High-Speed Electrospinning of Ethyl Cellulose Nanofibers via Taylor Cone OptimizationClick to copy article linkArticle link copied!
- Qiangjun HaoQiangjun HaoDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Qiangjun Hao
- John SchossigJohn SchossigDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by John Schossig
- Adedayo TowolawiAdedayo TowolawiDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Adedayo Towolawi
- Kai XuKai XuDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Kai Xu
- Erwan BayihaErwan BayihaDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Erwan Bayiha
- Mayooran MohanakanthanMayooran MohanakanthanDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Mayooran Mohanakanthan
- Derek SavastanoDerek SavastanoDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Derek Savastano
- Dhanya JayaramanDhanya JayaramanDepartment of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Dhanya Jayaraman
- Cheng ZhangCheng ZhangChemistry Department, Long Island University (Post), Brookville, New York 11548, United StatesMore by Cheng Zhang
- Ping Lu*Ping Lu*Email: [email protected]Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United StatesMore by Ping Lu
Abstract
Ethyl cellulose (EC) is one of the most widely used cellulose derivatives. Nevertheless, challenges such as the formation of beaded fibers, low yield, and nonporous internal structure persist in electrospinning, limiting functional improvements and industrial applications. This study invented a groundbreaking high-speed electrospinning technique through sheath liquid assistance to optimize the Taylor cone, dramatically enhancing the yield, morphology, and formation of porous structures of EC nanofibers beyond what has been seen in the literature to date. Our study emphasizes the crucial role of the sheath liquid’s physical and chemical properties in controlling the morphology and diameter of EC nanofibers. It was discovered that highly polar and viscous sheath liquids led to the formation of beaded structures. Most importantly, the sheath liquid-assisted method substantially increased the ejection rate of the EC solution tens and hundreds of times compared to the current low-speed electrospinning method (0.1–1 mL/h) by refining the shape of the Taylor cone and resolving low productivity challenges in conventional nanofiber production. Meanwhile, increasing the flow rate of the EC or the sheath liquid accelerated the phase separation of EC solutions, thereby promoting the formation of porous structures in EC nanofibers. A pronounced porous structure was observed when the core EC flow rate reached 25 mL/h or the sheath chloroform flow rate reached 20 mL/h. Furthermore, our sheath liquid-assisted high-speed electrospinning technique demonstrated universal applicability to ECs with varying molecular weights. This study comprehensively addressed challenges in controlling the yield, morphology, and internal structure of EC nanofibers through sheath-solution-assisted high-speed electrospinning technology. These findings provide an innovative approach to developing next-generation electrospinning technologies to enhance the yield and properties of natural polymers for sustainability.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Experimental Section
Chemicals and Materials
Exploring the Influence of Sheath Liquids on the Morphology of EC Nanofibers
Investigating the Impact of Sheath Liquids on the Yield of EC Nanofibers
Examining the Broad Applicability of Sheath Liquid-Assisted High-Speed Electrospinning for High-Molecular-Weight ECs
Characterization
Results and Discussion
Improving EC Nanofiber Yield and Properties via Taylor Cone Optimization with Sheath Liquids Using Coaxial Electrospinning
Developing High-Speed Electrospinning of EC with Minimal Sheath Liquids
Maximizing Productivity via High-Speed Electrospinning
Making Porous Nanofibers Through Optimizing Core and Sheath Flow Rates
Overcoming Molecular Weight Limitations
Conclusions
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaenm.4c00527.
Photograph of the rapid solidification of the core EC solution within the Taylor cone (Figure S1); SEM images of EC nanoparticles (Figure S2); photographs of the effect of varying sheath chloroform flow rates on Taylor cone formation (Figure S3) (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This work was supported by the research grants (PC 20-22 and PC 76-24) from the New Jersey Health Foundation and a grant (DMR-2116353) from the National Science Foundation.
References
This article references 63 other publications.
- 1Xiong, J.; Li, S.; Ye, Y.; Wang, J.; Qian, K.; Cui, P.; Gao, D.; Lin, M. F.; Chen, T.; Lee, P. S. A deformable and highly robust ethyl cellulose transparent conductor with a scalable silver nanowires bundle micromesh. Adv. Mater. 2018, 30 (36), 1802803, DOI: 10.1002/adma.201802803Google ScholarThere is no corresponding record for this reference.
- 2Joubert, F.; Musa, O. M.; Hodgson, D. R.; Cameron, N. R. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem. Soc. Rev. 2014, 43 (20), 7217– 7235, DOI: 10.1039/C4CS00053FGoogle ScholarThere is no corresponding record for this reference.
- 3Hu, X.; Jiang, Q.; Du, L.; Meng, Z. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review. Carbohydr. Polym. 2023, 322, 121328, DOI: 10.1016/j.carbpol.2023.121328Google ScholarThere is no corresponding record for this reference.
- 4Liang, J.; Cui, R.; Zhang, X.; Koumoto, K.; Wan, C. Polymer/Carbon Composites with Versatile Interfacial Interactions for High Performance Carbon-Based Thermoelectrics: Principles and Applications. Adv. Funct. Mater. 2023, 33 (9), 2208813, DOI: 10.1002/adfm.202208813Google ScholarThere is no corresponding record for this reference.
- 5Gul, B. Y.; Pekgenc, E.; Vatanpour, V.; Koyuncu, I. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydr. Polym. 2023, 321, 121296, DOI: 10.1016/j.carbpol.2023.121296Google ScholarThere is no corresponding record for this reference.
- 6Wei, J.; Ma, Q.; Teng, Y.; Yang, T.; Wong, K. H.; Cui, Y.; Zheng, B.; Li, D.; Luo, D.; Yu, A. Advanced Cellulosic Materials Toward High-Performance Metal Ion Batteries. Adv. Energy Mater. 2024, 14 (23), 2400208, DOI: 10.1002/aenm.202400208Google ScholarThere is no corresponding record for this reference.
- 7Adeleke, O. A. Premium ethylcellulose polymer based architectures at work in drug delivery. Int. J. Pharm.: X 2019, 1, 100023, DOI: 10.1016/j.ijpx.2019.100023Google ScholarThere is no corresponding record for this reference.
- 8Zhou, J.; Yi, T.; Zhang, Z.; Yu, D.-G.; Liu, P.; Wang, L.; Zhu, Y. Electrospun Janus core (ethyl cellulose//polyethylene oxide)@ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv. Compos. Hybrid Mater. 2023, 6 (6), 189, DOI: 10.1007/s42114-023-00766-6Google ScholarThere is no corresponding record for this reference.
- 9Su, X.; Yang, Z.; Tan, K. B.; Chen, J.; Huang, J.; Li, Q. Preparation and characterization of ethyl cellulose film modified with capsaicin. Carbohydr. Polym. 2020, 241, 116259, DOI: 10.1016/j.carbpol.2020.116259Google ScholarThere is no corresponding record for this reference.
- 10Wang, S.; Li, J.; Cao, Y.; Gu, J.; Wang, Y.; Chen, S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. Adv. Fiber Mater. 2022, 4 (1), 119– 128, DOI: 10.1007/s42765-021-00100-zGoogle ScholarThere is no corresponding record for this reference.
- 11Sun, L.; Zhou, Z.; Wu, Y.; Meng, Z.; Huang, H.; Li, T.; Wang, Z.; Yang, Y. A novel colormetric and light-up fluorescent sensor from flavonol derivative grafted cellulose for rapid and sensitive detection of Hg2+ and its applications in biological and environmental system. Int. J. Biol. Macromol. 2024, 266, 131209, DOI: 10.1016/j.ijbiomac.2024.131209Google ScholarThere is no corresponding record for this reference.
- 12Kim, T.; Yi, S.-H.; Chun, S.-E. Electrophoretic deposition of a supercapacitor electrode of activated carbon onto an indium-tin-oxide substrate using ethyl cellulose as a binder. J. Mater. Sci. Technol. 2020, 58, 188– 196, DOI: 10.1016/j.jmst.2020.03.072Google ScholarThere is no corresponding record for this reference.
- 13Ji, D.; Lin, Y.; Guo, X.; Ramasubramanian, B.; Wang, R.; Radacsi, N.; Jose, R.; Qin, X.; Ramakrishna, S. Electrospinning of nanofibres. Nat. Rev. Methods Primers 2024, 4 (1), 1, DOI: 10.1038/s43586-023-00278-zGoogle ScholarThere is no corresponding record for this reference.
- 14Xu, Z.; Liu, Y.; Xin, Q.; Dai, J.; Yu, J.; Cheng, L.; Liu, Y. T.; Ding, B. Ceramic Meta-Aerogel with Thermal Superinsulation up to 1700° C Constructed by Self-Crosslinked Nanofibrous Network via Reaction Electrospinning. Adv. Mater. 2024, 36 (32), 2401299, DOI: 10.1002/adma.202401299Google ScholarThere is no corresponding record for this reference.
- 15Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Adv. 2018, 8 (74), 42353– 42360, DOI: 10.1039/C8RA09257EGoogle ScholarThere is no corresponding record for this reference.
- 16Zhu, L.; Zaarour, B.; Jin, X. Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrospinning. Mater. Res. Express 2019, 6 (12), 125001, DOI: 10.1088/2053-1591/ab5396Google ScholarThere is no corresponding record for this reference.
- 17Karabulut, H.; Xu, D.; Ma, Y.; Tut, T. A.; Ulag, S.; Pinar, O.; Kazan, D.; Guncu, M. M.; Sahin, A.; Wei, H. A new strategy for the treatment of middle ear infection using ciprofloxacin/amoxicillin-loaded ethyl cellulose/polyhydroxybutyrate nanofibers. Int. J. Biol. Macromol. 2024, 269, 131794, DOI: 10.1016/j.ijbiomac.2024.131794Google ScholarThere is no corresponding record for this reference.
- 18Zaitoon, A.; Lim, L.-T. Effect of poly (ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose composite fibers. Materialia 2020, 10, 100649, DOI: 10.1016/j.mtla.2020.100649Google ScholarThere is no corresponding record for this reference.
- 19Kerwald, J.; de Moura Junior, C. F.; Freitas, E. D.; de Moraes Segundo, J. D. D. P.; Vieira, R. S.; Beppu, M. M. Cellulose-based electrospun nanofibers: A review. Cellulose 2022, 29 (1), 25– 54, DOI: 10.1007/s10570-021-04303-wGoogle ScholarThere is no corresponding record for this reference.
- 20Yang, Y.; Du, Y.; Zhang, J.; Zhang, H.; Guo, B. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv. Fiber Mater. 2022, 4 (5), 1027– 1057, DOI: 10.1007/s42765-022-00178-zGoogle ScholarThere is no corresponding record for this reference.
- 21Li, S.-F.; Wu, J.-H.; Hu, T.-G.; Wu, H. Encapsulation of quercetin into zein-ethyl cellulose coaxial nanofibers: Preparation, characterization and its anticancer activity. Int. J. Biol. Macromol. 2023, 248, 125797, DOI: 10.1016/j.ijbiomac.2023.125797Google ScholarThere is no corresponding record for this reference.
- 22Phan, D.-N.; Khan, M. Q.; Nguyen, N.-T.; Phan, T.-T.; Ullah, A.; Khatri, M.; Kien, N. N.; Kim, I.-S. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr. Polym. 2021, 252, 117175, DOI: 10.1016/j.carbpol.2020.117175Google ScholarThere is no corresponding record for this reference.
- 23Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Mohammadi, M.; Golchinfar, Z.; Mahmoudzadeh, M.; Jahanban-Esfahlan, A. Immobilization of α-amylase in ethylcellulose electrospun fibers using emulsion-electrospinning method. Carbohydr. Polym. 2022, 278, 118919, DOI: 10.1016/j.carbpol.2021.118919Google ScholarThere is no corresponding record for this reference.
- 24Wang, Q.; Shao, Z.; Sui, J.; Shen, R.; Chen, R.; Gui, Z.; Qi, Y.; Song, W.; Li, G.; Liu, Y. Preparation of ethyl cellulose bimodal nanofibrous membrane by green electrospinning based on molecular weight regulation for high-performance air filtration. Int. J. Biol. Macromol. 2024, 275, 133411, DOI: 10.1016/j.ijbiomac.2024.133411Google ScholarThere is no corresponding record for this reference.
- 25Rao, J.; Shen, C.; Yang, Z.; Fawole, O. A.; Li, J.; Wu, D.; Chen, K. Facile microfluidic fabrication and characterization of ethyl cellulose/PVP films with neatly arranged fibers. Carbohydr. Polym. 2022, 292, 119702, DOI: 10.1016/j.carbpol.2022.119702Google ScholarThere is no corresponding record for this reference.
- 26Yan, W.; Zhang, D.; Liu, X.; Chen, X.; Yang, C.; Kang, Z. Guar gum/ethyl cellulose-polyvinyl pyrrolidone composite-based quartz crystal microbalance humidity sensor for human respiration monitoring. ACS Appl. Mater. Interfaces 2022, 14 (27), 31343– 31353, DOI: 10.1021/acsami.2c08434Google ScholarThere is no corresponding record for this reference.
- 27Doustdar, F.; Ghorbani, M. ZIF-8 enriched electrospun ethyl cellulose/polyvinylpyrrolidone scaffolds: The key role of polyvinylpyrrolidone molecular weight. Carbohydr. Polym. 2022, 291, 119620, DOI: 10.1016/j.carbpol.2022.119620Google ScholarThere is no corresponding record for this reference.
- 28Hou, T.; Li, X.; Lu, Y.; Yang, B. Highly porous fibers prepared by centrifugal spinning. Mater. Des. 2017, 114, 303– 311, DOI: 10.1016/j.matdes.2016.11.019Google ScholarThere is no corresponding record for this reference.
- 29Park, J. Y.; Lee, I. H. Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system. J. Ind. Eng. Chem. 2007, 13 (6), 1002– 1008Google ScholarThere is no corresponding record for this reference.
- 30Yu, D.-G.; Li, X.-Y.; Chian, W.; Li, Y.; Wang, X. Influence of sheath solvents on the quality of ethyl cellulose nanofibers in a coaxial electrospinning process. Biomed. Mater. Eng. 2014, 24 (1), 695– 701, DOI: 10.3233/BME-130857Google ScholarThere is no corresponding record for this reference.
- 31Huang, C.-K.; Zhang, K.; Gong, Q.; Yu, D.-G.; Wang, J.; Tan, X.; Quan, H. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. Int. J. Biol. Macromol. 2020, 152, 68– 76, DOI: 10.1016/j.ijbiomac.2020.02.239Google ScholarThere is no corresponding record for this reference.
- 32Yang, D.; Peng, X.; Zhong, L.; Cao, X.; Chen, W.; Zhang, X.; Liu, S.; Sun, R. Green” films from renewable resources: Properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydr. Polym. 2014, 103, 198– 206, DOI: 10.1016/j.carbpol.2013.12.043Google ScholarThere is no corresponding record for this reference.
- 33Kamiyama, Y.; Tamate, R.; Hiroi, T.; Samitsu, S.; Fujii, K.; Ueki, T. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Sci. Adv. 2022, 8 (42), eadd0226 DOI: 10.1126/sciadv.add0226Google ScholarThere is no corresponding record for this reference.
- 34Zaarour, B.; Alhinnawi, M. F. A comprehensive review on branched nanofibers: Preparations, strategies, and applications. J. Ind. Text. 2022, 51 (1_suppl), 1S– 35S, DOI: 10.1177/15280837221083031Google ScholarThere is no corresponding record for this reference.
- 35Zaarour, B.; Liu, W.; Omran, W.; Alhinnawi, M. F.; Dib, F.; Shikh Alshabab, M.; Ghannoum, S.; Kayed, K.; Mansour, G.; Balidi, G. A mini-review on wrinkled nanofibers: Preparation principles via electrospinning and potential applications. J. Ind. Text. 2024, 54, 15280837241255396, DOI: 10.1177/15280837241255396Google ScholarThere is no corresponding record for this reference.
- 36Zaarour, B.; Zhu, L.; Jin, X. A review on the secondary surface morphology of electrospun nanofibers: Formation mechanisms, characterizations, and applications. ChemistrySelect 2020, 5 (4), 1335– 1348, DOI: 10.1002/slct.201903981Google ScholarThere is no corresponding record for this reference.
- 37Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. Polym. Adv. Technol. 2020, 31 (7), 1449– 1462, DOI: 10.1002/pat.4876Google ScholarThere is no corresponding record for this reference.
- 38Anisiei, A.; Oancea, F.; Marin, L. Electrospinning of chitosan-based nanofibers: From design to prospective applications. Rev. Chem. Eng. 2023, 39 (1), 31– 70, DOI: 10.1515/revce-2021-0003Google ScholarThere is no corresponding record for this reference.
- 39Zhang, W.; Li, J.; Chen, M.; Jin, X.; He, C.; Li, W. Mass Production of Polymer-Derived Ceramic Nanofibers through Solution Blow Spinning: Implications for Flexible Thermal Insulation and Protection. ACS Appl. Nano Mater. 2023, 6 (22), 21048– 21057, DOI: 10.1021/acsanm.3c04048Google ScholarThere is no corresponding record for this reference.
- 40Kianfar, P.; Bongiovanni, R.; Ameduri, B.; Vitale, A. Electrospinning of fluorinated polymers: Current state of the art on processes and applications. Polym. Rev. 2023, 63 (1), 127– 199, DOI: 10.1080/15583724.2022.2067868Google ScholarThere is no corresponding record for this reference.
- 41Dzolkifle, N. A. N.; Nawawi, W. M. F. W. A review on chitin dissolution as preparation for electrospinning application. Int. J. Biol. Macromol. 2024, 265, 130858, DOI: 10.1016/j.ijbiomac.2024.130858Google ScholarThere is no corresponding record for this reference.
- 42Singh, M. K.; Hu, M.; Cang, Y.; Hsu, H.-P.; Therien-Aubin, H.; Koynov, K.; Fytas, G.; Landfester, K.; Kremer, K. Glass transition of disentangled and entangled polymer melts: Single-chain-nanoparticles approach. Macromolecules 2020, 53 (17), 7312– 7321, DOI: 10.1021/acs.macromol.0c00550Google ScholarThere is no corresponding record for this reference.
- 43Keirouz, A.; Wang, Z.; Reddy, V. S.; Nagy, Z. K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023, 8 (11), 2201723, DOI: 10.1002/admt.202201723Google ScholarThere is no corresponding record for this reference.
- 44Liu, Y.; Guo, Q.; Zhang, X.; Wang, Y.; Mo, X.; Wu, T. Progress in electrospun fibers for manipulating cell behaviors. Adv. Fiber Mater. 2023, 5 (4), 1241– 1272, DOI: 10.1007/s42765-023-00281-9Google ScholarThere is no corresponding record for this reference.
- 45Kong, B.; Liu, R.; Guo, J.; Lu, L.; Zhou, Q.; Zhao, Y. Tailoring micro/nano-fibers for biomedical applications. Bioact. Mater. 2023, 19, 328– 347, DOI: 10.1016/j.bioactmat.2022.04.016Google ScholarThere is no corresponding record for this reference.
- 46Wang, S.; Li, J.; Cao, Y.; Gu, J.; Wang, Y.; Chen, S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. Adv. Fiber Mater. 2022, 4 (1), 119– 128, DOI: 10.1007/s42765-021-00100-zGoogle ScholarThere is no corresponding record for this reference.
- 47Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically electrospun nanofibers and their applications: A review. Nano Mater. Sci. 2021, 3 (3), 213– 232, DOI: 10.1016/j.nanoms.2020.11.003Google ScholarThere is no corresponding record for this reference.
- 48Oldal, D. G.; Topuz, F.; Holtzl, T.; Szekely, G. Green electrospinning of biodegradable cellulose acetate nanofibrous membranes with tunable porosity. ACS Sustainable Chem. Eng. 2023, 11 (3), 994– 1005, DOI: 10.1021/acssuschemeng.2c05676Google ScholarThere is no corresponding record for this reference.
- 49Jiang, S.; Kang, Z.; Liu, F.; Fan, J. 2D and 3D Electrospinning of Nanofibrous Structures by Far-Field Jet Writing. ACS Appl. Mater. Interfaces 2023, 15 (19), 23777– 23782, DOI: 10.1021/acsami.3c03145Google ScholarThere is no corresponding record for this reference.
- 50Szewczyk, P. K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid Interface Sci. 2020, 286, 102315, DOI: 10.1016/j.cis.2020.102315Google ScholarThere is no corresponding record for this reference.
- 51Topuz, F.; Abdulhamid, M. A.; Holtzl, T.; Szekely, G. Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Mater. Des. 2021, 198, 109280, DOI: 10.1016/j.matdes.2020.109280Google ScholarThere is no corresponding record for this reference.
- 52Reyes, C. G.; Lagerwall, J. P. Disruption of electrospinning due to water condensation into the Taylor cone. ACS Appl. Mater. Interfaces 2020, 12 (23), 26566– 26576, DOI: 10.1021/acsami.0c03338Google ScholarThere is no corresponding record for this reference.
- 53Al-Musawi, M. H.; Khoshkalampour, A.; Al-Naymi, H. A. S.; Shafeeq, Z. F.; Doust, S. P.; Ghorbani, M. Optimization and characterization of carrageenan/gelatin-based nanogel containing ginger essential oil enriched electrospun ethyl cellulose/casein nanofibers. Int. J. Biol. Macromol. 2023, 248, 125969, DOI: 10.1016/j.ijbiomac.2023.125969Google ScholarThere is no corresponding record for this reference.
- 54Abolhasani, M. M.; Naebe, M.; Hassanpour Amiri, M.; Shirvanimoghaddam, K.; Anwar, S.; Michels, J. J.; Asadi, K. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 2020, 7 (13), 2000517, DOI: 10.1002/advs.202000517Google ScholarThere is no corresponding record for this reference.
- 55Zhan, L.; Deng, J.; Ke, Q.; Li, X.; Ouyang, Y.; Huang, C.; Liu, X.; Qian, Y. Grooved fibers: Preparation principles through electrospinning and potential applications. Adv. Fiber Mater. 2022, 4, 203– 213, DOI: 10.1007/s42765-021-00116-5Google ScholarThere is no corresponding record for this reference.
- 56Lee, S.; Kim, D.; Lee, S.; Kim, Y. I.; Kum, S.; Kim, S. W.; Kim, Y.; Ryu, S.; Kim, M. Ambient humidity-induced phase separation for fiber morphology engineering toward piezoelectric self-powered sensing. Small 2022, 18 (17), 2105811, DOI: 10.1002/smll.202105811Google ScholarThere is no corresponding record for this reference.
- 57Zhang, Y.; Zhang, X.; Silva, S. R. P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9 (4), 2103879, DOI: 10.1002/advs.202103879Google ScholarThere is no corresponding record for this reference.
- 58Qiu, P.; Jin, R.; Son, Y.; Ju, A.; Jiang, W.; Wang, L.; Luo, W. Mesoporous Nanofibers from Extended Electrospinning Technique. Adv. Fiber Mater. 2024, 6 (3), 658– 685, DOI: 10.1007/s42765-024-00379-8Google ScholarThere is no corresponding record for this reference.
- 59Bukowski, C.; Zhang, T.; Riggleman, R. A.; Crosby, A. J. Load-bearing entanglements in polymer glasses. Sci. Adv. 2021, 7 (38), eabg9763 DOI: 10.1126/sciadv.abg9763Google ScholarThere is no corresponding record for this reference.
- 60Yan, J.; Lv, M.; Qin, Y.; Wang, B.; Kang, W.; Li, Y.; Yang, G. Triboelectric nanogenerators based on membranes comprised of polyurethane fibers loaded with ethyl cellulose and barium titanate nanoparticles. ACS Appl. Nano Mater. 2023, 6 (7), 5675– 5684, DOI: 10.1021/acsanm.3c00124Google ScholarThere is no corresponding record for this reference.
- 61Lamanna, L.; Pace, G.; Ilic, I. K.; Cataldi, P.; Viola, F.; Friuli, M.; Galli, V.; Demitri, C.; Caironi, M. Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy 2023, 108, 108168, DOI: 10.1016/j.nanoen.2023.108168Google ScholarThere is no corresponding record for this reference.
- 62Narayanan, A.; Friuli, M.; Sannino, A.; Demitri, C.; Lamanna, L. Green synthesis of stretchable ethyl cellulose film plasticized with transesterified sunflower oil. Carbohydr. Polym. Technol. Appl. 2023, 6, 100378, DOI: 10.1016/j.carpta.2023.100378Google ScholarThere is no corresponding record for this reference.
- 63Geng, Y.; Williams, G. R. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int. J. Pharm. 2023, 648, 123557, DOI: 10.1016/j.ijpharm.2023.123557Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 1 publications.
- John Schossig, Qiangjun Hao, Tyler Davide, Adedayo Towolawi, Cheng Zhang, Ping Lu. Breaking through Electrospinning Limitations: Liquid-Assisted Ultrahigh-Speed Production of Polyacrylonitrile Nanofibers. ACS Applied Engineering Materials 2024, Article ASAP.
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
References
This article references 63 other publications.
- 1Xiong, J.; Li, S.; Ye, Y.; Wang, J.; Qian, K.; Cui, P.; Gao, D.; Lin, M. F.; Chen, T.; Lee, P. S. A deformable and highly robust ethyl cellulose transparent conductor with a scalable silver nanowires bundle micromesh. Adv. Mater. 2018, 30 (36), 1802803, DOI: 10.1002/adma.201802803There is no corresponding record for this reference.
- 2Joubert, F.; Musa, O. M.; Hodgson, D. R.; Cameron, N. R. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem. Soc. Rev. 2014, 43 (20), 7217– 7235, DOI: 10.1039/C4CS00053FThere is no corresponding record for this reference.
- 3Hu, X.; Jiang, Q.; Du, L.; Meng, Z. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review. Carbohydr. Polym. 2023, 322, 121328, DOI: 10.1016/j.carbpol.2023.121328There is no corresponding record for this reference.
- 4Liang, J.; Cui, R.; Zhang, X.; Koumoto, K.; Wan, C. Polymer/Carbon Composites with Versatile Interfacial Interactions for High Performance Carbon-Based Thermoelectrics: Principles and Applications. Adv. Funct. Mater. 2023, 33 (9), 2208813, DOI: 10.1002/adfm.202208813There is no corresponding record for this reference.
- 5Gul, B. Y.; Pekgenc, E.; Vatanpour, V.; Koyuncu, I. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydr. Polym. 2023, 321, 121296, DOI: 10.1016/j.carbpol.2023.121296There is no corresponding record for this reference.
- 6Wei, J.; Ma, Q.; Teng, Y.; Yang, T.; Wong, K. H.; Cui, Y.; Zheng, B.; Li, D.; Luo, D.; Yu, A. Advanced Cellulosic Materials Toward High-Performance Metal Ion Batteries. Adv. Energy Mater. 2024, 14 (23), 2400208, DOI: 10.1002/aenm.202400208There is no corresponding record for this reference.
- 7Adeleke, O. A. Premium ethylcellulose polymer based architectures at work in drug delivery. Int. J. Pharm.: X 2019, 1, 100023, DOI: 10.1016/j.ijpx.2019.100023There is no corresponding record for this reference.
- 8Zhou, J.; Yi, T.; Zhang, Z.; Yu, D.-G.; Liu, P.; Wang, L.; Zhu, Y. Electrospun Janus core (ethyl cellulose//polyethylene oxide)@ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv. Compos. Hybrid Mater. 2023, 6 (6), 189, DOI: 10.1007/s42114-023-00766-6There is no corresponding record for this reference.
- 9Su, X.; Yang, Z.; Tan, K. B.; Chen, J.; Huang, J.; Li, Q. Preparation and characterization of ethyl cellulose film modified with capsaicin. Carbohydr. Polym. 2020, 241, 116259, DOI: 10.1016/j.carbpol.2020.116259There is no corresponding record for this reference.
- 10Wang, S.; Li, J.; Cao, Y.; Gu, J.; Wang, Y.; Chen, S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. Adv. Fiber Mater. 2022, 4 (1), 119– 128, DOI: 10.1007/s42765-021-00100-zThere is no corresponding record for this reference.
- 11Sun, L.; Zhou, Z.; Wu, Y.; Meng, Z.; Huang, H.; Li, T.; Wang, Z.; Yang, Y. A novel colormetric and light-up fluorescent sensor from flavonol derivative grafted cellulose for rapid and sensitive detection of Hg2+ and its applications in biological and environmental system. Int. J. Biol. Macromol. 2024, 266, 131209, DOI: 10.1016/j.ijbiomac.2024.131209There is no corresponding record for this reference.
- 12Kim, T.; Yi, S.-H.; Chun, S.-E. Electrophoretic deposition of a supercapacitor electrode of activated carbon onto an indium-tin-oxide substrate using ethyl cellulose as a binder. J. Mater. Sci. Technol. 2020, 58, 188– 196, DOI: 10.1016/j.jmst.2020.03.072There is no corresponding record for this reference.
- 13Ji, D.; Lin, Y.; Guo, X.; Ramasubramanian, B.; Wang, R.; Radacsi, N.; Jose, R.; Qin, X.; Ramakrishna, S. Electrospinning of nanofibres. Nat. Rev. Methods Primers 2024, 4 (1), 1, DOI: 10.1038/s43586-023-00278-zThere is no corresponding record for this reference.
- 14Xu, Z.; Liu, Y.; Xin, Q.; Dai, J.; Yu, J.; Cheng, L.; Liu, Y. T.; Ding, B. Ceramic Meta-Aerogel with Thermal Superinsulation up to 1700° C Constructed by Self-Crosslinked Nanofibrous Network via Reaction Electrospinning. Adv. Mater. 2024, 36 (32), 2401299, DOI: 10.1002/adma.202401299There is no corresponding record for this reference.
- 15Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Adv. 2018, 8 (74), 42353– 42360, DOI: 10.1039/C8RA09257EThere is no corresponding record for this reference.
- 16Zhu, L.; Zaarour, B.; Jin, X. Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrospinning. Mater. Res. Express 2019, 6 (12), 125001, DOI: 10.1088/2053-1591/ab5396There is no corresponding record for this reference.
- 17Karabulut, H.; Xu, D.; Ma, Y.; Tut, T. A.; Ulag, S.; Pinar, O.; Kazan, D.; Guncu, M. M.; Sahin, A.; Wei, H. A new strategy for the treatment of middle ear infection using ciprofloxacin/amoxicillin-loaded ethyl cellulose/polyhydroxybutyrate nanofibers. Int. J. Biol. Macromol. 2024, 269, 131794, DOI: 10.1016/j.ijbiomac.2024.131794There is no corresponding record for this reference.
- 18Zaitoon, A.; Lim, L.-T. Effect of poly (ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose composite fibers. Materialia 2020, 10, 100649, DOI: 10.1016/j.mtla.2020.100649There is no corresponding record for this reference.
- 19Kerwald, J.; de Moura Junior, C. F.; Freitas, E. D.; de Moraes Segundo, J. D. D. P.; Vieira, R. S.; Beppu, M. M. Cellulose-based electrospun nanofibers: A review. Cellulose 2022, 29 (1), 25– 54, DOI: 10.1007/s10570-021-04303-wThere is no corresponding record for this reference.
- 20Yang, Y.; Du, Y.; Zhang, J.; Zhang, H.; Guo, B. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv. Fiber Mater. 2022, 4 (5), 1027– 1057, DOI: 10.1007/s42765-022-00178-zThere is no corresponding record for this reference.
- 21Li, S.-F.; Wu, J.-H.; Hu, T.-G.; Wu, H. Encapsulation of quercetin into zein-ethyl cellulose coaxial nanofibers: Preparation, characterization and its anticancer activity. Int. J. Biol. Macromol. 2023, 248, 125797, DOI: 10.1016/j.ijbiomac.2023.125797There is no corresponding record for this reference.
- 22Phan, D.-N.; Khan, M. Q.; Nguyen, N.-T.; Phan, T.-T.; Ullah, A.; Khatri, M.; Kien, N. N.; Kim, I.-S. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr. Polym. 2021, 252, 117175, DOI: 10.1016/j.carbpol.2020.117175There is no corresponding record for this reference.
- 23Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Mohammadi, M.; Golchinfar, Z.; Mahmoudzadeh, M.; Jahanban-Esfahlan, A. Immobilization of α-amylase in ethylcellulose electrospun fibers using emulsion-electrospinning method. Carbohydr. Polym. 2022, 278, 118919, DOI: 10.1016/j.carbpol.2021.118919There is no corresponding record for this reference.
- 24Wang, Q.; Shao, Z.; Sui, J.; Shen, R.; Chen, R.; Gui, Z.; Qi, Y.; Song, W.; Li, G.; Liu, Y. Preparation of ethyl cellulose bimodal nanofibrous membrane by green electrospinning based on molecular weight regulation for high-performance air filtration. Int. J. Biol. Macromol. 2024, 275, 133411, DOI: 10.1016/j.ijbiomac.2024.133411There is no corresponding record for this reference.
- 25Rao, J.; Shen, C.; Yang, Z.; Fawole, O. A.; Li, J.; Wu, D.; Chen, K. Facile microfluidic fabrication and characterization of ethyl cellulose/PVP films with neatly arranged fibers. Carbohydr. Polym. 2022, 292, 119702, DOI: 10.1016/j.carbpol.2022.119702There is no corresponding record for this reference.
- 26Yan, W.; Zhang, D.; Liu, X.; Chen, X.; Yang, C.; Kang, Z. Guar gum/ethyl cellulose-polyvinyl pyrrolidone composite-based quartz crystal microbalance humidity sensor for human respiration monitoring. ACS Appl. Mater. Interfaces 2022, 14 (27), 31343– 31353, DOI: 10.1021/acsami.2c08434There is no corresponding record for this reference.
- 27Doustdar, F.; Ghorbani, M. ZIF-8 enriched electrospun ethyl cellulose/polyvinylpyrrolidone scaffolds: The key role of polyvinylpyrrolidone molecular weight. Carbohydr. Polym. 2022, 291, 119620, DOI: 10.1016/j.carbpol.2022.119620There is no corresponding record for this reference.
- 28Hou, T.; Li, X.; Lu, Y.; Yang, B. Highly porous fibers prepared by centrifugal spinning. Mater. Des. 2017, 114, 303– 311, DOI: 10.1016/j.matdes.2016.11.019There is no corresponding record for this reference.
- 29Park, J. Y.; Lee, I. H. Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system. J. Ind. Eng. Chem. 2007, 13 (6), 1002– 1008There is no corresponding record for this reference.
- 30Yu, D.-G.; Li, X.-Y.; Chian, W.; Li, Y.; Wang, X. Influence of sheath solvents on the quality of ethyl cellulose nanofibers in a coaxial electrospinning process. Biomed. Mater. Eng. 2014, 24 (1), 695– 701, DOI: 10.3233/BME-130857There is no corresponding record for this reference.
- 31Huang, C.-K.; Zhang, K.; Gong, Q.; Yu, D.-G.; Wang, J.; Tan, X.; Quan, H. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. Int. J. Biol. Macromol. 2020, 152, 68– 76, DOI: 10.1016/j.ijbiomac.2020.02.239There is no corresponding record for this reference.
- 32Yang, D.; Peng, X.; Zhong, L.; Cao, X.; Chen, W.; Zhang, X.; Liu, S.; Sun, R. Green” films from renewable resources: Properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydr. Polym. 2014, 103, 198– 206, DOI: 10.1016/j.carbpol.2013.12.043There is no corresponding record for this reference.
- 33Kamiyama, Y.; Tamate, R.; Hiroi, T.; Samitsu, S.; Fujii, K.; Ueki, T. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Sci. Adv. 2022, 8 (42), eadd0226 DOI: 10.1126/sciadv.add0226There is no corresponding record for this reference.
- 34Zaarour, B.; Alhinnawi, M. F. A comprehensive review on branched nanofibers: Preparations, strategies, and applications. J. Ind. Text. 2022, 51 (1_suppl), 1S– 35S, DOI: 10.1177/15280837221083031There is no corresponding record for this reference.
- 35Zaarour, B.; Liu, W.; Omran, W.; Alhinnawi, M. F.; Dib, F.; Shikh Alshabab, M.; Ghannoum, S.; Kayed, K.; Mansour, G.; Balidi, G. A mini-review on wrinkled nanofibers: Preparation principles via electrospinning and potential applications. J. Ind. Text. 2024, 54, 15280837241255396, DOI: 10.1177/15280837241255396There is no corresponding record for this reference.
- 36Zaarour, B.; Zhu, L.; Jin, X. A review on the secondary surface morphology of electrospun nanofibers: Formation mechanisms, characterizations, and applications. ChemistrySelect 2020, 5 (4), 1335– 1348, DOI: 10.1002/slct.201903981There is no corresponding record for this reference.
- 37Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. Polym. Adv. Technol. 2020, 31 (7), 1449– 1462, DOI: 10.1002/pat.4876There is no corresponding record for this reference.
- 38Anisiei, A.; Oancea, F.; Marin, L. Electrospinning of chitosan-based nanofibers: From design to prospective applications. Rev. Chem. Eng. 2023, 39 (1), 31– 70, DOI: 10.1515/revce-2021-0003There is no corresponding record for this reference.
- 39Zhang, W.; Li, J.; Chen, M.; Jin, X.; He, C.; Li, W. Mass Production of Polymer-Derived Ceramic Nanofibers through Solution Blow Spinning: Implications for Flexible Thermal Insulation and Protection. ACS Appl. Nano Mater. 2023, 6 (22), 21048– 21057, DOI: 10.1021/acsanm.3c04048There is no corresponding record for this reference.
- 40Kianfar, P.; Bongiovanni, R.; Ameduri, B.; Vitale, A. Electrospinning of fluorinated polymers: Current state of the art on processes and applications. Polym. Rev. 2023, 63 (1), 127– 199, DOI: 10.1080/15583724.2022.2067868There is no corresponding record for this reference.
- 41Dzolkifle, N. A. N.; Nawawi, W. M. F. W. A review on chitin dissolution as preparation for electrospinning application. Int. J. Biol. Macromol. 2024, 265, 130858, DOI: 10.1016/j.ijbiomac.2024.130858There is no corresponding record for this reference.
- 42Singh, M. K.; Hu, M.; Cang, Y.; Hsu, H.-P.; Therien-Aubin, H.; Koynov, K.; Fytas, G.; Landfester, K.; Kremer, K. Glass transition of disentangled and entangled polymer melts: Single-chain-nanoparticles approach. Macromolecules 2020, 53 (17), 7312– 7321, DOI: 10.1021/acs.macromol.0c00550There is no corresponding record for this reference.
- 43Keirouz, A.; Wang, Z.; Reddy, V. S.; Nagy, Z. K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023, 8 (11), 2201723, DOI: 10.1002/admt.202201723There is no corresponding record for this reference.
- 44Liu, Y.; Guo, Q.; Zhang, X.; Wang, Y.; Mo, X.; Wu, T. Progress in electrospun fibers for manipulating cell behaviors. Adv. Fiber Mater. 2023, 5 (4), 1241– 1272, DOI: 10.1007/s42765-023-00281-9There is no corresponding record for this reference.
- 45Kong, B.; Liu, R.; Guo, J.; Lu, L.; Zhou, Q.; Zhao, Y. Tailoring micro/nano-fibers for biomedical applications. Bioact. Mater. 2023, 19, 328– 347, DOI: 10.1016/j.bioactmat.2022.04.016There is no corresponding record for this reference.
- 46Wang, S.; Li, J.; Cao, Y.; Gu, J.; Wang, Y.; Chen, S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. Adv. Fiber Mater. 2022, 4 (1), 119– 128, DOI: 10.1007/s42765-021-00100-zThere is no corresponding record for this reference.
- 47Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically electrospun nanofibers and their applications: A review. Nano Mater. Sci. 2021, 3 (3), 213– 232, DOI: 10.1016/j.nanoms.2020.11.003There is no corresponding record for this reference.
- 48Oldal, D. G.; Topuz, F.; Holtzl, T.; Szekely, G. Green electrospinning of biodegradable cellulose acetate nanofibrous membranes with tunable porosity. ACS Sustainable Chem. Eng. 2023, 11 (3), 994– 1005, DOI: 10.1021/acssuschemeng.2c05676There is no corresponding record for this reference.
- 49Jiang, S.; Kang, Z.; Liu, F.; Fan, J. 2D and 3D Electrospinning of Nanofibrous Structures by Far-Field Jet Writing. ACS Appl. Mater. Interfaces 2023, 15 (19), 23777– 23782, DOI: 10.1021/acsami.3c03145There is no corresponding record for this reference.
- 50Szewczyk, P. K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid Interface Sci. 2020, 286, 102315, DOI: 10.1016/j.cis.2020.102315There is no corresponding record for this reference.
- 51Topuz, F.; Abdulhamid, M. A.; Holtzl, T.; Szekely, G. Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Mater. Des. 2021, 198, 109280, DOI: 10.1016/j.matdes.2020.109280There is no corresponding record for this reference.
- 52Reyes, C. G.; Lagerwall, J. P. Disruption of electrospinning due to water condensation into the Taylor cone. ACS Appl. Mater. Interfaces 2020, 12 (23), 26566– 26576, DOI: 10.1021/acsami.0c03338There is no corresponding record for this reference.
- 53Al-Musawi, M. H.; Khoshkalampour, A.; Al-Naymi, H. A. S.; Shafeeq, Z. F.; Doust, S. P.; Ghorbani, M. Optimization and characterization of carrageenan/gelatin-based nanogel containing ginger essential oil enriched electrospun ethyl cellulose/casein nanofibers. Int. J. Biol. Macromol. 2023, 248, 125969, DOI: 10.1016/j.ijbiomac.2023.125969There is no corresponding record for this reference.
- 54Abolhasani, M. M.; Naebe, M.; Hassanpour Amiri, M.; Shirvanimoghaddam, K.; Anwar, S.; Michels, J. J.; Asadi, K. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 2020, 7 (13), 2000517, DOI: 10.1002/advs.202000517There is no corresponding record for this reference.
- 55Zhan, L.; Deng, J.; Ke, Q.; Li, X.; Ouyang, Y.; Huang, C.; Liu, X.; Qian, Y. Grooved fibers: Preparation principles through electrospinning and potential applications. Adv. Fiber Mater. 2022, 4, 203– 213, DOI: 10.1007/s42765-021-00116-5There is no corresponding record for this reference.
- 56Lee, S.; Kim, D.; Lee, S.; Kim, Y. I.; Kum, S.; Kim, S. W.; Kim, Y.; Ryu, S.; Kim, M. Ambient humidity-induced phase separation for fiber morphology engineering toward piezoelectric self-powered sensing. Small 2022, 18 (17), 2105811, DOI: 10.1002/smll.202105811There is no corresponding record for this reference.
- 57Zhang, Y.; Zhang, X.; Silva, S. R. P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9 (4), 2103879, DOI: 10.1002/advs.202103879There is no corresponding record for this reference.
- 58Qiu, P.; Jin, R.; Son, Y.; Ju, A.; Jiang, W.; Wang, L.; Luo, W. Mesoporous Nanofibers from Extended Electrospinning Technique. Adv. Fiber Mater. 2024, 6 (3), 658– 685, DOI: 10.1007/s42765-024-00379-8There is no corresponding record for this reference.
- 59Bukowski, C.; Zhang, T.; Riggleman, R. A.; Crosby, A. J. Load-bearing entanglements in polymer glasses. Sci. Adv. 2021, 7 (38), eabg9763 DOI: 10.1126/sciadv.abg9763There is no corresponding record for this reference.
- 60Yan, J.; Lv, M.; Qin, Y.; Wang, B.; Kang, W.; Li, Y.; Yang, G. Triboelectric nanogenerators based on membranes comprised of polyurethane fibers loaded with ethyl cellulose and barium titanate nanoparticles. ACS Appl. Nano Mater. 2023, 6 (7), 5675– 5684, DOI: 10.1021/acsanm.3c00124There is no corresponding record for this reference.
- 61Lamanna, L.; Pace, G.; Ilic, I. K.; Cataldi, P.; Viola, F.; Friuli, M.; Galli, V.; Demitri, C.; Caironi, M. Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy 2023, 108, 108168, DOI: 10.1016/j.nanoen.2023.108168There is no corresponding record for this reference.
- 62Narayanan, A.; Friuli, M.; Sannino, A.; Demitri, C.; Lamanna, L. Green synthesis of stretchable ethyl cellulose film plasticized with transesterified sunflower oil. Carbohydr. Polym. Technol. Appl. 2023, 6, 100378, DOI: 10.1016/j.carpta.2023.100378There is no corresponding record for this reference.
- 63Geng, Y.; Williams, G. R. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int. J. Pharm. 2023, 648, 123557, DOI: 10.1016/j.ijpharm.2023.123557There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaenm.4c00527.
Photograph of the rapid solidification of the core EC solution within the Taylor cone (Figure S1); SEM images of EC nanoparticles (Figure S2); photographs of the effect of varying sheath chloroform flow rates on Taylor cone formation (Figure S3) (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.