanadium to Aqueous‐Organic. Advanced Science 2024, 11 (1) https://doi.org/10.1002/advs.202307209
    25. Yue Wang, Zhizhi Hu, Zhiqiang Zhang, Yasushi Hasebe. Polyimide/carbon black nanocomposite films for electrochemical sensor applications. 2024, 293-323. https://doi.org/10.1016/B978-0-323-90294-6.00004-7
    26. Sandeep Kumar Mohapatra, Kothandaraman Ramanujam, Sethuraman Sankararaman. Benzylviologen/N-hexyl phenothiazine based non-aqueous organic redox flow battery in inert condition. Journal of Energy Storage 2023, 72 , 108739. https://doi.org/10.1016/j.est.2023.108739
    27. Claudio Barrientos, Antonio Galdámez, Silvana Moris. The crystal structure of 5-nitronaphthoquinone, C 10 H 5 NO 4. Zeitschrift für Kristallographie - New Crystal Structures 2023, 238 (4) , 787-789. https://doi.org/10.1515/ncrs-2023-0211
    28. Jianxiang Deng, Xinghua Cai, Chengde Huang. N, B codoped graphite felt for high‐performance 1,8‐dihydroxyanthraquinone redox flow battery. Energy Storage 2023, 5 (5) https://doi.org/10.1002/est2.435
    29. Daisuke TAKIMOTO, Keisuke SUZUKI, Sho HIDESHIMA, Wataru SUGIMOTO. Origin of the Adsorption-Controlled Redox Behavior of Quinone-Based Molecules: Importance of the Micropore Width. Electrochemistry 2023, 91 (7) , 077006-077006. https://doi.org/10.5796/electrochemistry.23-00052
    30. Kang Peng, Yuanyuan Li, Gonggen Tang, Yahua Liu, Zhengjin Yang, Tongwen Xu. Solvation regulation to mitigate the decomposition of 2,6-dihydroxyanthraquinone in aqueous organic redox flow batteries. Energy & Environmental Science 2023, 16 (2) , 430-437. https://doi.org/10.1039/D2EE03617G
    31. Kang Peng, Pan Sun, Zhengjin Yang, Tongwen Xu. A PEGylated Viologen for Crossover‐Free and High‐Capacity pH‐Neutral Aqueous Organic Redox Flow Batteries. Batteries & Supercaps 2023, 6 (2) https://doi.org/10.1002/batt.202200426
    32. Jorge Montero, Williane da Silva Freitas, Barbara Mecheri, Mattia Forchetta, Pierluca Galloni, Silvia Licoccia, Alessandra D'Epifanio. A Neutral‐pH Aqueous Redox Flow Battery Based on Sustainable Organic Electrolytes. ChemElectroChem 2023, 10 (2) https://doi.org/10.1002/celc.202201002
    33. Jingyan Ming, Hongquan Fu, Guangxing Yang, Hongjuan Wang, Jiangnan Huang, Feng Peng, Yonghai Cao, Hao Yu. Quantification of electron transfer on carbon nanotubes: Effect of edge defects on electro-oxidation of glycerol catalyzed by platinum. Chemical Engineering Journal 2023, 455 , 140826. https://doi.org/10.1016/j.cej.2022.140826
    34. Graziela C. Sedenho, Itamar T. Neckel, Rafael N. P. Colombo, Jéssica C. Pacheco, Thiago Bertaglia, Frank N. Crespilho. Investigation of Water Splitting Reaction by a Multicopper Oxidase through X‐ray Absorption Nanospectroelectrochemistry. Advanced Energy Materials 2022, 12 (47) https://doi.org/10.1002/aenm.202202485
    35. Jean-Marie Fontmorin, Solène Guiheneuf, Thibault Godet-Bar, Didier Floner, Florence Geneste. How anthraquinones can enable aqueous organic redox flow batteries to meet the needs of industrialization. Current Opinion in Colloid & Interface Science 2022, 61 , 101624. https://doi.org/10.1016/j.cocis.2022.101624
    36. Yahua Liu, Qianru Chen, Xu Zhang, Jin Ran, Xiaozhao Han, Zhengjin Yang, Tongwen Xu. Degradation of electrochemical active compounds in aqueous organic redox flow batteries. Current Opinion in Electrochemistry 2022, 32 , 100895. https://doi.org/10.1016/j.coelec.2021.100895
    37. Maureen M. Kitheka, Morgan Redington, Jibo Zhang, Yan Yao, Puja Goyal. Benchmarks of the density functional tight-binding method for redox, protonation and electronic properties of quinones. Physical Chemistry Chemical Physics 2022, 24 (11) , 6742-6756. https://doi.org/10.1039/D1CP05333G
    38. Jagadeeswari Sivanadanam, Raja Murugan, Harun Khan, Indrapal Singh Aidhen, Kothandaraman Ramanujam. Investigation of Alkyl Amine Substituted Quinone Derivatives for the Redox Flow Battery Applications in Acidic Medium. Journal of The Electrochemical Society 2022, 169 (2) , 020533. https://doi.org/10.1149/1945-7111/ac505f
    39. Thiago Bertaglia, Luana Cristina Italiano Faria, José Eduardo dos Santos Clarindo, Frank N. Crespilho. Bioinspired Batteries: Using Nature-Inspired Materials in Greener and Safer Energy Storage Technologies. 2022, 63-87. https://doi.org/10.1007/978-3-030-99662-8_5
    40. Sabereh Narouie, Gholam Hossein Rounaghi, Hamideh. Saravani, Mehdi Shahbakhsh. Poly (Biphenol/biphenoquinone - Vanadium (IV)) modified electrode as selective sensor for detection of 4-nitrophenol. Microchemical Journal 2022, 172 , 106945. https://doi.org/10.1016/j.microc.2021.106945
    41. L. Wei, Z.X. Guo, J. Sun, X.Z. Fan, M.C. Wu, J.B. Xu, T.S. Zhao. A convection-enhanced flow field for aqueous redox flow batteries. International Journal of Heat and Mass Transfer 2021, 179 , 121747. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121747
    42. James M. Wood, Renato L. de Carvalho, Eufrânio N. da Silva Júnior. The Different Facets of Metal‐Catalyzed C−H Functionalization Involving Quinone Compounds. The Chemical Record 2021, 21 (10) , 2604-2637. https://doi.org/10.1002/tcr.202000163
    43. Peter Symons. Quinones for redox flow batteries. Current Opinion in Electrochemistry 2021, 29 , 100759. https://doi.org/10.1016/j.coelec.2021.100759
    44. Erica Janaina Rodrigues de Almeida, Gisele Giovanna Halfeld, Valeria Reginatto, Adalgisa Rodrigues de Andrade. Simultaneous energy generation, decolorization, and detoxification of the azo dye Procion Red MX-5B in a microbial fuel cell. Journal of Environmental Chemical Engineering 2021, 9 (5) , 106221. https://doi.org/10.1016/j.jece.2021.106221
    45. Jipeng Li, Huan Xu, Jingqi Wang, Yujun Wang, Diannan Lu, Jichang Liu, Jianzhong Wu. Theoretical insights on the hydration of quinones as catholytes in aqueous redox flow batteries. Chinese Journal of Chemical Engineering 2021, 37 , 72-78. https://doi.org/10.1016/j.cjche.2021.06.016
    46. Fanfan Gao, Xinghua Cai, Chengde Huang. The impact of modified electrode on the performance of an DHAQ/ K4Fe(CN)6 redox flow battery. Electrochimica Acta 2021, 390 , 138847. https://doi.org/10.1016/j.electacta.2021.138847
    47. Qijiao He, Jie Yu, Zixiao Guo, Jing Sun, Siyuan Zhao, Tianshou Zhao, Meng Ni. Modeling of vanadium redox flow battery and electrode optimization with different flow fields. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2021, 1 , 100001. https://doi.org/10.1016/j.prime.2021.100001
    48. Andrew A. Wong, Michael J. Aziz. Method for Comparing Porous Carbon Electrode Performance in Redox Flow Batteries. Journal of The Electrochemical Society 2020, 167 (11) , 110542. https://doi.org/10.1149/1945-7111/aba54d

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2020, 3, 2, 1933–1943
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.9b02357
    Published January 28, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2449

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.