Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

In Silico Discovery of Covalent Organic Frameworks for Carbon Capture

  • Kathryn S. Deeg
    Kathryn S. Deeg
    Department of Chemistry, University of California, Berkeley, California 94720, United States
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
  • Daiane Damasceno Borges
    Daiane Damasceno Borges
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
    Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG 38408-100, Brasil
  • Daniele Ongari
    Daniele Ongari
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
  • Nakul Rampal
    Nakul Rampal
    Adsorption and Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
    More by Nakul Rampal
  • Leopold Talirz
    Leopold Talirz
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
    Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
  • Aliaksandr V. Yakutovich
    Aliaksandr V. Yakutovich
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
    Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
  • Johanna M. Huck
    Johanna M. Huck
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
  • , and 
  • Berend Smit*
    Berend Smit
    Department of Chemistry, University of California, Berkeley, California 94720, United States
    Laboratory of Molecular Simulation (LSMO), Institut des sciences et ingénierie chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Valais, 1951 Sion, Switzerland
    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
    *Email: [email protected]
    More by Berend Smit
Cite this: ACS Appl. Mater. Interfaces 2020, 12, 19, 21559–21568
Publication Date (Web):March 26, 2020
https://doi.org/10.1021/acsami.0c01659
Copyright © 2020 American Chemical Society

    Article Views

    2769

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    We screen a database of more than 69 000 hypothetical covalent organic frameworks (COFs) for carbon capture using parasitic energy as a metric. To compute CO2–framework interactions in molecular simulations, we develop a genetic algorithm to tune the charge equilibration method and derive accurate framework partial charges. Nearly 400 COFs are identified with parasitic energy lower than that of an amine scrubbing process using monoethanolamine; more than 70 are better performers than the best experimental COFs and several perform similarly to Mg-MOF-74. We analyze the effect of pore topology on carbon capture performance to guide the development of improved carbon capture materials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c01659.

    • Parameters and additional results involved in our method for tuning parameters for the charge equilibration method; occurrences of linkers and topological nets in the COF database; representative graphs illustrating AiiDA workflows; CO2 Henry coefficients of all COFs in the database; and additional geometric and adsorption data for top-performing COFs (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 45 publications.

    1. Juul S. De Vos, Siddharth Ravichandran, Sander Borgmans, Louis Vanduyfhuys, Pascal Van Der Voort, Sven M. J. Rogge, Veronique Van Speybroeck. High-Throughput Screening of Covalent Organic Frameworks for Carbon Capture Using Machine Learning. Chemistry of Materials 2024, 36 (9) , 4315-4330. https://doi.org/10.1021/acs.chemmater.3c03230
    2. Gokhan Onder Aksu, Seda Keskin. Rapid and Accurate Screening of the COF Space for Natural Gas Purification: COFInformatics. ACS Applied Materials & Interfaces 2024, 16 (15) , 19806-19818. https://doi.org/10.1021/acsami.4c01641
    3. Bidhan Chandra Patra, Subhasis Datta, Santanu Bhattacharya. A Stimuli-Responsive Dual-Emitting Covalent Organic Framework Shows Selective Sensing of Highly Corrosive Acidic Media via Fluorescence Turn-On Signal with White Light Emission. ACS Applied Materials & Interfaces 2024, 16 (6) , 7650-7659. https://doi.org/10.1021/acsami.3c15339
    4. Hyunsoo Park, Yeonghun Kang, Jihan Kim. Enhancing Structure–Property Relationships in Porous Materials through Transfer Learning and Cross-Material Few-Shot Learning. ACS Applied Materials & Interfaces 2023, 15 (48) , 56375-56385. https://doi.org/10.1021/acsami.3c10323
    5. Drew M. Glenna, Asmita Jana, Qiang Xu, Yixiao Wang, Yuqing Meng, Yingchao Yang, Manish Neupane, Lucun Wang, Haiyan Zhao, Jin Qian, Seth W. Snyder. Carbon Capture: Theoretical Guidelines for Activated Carbon-Based CO2 Adsorption Material Evaluation. The Journal of Physical Chemistry Letters 2023, 14 (47) , 10693-10699. https://doi.org/10.1021/acs.jpclett.3c02711
    6. Mohaddeseh Afshari, Mohammad Dinari. Improving the Reaction-to-Fire Properties of Thermoplastic Polyurethane by New Phosphazene–Triazinyl-Based Covalent Organic Framework. ACS Applied Materials & Interfaces 2022, 14 (43) , 49003-49013. https://doi.org/10.1021/acsami.2c14509
    7. Alexa Grimm, Matteo Gazzani. A Machine Learning-Aided Equilibrium Model of VTSA Processes for Sorbents Screening Applied to CO2 Capture from Diluted Sources. Industrial & Engineering Chemistry Research 2022, 61 (37) , 14004-14019. https://doi.org/10.1021/acs.iecr.2c01695
    8. Sena Aydin, Cigdem Altintas, Seda Keskin. High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification. ACS Applied Materials & Interfaces 2022, 14 (18) , 21738-21749. https://doi.org/10.1021/acsami.2c04016
    9. Omer Faruk Altundal, Zeynep Pinar Haslak, Seda Keskin. Combined GCMC, MD, and DFT Approach for Unlocking the Performances of COFs for Methane Purification. Industrial & Engineering Chemistry Research 2021, 60 (35) , 12999-13012. https://doi.org/10.1021/acs.iecr.1c01742
    10. Andres Ortega-Guerrero, Hafeesudeen Sahabudeen, Alexander Croy, Arezoo Dianat, Renhao Dong, Xinliang Feng, Gianaurelio Cuniberti. Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air–Water Interface. ACS Applied Materials & Interfaces 2021, 13 (22) , 26411-26420. https://doi.org/10.1021/acsami.1c05967
    11. Hailong Ning, Zhiyuan Yang, Zhiqiang Yin, Dechao Wang, Zhuoyue Meng, Changguo Wang, Yating Zhang, Zhiping Chen. A Novel Strategy to Enhance the Performance of CO2 Adsorption Separation: Grafting Hyper-cross-linked Polyimide onto Composites of UiO-66-NH2 and GO. ACS Applied Materials & Interfaces 2021, 13 (15) , 17781-17790. https://doi.org/10.1021/acsami.1c00917
    12. Edder J. García, Daniel Bahamon, Lourdes F. Vega. Systematic Search of Suitable Metal–Organic Frameworks for Thermal Energy-Storage Applications with Low Global Warming Potential Refrigerants. ACS Sustainable Chemistry & Engineering 2021, 9 (8) , 3157-3171. https://doi.org/10.1021/acssuschemeng.0c07797
    13. Gokhan Onder Aksu, Hilal Daglar, Cigdem Altintas, Seda Keskin. Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and Membrane-Based CO2/H2 Separation. The Journal of Physical Chemistry C 2020, 124 (41) , 22577-22590. https://doi.org/10.1021/acs.jpcc.0c07062
    14. Vadim V. Korolev, Artem Mitrofanov, Ekaterina I. Marchenko, Nickolay N. Eremin, Valery Tkachenko, Stepan N. Kalmykov. Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chemistry of Materials 2020, 32 (18) , 7822-7831. https://doi.org/10.1021/acs.chemmater.0c02468
    15. Sadiye Velioğlu, H. Enis Karahan, Ş. Birgül Tantekin-Ersolmaz. Predictive transport modelling in polymeric gas separation membranes: From additive contributions to machine learning. Separation and Purification Technology 2024, 340 , 126743. https://doi.org/10.1016/j.seppur.2024.126743
    16. Sen Xue, Xiaofan Ma, Yifan Wang, Gaigai Duan, Chunmei Zhang, Kunming Liu, Shaohua Jiang. Advanced development of three-dimensional covalent organic frameworks: Valency design, functionalization, and applications. Coordination Chemistry Reviews 2024, 504 , 215659. https://doi.org/10.1016/j.ccr.2024.215659
    17. Seongbin Ga, Nahyeon An, Gi Yeol Lee, Chonghyo Joo, Junghwan Kim. Multidisciplinary high-throughput screening of metal–organic framework for ammonia-based green hydrogen production. Renewable and Sustainable Energy Reviews 2024, 192 , 114275. https://doi.org/10.1016/j.rser.2023.114275
    18. Michelle Ernst, Jack D. Evans, Ganna Gryn'ova. Host–guest interactions in framework materials: Insight from modeling. Chemical Physics Reviews 2023, 4 (4) https://doi.org/10.1063/5.0144827
    19. Cigdem Altintas, Seda Keskin. On the shoulders of high-throughput computational screening and machine learning: Design and discovery of MOFs for H2 storage and purification. Materials Today Energy 2023, 38 , 101426. https://doi.org/10.1016/j.mtener.2023.101426
    20. He Li, Akhil Dilipkumar, Saifudin Abubakar, Dan Zhao. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chemical Society Reviews 2023, 52 (18) , 6294-6329. https://doi.org/10.1039/D2CS00465H
    21. Guojing Cong, Victor Fung. Improving materials property predictions for graph neural networks with minimal feature engineering *. Machine Learning: Science and Technology 2023, 4 (3) , 035030. https://doi.org/10.1088/2632-2153/acefab
    22. Gokhan Onder Aksu, Seda Keskin. Advancing CH 4 /H 2 separation with covalent organic frameworks by combining molecular simulations and machine learning. Journal of Materials Chemistry A 2023, 11 (27) , 14788-14799. https://doi.org/10.1039/D3TA02433D
    23. Aditya Nandy, Shuwen Yue, Changhwan Oh, Chenru Duan, Gianmarco G. Terrones, Yongchul G. Chung, Heather J. Kulik. A database of ultrastable MOFs reassembled from stable fragments with machine learning models. Matter 2023, 6 (5) , 1585-1603. https://doi.org/10.1016/j.matt.2023.03.009
    24. Juul S. De Vos, Sander Borgmans, Pascal Van Der Voort, Sven M. J. Rogge, Veronique Van Speybroeck. ReDD-COFFEE: a ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. Journal of Materials Chemistry A 2023, 11 (14) , 7468-7487. https://doi.org/10.1039/D3TA00470H
    25. Xiaoqiong Wang, Haorui Liu, Jinrui Zhang, Shuixia Chen. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polymer Chemistry 2023, 14 (12) , 1293-1317. https://doi.org/10.1039/D2PY01350A
    26. Supriyanka Rana, Eshita Sharma, P. Mishra, L. Singh, Z.A. Wahid, R. Gupta, Swati Sharma. Metal-organic and covalent-organic frameworks for CO2 capture. 2023, 101-134. https://doi.org/10.1016/B978-0-323-85777-2.00008-1
    27. Gokhan Onder Aksu, Ilknur Erucar, Zeynep Pinar Haslak, Seda Keskin. Exploring covalent organic frameworks for H2S+CO2 separation from natural gas using efficient computational approaches. Journal of CO2 Utilization 2022, 62 , 102077. https://doi.org/10.1016/j.jcou.2022.102077
    28. Qun Guan, Le-Le Zhou, Yu-Bin Dong. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews 2022, 51 (15) , 6307-6416. https://doi.org/10.1039/D1CS00983D
    29. Christopher Kessler, Robin Schuldt, Sebastian Emmerling, Bettina V. Lotsch, Johannes Kästner, Joachim Gross, Niels Hansen. Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials 2022, 336 , 111796. https://doi.org/10.1016/j.micromeso.2022.111796
    30. Antonios Raptakis, Alexander Croy, Arezoo Dianat, Rafael Gutierrez, Gianaurelio Cuniberti. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations. RSC Advances 2022, 12 (20) , 12283-12291. https://doi.org/10.1039/D2RA01007K
    31. Huili Xin, Sainan Zhou, Shengyu Xu, Wanru Zhai, Sen Liu, Siyuan Liu, Zhaojie Wang, Xiaoqing Lu, Shuxian Wei. Functionalized linker to form high-symmetry adsorption sites in micropore COF for CO2 capture and separation: insight from GCMC simulations. Journal of Materials Science 2022, 57 (11) , 6282-6292. https://doi.org/10.1007/s10853-022-07008-y
    32. Yan Huang, Xiaoqian Hao, Shuanglong Ma, Rui Wang, Yazhou Wang. Covalent organic framework-based porous materials for harmful gas purification. Chemosphere 2022, 291 , 132795. https://doi.org/10.1016/j.chemosphere.2021.132795
    33. Hou Wang, Yi Yang, Xingzhong Yuan, Wei Liang Teo, Yan Wu, Lin Tang, Yanli Zhao. Structure–performance correlation guided applications of covalent organic frameworks. Materials Today 2022, 53 , 106-133. https://doi.org/10.1016/j.mattod.2022.02.001
    34. Gokhan Onder Aksu, Ilknur Erucar, Zeynep Pinar Haslak, Seda Keskin. Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening. Chemical Engineering Journal 2022, 427 , 131574. https://doi.org/10.1016/j.cej.2021.131574
    35. Federica Zanca, Lawson T. Glasby, Sanggyu Chong, Siyu Chen, Jihan Kim, David Fairen-Jimenez, Bartomeu Monserrat, Peyman Z. Moghadam. Computational techniques for characterisation of electrically conductive MOFs: quantum calculations and machine learning approaches. Journal of Materials Chemistry C 2021, 9 (39) , 13584-13599. https://doi.org/10.1039/D1TC02543K
    36. Hongbing Wang, Yanyan Liu, Yang Liu, Zhikun Wang, Chunling Li, Shuangqing Sun, Qiang Lyu, Songqing Hu. Two-dimensional imine covalent organic frameworks for methane and ethane separation: A GCMC simulation study. Microporous and Mesoporous Materials 2021, 326 , 111386. https://doi.org/10.1016/j.micromeso.2021.111386
    37. Christopher Kessler, Johannes Eller, Joachim Gross, Niels Hansen. Adsorption of light gases in covalent organic frameworks: comparison of classical density functional theory and grand canonical Monte Carlo simulations. Microporous and Mesoporous Materials 2021, 324 , 111263. https://doi.org/10.1016/j.micromeso.2021.111263
    38. Francesco Sabatino, Alexa Grimm, Fausto Gallucci, Martin van Sint Annaland, Gert Jan Kramer, Matteo Gazzani. A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 2021, 5 (8) , 2047-2076. https://doi.org/10.1016/j.joule.2021.05.023
    39. Dylan M Anstine, Coray M Colina. Sorption‐induced polymer rearrangement: approaches from molecular modeling. Polymer International 2021, 70 (7) , 984-989. https://doi.org/10.1002/pi.6124
    40. Sander Borgmans, Sven M. J. Rogge, Juul S. De Vos, Christian V. Stevens, Pascal Van Der Voort, Veronique Van Speybroeck. Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder X‐Ray Diffraction Protocol. Angewandte Chemie 2021, 133 (16) , 8995-9004. https://doi.org/10.1002/ange.202017153
    41. Sander Borgmans, Sven M. J. Rogge, Juul S. De Vos, Christian V. Stevens, Pascal Van Der Voort, Veronique Van Speybroeck. Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder X‐Ray Diffraction Protocol. Angewandte Chemie International Edition 2021, 60 (16) , 8913-8922. https://doi.org/10.1002/anie.202017153
    42. Nafiseh Bagherian, Ali Reza Karimi, Abbas Amini. Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO2 capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 613 , 126078. https://doi.org/10.1016/j.colsurfa.2020.126078
    43. Antonios Raptakis, Arezoo Dianat, Alexander Croy, Gianaurelio Cuniberti. Predicting the bulk modulus of single-layer covalent organic frameworks with square-lattice topology from molecular building-block properties. Nanoscale 2021, 13 (2) , 1077-1085. https://doi.org/10.1039/D0NR07666J
    44. Caroline Desgranges, Jerome Delhommelle. Towards a machine learned thermodynamics: exploration of free energy landscapes in molecular fluids, biological systems and for gas storage and separation in metal–organic frameworks. Molecular Systems Design & Engineering 2021, 6 (1) , 52-65. https://doi.org/10.1039/D0ME00134A
    45. Omer Faruk Altundal, Cigdem Altintas, Seda Keskin. Can COFs replace MOFs in flue gas separation? high-throughput computational screening of COFs for CO 2 /N 2 separation. Journal of Materials Chemistry A 2020, 8 (29) , 14609-14623. https://doi.org/10.1039/D0TA04574H