ACS Publications. Most Trusted. Most Cited. Most Read
High Modulus, Thermally Stable, and Self-Extinguishing Aramid Nanofiber Separators
My Activity

Figure 1Loading Img
    Energy, Environmental, and Catalysis Applications

    High Modulus, Thermally Stable, and Self-Extinguishing Aramid Nanofiber Separators
    Click to copy article linkArticle link copied!

    • Anish Patel
      Anish Patel
      Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
      More by Anish Patel
    • Kathryn Wilcox
      Kathryn Wilcox
      Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
    • Zhuo Li
      Zhuo Li
      Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
      More by Zhuo Li
    • Ian George
      Ian George
      Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
      More by Ian George
    • Rishabh Juneja
      Rishabh Juneja
      Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
    • Christina Lollar
      Christina Lollar
      Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
    • Simone Lazar
      Simone Lazar
      Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
      More by Simone Lazar
    • Jaime Grunlan
      Jaime Grunlan
      Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
      Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
    • Wyatt E. Tenhaeff
      Wyatt E. Tenhaeff
      Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
    • Jodie L. Lutkenhaus*
      Jodie L. Lutkenhaus
      Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
      Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2020, 12, 23, 25756–25766
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.0c03671
    Published May 5, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Mechanically and thermally robust separators offer an alternative approach for preventing battery failure under extreme conditions such as high loads and temperatures. However, the trade-off between electrochemical performance and mechanical and thermal stability remains an ongoing challenge. Here, we investigate aramid nanofiber (ANF) separators that possess high moduli and self-extinguishing characteristics. The ANF separators are formed from the dissolution of bulk Kevlar fibers and their subsequent vacuum-assisted self-assembly. Thermogravimetric analysis shows a high 5 wt % decomposition temperature of 447 °C, which is over ∼175 °C higher than commercial Celgard separators. The ANF separator also possesses a high Young’s modulus of 8.8 GPa, which is ∼1000% higher than commercial separators. Even when dry or when soaked in battery electrolyte, the ANF separators self-extinguish upon exposure to flame, whereas commercial separators melt or drip. We show that these features, although adventitious, present a trade-off with electrochemical performance in which a lithium nickel manganse cobalt (NMC) oxide-based battery possessed a reduced capacity of 123.4 mA h g–1. Considering the separator holistically, we propose that the ANF separator shows an excellent balance of the combined properties of high modulus, flame-resistance, thermal stability, and electrochemical stability and might be suitable for extreme environment applications with further testing.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c03671.

    • Contains information on ionic conductivity calculations, freeze-dried ANF (f-ANF) separators, and additional characterizations and experiments (PDF)

    • Video of flame test (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 88 publications.

    1. Gayeon Jeong, Hyeri Kim, Juhyeon Song, Dohyeong Kim, Garam Park, Youngho Eom, Jaseung Koo. Supercritical Fluid-Dried Copolymerized Aramid Nanofiber Sheets with Exceptional Thermal and Dimensional Stability. ACS Applied Materials & Interfaces 2025, Article ASAP.
    2. David Mecerreyes, Nerea Casado, Irune Villaluenga, Maria Forsyth. Current Trends and Perspectives of Polymers in Batteries. Macromolecules 2024, 57 (7) , 3013-3025. https://doi.org/10.1021/acs.macromol.3c01971
    3. Shixuan Yang, Min Zhao, Ran He, Yuexi Chen, Yongyi Guo, Haoyang Wang, Zhenguo Wang, Teng Qiu, Xinlin Tuo. Solution Blow Spinning of the Benzimidazole-Containing Aramid Nanofibers for Separators of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2024, 16 (12) , 15362-15371. https://doi.org/10.1021/acsami.4c00902
    4. Chuang Li, Mengtian Zhang, Peixuan Li, Hong-Rui Ren, Xian Wu, Zhihong Piao, Xiao Xiao, Mingxin Zhang, Xiangyu Liang, Xinru Wu, Biao Chen, Hong Li, Zhiyuan Han, Ji Liu, Ling Qiu, Guangmin Zhou, Hui-Ming Cheng. Self-Assembly of Ultrathin, Ultrastrong Layered Membranes by Protic Solvent Penetration. Journal of the American Chemical Society 2024, 146 (5) , 3553-3563. https://doi.org/10.1021/jacs.3c14307
    5. Shunxi Song, Qianyu Wang, Dexian Ji, Linghao Li, Jiaojun Tan, Qi Wu, Yuming Lyu, Meiyun Zhang. Nacre-Inspired Aramid Nanofibers/Basalt Fibers Composite Paper with Excellent Flame Retardance and Thermal Stability by Constructing an Organic–Inorganic Fiber Alternating Layered Structure. ACS Applied Materials & Interfaces 2024, 16 (3) , 4045-4055. https://doi.org/10.1021/acsami.3c16614
    6. Dharmendra Singh, Durga Lakshmi, Chhuttan L. Meena, Gamidi Rama Krishna, Gangadhar J. Sanjayan. Carbamate-Protected (BOC and O-NB) 2-Aminopyrimidinedione-Based Janus G-C Nucleobase Motifs as Building Blocks for Supramolecular Assembly and Smart Polymers. The Journal of Organic Chemistry 2023, 88 (21) , 14953-14959. https://doi.org/10.1021/acs.joc.3c01318
    7. Aashray Narla, Wenbin Fu, Alp Kulaksizoglu, Atsushi Kume, Billy R. Johnson, Ashwin Sankara Raman, Fujia Wang, Alexandre Magasinski, Doyoub Kim, Mohammed Kousa, Yiran Xiao, Samik Jhulki, Kostiantyn Turcheniuk, Gleb Yushin. Nanodiamond-Enhanced Nanofiber Separators for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2023, 15 (27) , 32678-32686. https://doi.org/10.1021/acsami.3c04305
    8. Weiwei Li, Bin Yang, Ruixue Pang, Linxin Zhong, Meiyun Zhang. Polysulfide and Li Dendrite-Blocking Aramid Nanofiber/Metal–Organic Framework Composite Separators for Advanced Lithium–Sulfur Batteries. ACS Applied Nano Materials 2023, 6 (2) , 1059-1071. https://doi.org/10.1021/acsanm.2c04500
    9. Yiting Liu, Mark Robertson, Zhe Qiang, Zheyi Meng, Changhuai Ye, Meifang Zhu. Ambient Drying Route to Aramid Nanofiber Aerogels with High Mechanical Properties for Low-k Dielectrics. ACS Applied Polymer Materials 2023, 5 (1) , 866-876. https://doi.org/10.1021/acsapm.2c01806
    10. Thi Tuong Vi Tran, Vu-Anh Le, Cong-Hau Nguyen, Dai-Viet N. Vo, Tung Manh Nguyen, Chanatip Samart, Suwadee Kongparakul, Suresh Ghotekar, Canh Minh Vu. Thermoconductive Ultralong Copper Nanowire-Based Aramid Nanofiber Nanopapers for Electromagnetic Interference Shielding. ACS Applied Nano Materials 2022, 5 (9) , 12991-13001. https://doi.org/10.1021/acsanm.2c02792
    11. Weitong Xu, Yushang Song, Chunjie Xie, Zehan Li, Jiawei Zong, Longhai Guo, Jun Ye, Xiaoyu Li, Teng Qiu, Xinlin Tuo. Surface Decoration and Functionalization on Polymerization-Induced Aramid Nanofibers: Implications for Barrier Films and Light-to-Heat Conversion. ACS Applied Nano Materials 2022, 5 (8) , 11059-11070. https://doi.org/10.1021/acsanm.2c02252
    12. Lihua Zhao, Chengmei Wei, Junwen Ren, Yuchao Li, Jiajia Zheng, Lichuan Jia, Zhong Wang, Shenli Jia. Biomimetic Nacreous Composite Films toward Multipurpose Application Structured by Aramid Nanofibers and Edge-Hydroxylated Boron Nitride Nanosheets. Industrial & Engineering Chemistry Research 2022, 61 (25) , 8881-8894. https://doi.org/10.1021/acs.iecr.2c01281
    13. Mihit H. Parekh, Suyash Oka, Jodie Lutkenhaus, Vilas G. Pol. Critical-Point-Dried, Porous, and Safer Aramid Nanofiber Separator for High-Performance Durable Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (25) , 29176-29187. https://doi.org/10.1021/acsami.2c04630
    14. Fugang Hu, Jinsong Zeng, Jinpeng Li, Bin Wang, Zheng Cheng, Tianguang Wang, Kefu Chen. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS Applied Materials & Interfaces 2022, 14 (12) , 14640-14653. https://doi.org/10.1021/acsami.2c01597
    15. Seok Hyeon Kang, Jung-Kyu Jang, Hwan Yeop Jeong, Soonyong So, Sung-Kwon Hong, Young Taik Hong, Sang Jun Yoon, Duk Man Yu. Polyacrylonitrile/Phosphazene Composite-Based Heat-Resistant and Flame-Retardant Separators for Safe Lithium-Ion Batteries. ACS Applied Energy Materials 2022, 5 (2) , 2452-2461. https://doi.org/10.1021/acsaem.1c03948
    16. Ruihong Zhang, Xiaobao Gong, Sai Wang, Yucheng Tian, Yitao Liu, Shichao Zhang, Jianyong Yu, Bin Ding. Superelastic and Fire-Retardant Nano-/Microfibrous Sponges for High-Efficiency Warmth Retention. ACS Applied Materials & Interfaces 2021, 13 (48) , 58027-58035. https://doi.org/10.1021/acsami.1c19850
    17. Zijing Liu, Xu Lin, Xueyan Mai, Jiandong Zhuang, Fei Guo, Rilong Yang, Yan Yu, Xuexia Zhang. Ambient drying fabrication of mechanically robust, flame-retardant, thermal-insulating cellulose/aramid nanofiber composite foam via freeze-casting combined ion cross-linking. Carbohydrate Polymers 2025, 353 , 123269. https://doi.org/10.1016/j.carbpol.2025.123269
    18. Wenjie He, Zhigang Li, JingZeng Gu, Gang Qin, Jia Yang, Xinxin Cao, Min Zhang, Jiangmin Jiang. Multifunctional aramid-based composite quasi-solid-state electrolytes for flexible structure batteries. Journal of Colloid and Interface Science 2025, 680 , 77-84. https://doi.org/10.1016/j.jcis.2024.11.071
    19. Ming-hua Cheng, Xiang Xu, Hao-wen Zhang, Si-yu Kong, Zhe-sheng Feng, Fanbin Meng, Yan Wang. Self-assembling, flexible and stable aramid nanofiber/polypyrrole/MXene composite film for efficient electromagnetic interference shielding, dual‑driven heating and infrared thermal camouflage. Chemical Engineering Journal 2025, 505 , 159112. https://doi.org/10.1016/j.cej.2024.159112
    20. Zabish Bilew Muche, Yosef Nikodimos, Chia-Yu Chang, Semaw Kebede Merso, Teshager Mekonnen Tekaligne, Kassie Nigus Shitaw, Gashahun Gobena Serbessa, Teklay Mezgebe Hagos, Bereket Woldegbreal Taklu, Tripti Agnihotri, Sheng-Chiang Yang, Jian-Ming Chiu, She-Huang Wu, Wei-Nien Su, Bing Joe Hwang. Integrating electrodes and PVDF-HFP/Kevlar nanofiber separator for multi-functions using electrospinning. Chemical Engineering Journal 2025, 505 , 159493. https://doi.org/10.1016/j.cej.2025.159493
    21. Moon San, Do Youb Kim, Myeong Hwan Lee, Jungdon Suk, Yongku Kang. Nanoelectrochemistry in next generation lithium batteries. 2025, 211-250. https://doi.org/10.1016/B978-0-443-18600-4.00008-9
    22. Zewei Zhang, Xiaoqi Song, Ting Yu, Xiping Lei. A porous and flame-retardant rGO/PPTA modified PP composite separator suitable for high electrochemical performance and excellent security of lithium metal battery. Journal of Materials Chemistry C 2025, 31 https://doi.org/10.1039/D4TC04860A
    23. Yingxue Sun, Zan Chen, Claudia Li, Cuijia Duan, Hongfei Guo, Xinyao Huang, Tongtong Zhang, Kang Hui Lim, Yinhui Li, Sibudjing Kawi. Bismuth oxychloride nanosheets anchored aramid separator with sponge-like structure for improved lithium-ion battery performance. Journal of Colloid and Interface Science 2024, 675 , 117-129. https://doi.org/10.1016/j.jcis.2024.06.244
    24. Xiaojuan Zhang, Yu Wu, Bo Yu, Kunpeng Hu, Ping Zhang, Fei Ding, Lin Zhang, Yuanfu Chen, Jian Zhen Ou, Zhigang Zhang. Recent advances in functionalized separator for dendrites‐free and stable lithium metal batteries. EcoEnergy 2024, 2 (4) , 549-598. https://doi.org/10.1002/ece2.58
    25. Mengjie Zhang, Xu Zhang, Sen Liu, Wenshuo Hou, Yang Lu, Linrui Hou, Yongsong Luo, Yang Liu, Changzhou Yuan. Versatile Separators Toward Advanced Lithium‐Sulfur Batteries: Status, Recent Progress, Challenges and Perspective. ChemSusChem 2024, 17 (21) https://doi.org/10.1002/cssc.202400538
    26. Shaopeng Liu, Sha Cheng, Cheng Huang, Jin Han, Jingjing Xie, Pengchao Zhang, Ya You, Wen Chen, Zhengyi Fu. Nanoporous Aramid Nanofiber Separators with High Modulus and Thermal Stability for Safe Lithium‐Ion Batteries. Small 2024, 6 https://doi.org/10.1002/smll.202404639
    27. Yu Fu, Zhanghao Gu, Qi Gan, Yiu-Wing Mai. A review on the ionic conductivity and mechanical properties of composite polymer electrolytes (CPEs) for lithium batteries: Insights from the perspective of polymer/filler composites. Materials Science and Engineering: R: Reports 2024, 160 , 100815. https://doi.org/10.1016/j.mser.2024.100815
    28. Huijie Pei, Xin Guan, Xiaoyu Chen, Yi Chen, Yufei Yang, Yingfeng Wen, Hui Nie, Li Chang, Xingping Zhou, Xiaolin Xie, Lin Ye, Yiu-Wing Mai. Multifunctional tri-layer aramid nanofiber composite separators for high-energy-density lithium-sulfur batteries. Nano Energy 2024, 126 , 109680. https://doi.org/10.1016/j.nanoen.2024.109680
    29. Fangcheng Lv, Lvqian Fu, Qibin Wang, Kaixuan Sun, Rui Yang, Sidi Fan, Xiang Yu. Closed loop recycling of electrically damaged meta-aramid papers with high electrical insulation and mechanical strength. Composites Science and Technology 2024, 254 , 110688. https://doi.org/10.1016/j.compscitech.2024.110688
    30. Huijuan Zhao, Guodong Zhao, Fengquan Liu, Feifei Lan, Jianjun Zhou, Lin Li. A dual-network structured poly (m-phenylene isophthalamide) nanofiber separator with Li6.4La3Zr1.4Ta0.6O12 for dendrite-free and high-safety lithium-metal batteries. Chemical Engineering Journal 2024, 490 , 151559. https://doi.org/10.1016/j.cej.2024.151559
    31. Xuyun Liang, Gaofa Chen, Qingshan Wu, Haichen Zhang, Rongjian Zhong, Xianghong Zeng, Dechao Hu, Jing Lin. Highly thermally conductive composite films by the rational assembly of aramid nanofibers with low-dimensional nanofillers. Journal of Materials Research and Technology 2024, 30 , 4003-4023. https://doi.org/10.1016/j.jmrt.2024.04.095
    32. Sangyoon Lee, Seong-Heon Cho, Sungyup Jung, Kyungjung Kwon, Yiu Fai Tsang, Eilhann E. Kwon. Sustainable method for disposing of ceramic-coated battery separator via carbon dioxide-assisted thermochemical process. Journal of Analytical and Applied Pyrolysis 2024, 179 , 106466. https://doi.org/10.1016/j.jaap.2024.106466
    33. Bin Yang, Ruixue Pang, Jiale He, Hao Sun, Baolong Yuan, Meiyun Zhang. Janus separator with high-temperature resistance and dendrite suppression for advanced Li-ions batteries. Journal of Power Sources 2024, 600 , 234259. https://doi.org/10.1016/j.jpowsour.2024.234259
    34. Chen Chang, Xuyang Wang, Xingyan Zeng, Yingfeng Wen, Hui Nie, Li Chang, Xingping Zhou, Xiaolin Xie, Lin Ye, Yiu-Wing Mai. Thermal conductive aramid nanofiber/surface-decorated alumina microsphere composite separator. Polymer 2024, 296 , 126793. https://doi.org/10.1016/j.polymer.2024.126793
    35. Kaito Watanabe, Masahiro Kaneko, Xianzhu Zhong, Kenji Takada, Tatsuo Kaneko, Mika Kawai, Tetsu Mitsumata. Effect of Water Absorption on Electric Properties of Temperature-Resistant Polymers. Polymers 2024, 16 (4) , 521. https://doi.org/10.3390/polym16040521
    36. Xiuxiu Sun, Shanshan Gao, Jiale Wang, Xianglin Qiu, Yan Ma, Gongchen Xu, Xiaoming Song. TiO2 modified para-aramid nanofiber composite separator for thermal runaway prevention and shuttle effect mitigation of lithium-sulfur batteries. Microporous and Mesoporous Materials 2024, 366 , 112983. https://doi.org/10.1016/j.micromeso.2024.112983
    37. Hale Bulbul, Meltem Yanilmaz, Juran Kim. Composite waste-based aramid aerogel separators. Journal of Industrial Textiles 2024, 54 https://doi.org/10.1177/15280837241279985
    38. Sagar A. Joshi, Sivaraj Pazhaniswamy, Christian Plank, Michael A. Danzer, Haoqing Hou, Jun Young Cheong, Josef Breu, Seema Agarwal. High‐Performance, Flame‐Retardant, Binder‐Free Li‐Hectorite‐Polybenzimidazole Fiber Separator for Li‐Ion Batteries. Macromolecular Materials and Engineering 2023, https://doi.org/10.1002/mame.202300389
    39. Kexiong Gao, Junhui Luo, Xin Li, Kun Fan, Longbo Luo, Xiangyang Liu. Electrospun heterocycle aramid nanofiber separator with MOF-supported porous structure enabled excellent cycling stability for lithium metal batteries with high LiFePO4 loading. Journal of Alloys and Compounds 2023, 966 , 171549. https://doi.org/10.1016/j.jallcom.2023.171549
    40. Shiyi Sun, Xiangming Cui, Qianyue Ma, Jianan Wang, Mingbo Ma, Xuhui Yao, Qiong Cai, Jing Li, Xin Chen, Ze Wang, Rui Zhuang, Pengfei Mu, Lei Zhu, Jianwei Liu, Wei Yan. Insight into the role of crystallinity in oxide electrolytes enabling high-performance all-solid-state lithium-sulfur batteries. Journal of Colloid and Interface Science 2023, 650 , 659-668. https://doi.org/10.1016/j.jcis.2023.07.027
    41. Bo Nie, Jonghan Lim, Tengxiao Liu, Ilya Kovalenko, Kaixuan Guo, Junfei Liang, Jian Zhu, Hongtao Sun. Multifunctional composite designs for structural energy storage. Battery Energy 2023, 2 (6) https://doi.org/10.1002/bte2.20230023
    42. Brahma Prakash Dubey, Asit Sahoo, Yogesh Sharma. Curtailing the thermal runaway and ameliorating interfacial charge kinetics using electrolyte-cum-separator in Li-battery. Journal of Energy Storage 2023, 72 , 108376. https://doi.org/10.1016/j.est.2023.108376
    43. Qingyuan Niu, Dong Sun, Kezheng Gao, Qiheng Tang, Xiankai Sun, Lizhen Wang, Yong Zhang. Cellulose microtube/aramid nanofiber composite foam. Cellulose 2023, 30 (15) , 9453-9463. https://doi.org/10.1007/s10570-023-05450-y
    44. Yanghui Song, Guanglei Zhao, Sihan Zhang, Chong Xie, Runde Yang, Xiaofeng Li. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydrate Polymers 2023, 34 , 121530. https://doi.org/10.1016/j.carbpol.2023.121530
    45. Jiayi Gu, Yuting Feng, Xing Wei, Chengcheng Zhang, Tianshu Peng, Lu Lu, Zhenzhen Wei, Yan Zhao. Flexible fibrous separator asymmetrically coated by silica and MXene for high performance lithium batteries with enhanced safety. Journal of Power Sources 2023, 581 , 233515. https://doi.org/10.1016/j.jpowsour.2023.233515
    46. Donggeun Lee, Arum Jung, Jeong Gon Son, Bongjun Yeom. Phase-inversion Induced Co-assembly of Poly(ether imide)/Aramid Nanofibrillar Composite Separators for High-speed Lithium-metal Batteries. Energy Storage Materials 2023, 61 , 102902. https://doi.org/10.1016/j.ensm.2023.102902
    47. Xin Wang, Huarui Dong, Qingyi Ma, Yanjie Chen, Xueling Zhao, Lifei Chen. Nickel nanoparticle decorated silicon carbide as a thermal filler in thermal conductive aramid nanofiber-based composite films for heat dissipation applications. RSC Advances 2023, 13 (30) , 20984-20993. https://doi.org/10.1039/D3RA03336H
    48. Mingyao Hong, Dongchun Chen, Weiya Zhu, Guanjie Li, Xianggui Zhou, Weishan Li, Youhao Liao. Synergistic effect of inorganic Mg(OH)2 and organic triphenyl phosphate based coating layers on flame-retardant separator for high-voltage Li||LiNi0.8Co0.1Mn0.1O2 cell. Solid State Ionics 2023, 393 , 116184. https://doi.org/10.1016/j.ssi.2023.116184
    49. Mei-Chen Liu, Hui-Jun Chen, Gang Wu, Xiu-Li Wang, Yu-Zhong Wang. Multifunctional robust aerogel separator towards high-temperature, large-rate, long-cycle lithium-ion batteries. Chinese Chemical Letters 2023, 34 (5) , 107546. https://doi.org/10.1016/j.cclet.2022.05.060
    50. Weiwei Li, Bin Yang, Ruixue Pang, Meiyun Zhang. Sandwiched aramid nanofiber/Al2O3-coated polyolefin separators for advanced lithium–sulfur batteries. Composites Communications 2023, 38 , 101489. https://doi.org/10.1016/j.coco.2022.101489
    51. Fengfeng Jia, Jiayue Dong, Xiyi Dai, Yuanqing Liu, Haoran Wang, Zhaoqing Lu. Robust, flexible, and stable CuNWs/MXene/ANFs hybrid film constructed by structural assemble strategy for efficient EMI shielding. Chemical Engineering Journal 2023, 452 , 139395. https://doi.org/10.1016/j.cej.2022.139395
    52. Tianwei Jin, Gerald Singer, Keyue Liang, Yuan Yang. Structural batteries: Advances, challenges and perspectives. Materials Today 2023, 62 , 151-167. https://doi.org/10.1016/j.mattod.2022.12.001
    53. Arum Jung, Michael J. Lee, Seung Woo Lee, Jinhan Cho, Jeong Gon Son, Bongjun Yeom. Phase Separation–Controlled Assembly of Hierarchically Porous Aramid Nanofiber Films for High‐speed Lithium‐Metal Batteries. Small 2022, 18 (52) https://doi.org/10.1002/smll.202205355
    54. Mingqiang Wang, Ahmet E. Emre, Ji-Young Kim, Yiting Huang, Li Liu, Volkan Cecen, Yudong Huang, Nicholas A. Kotov. Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-021-27861-w
    55. GaoJie Han, PeiWen Xue, ZhengHao Cai, YueZhan Feng, ChunTai Liu, ChangYu Shen. One-step exfoliation and deprotonation of ANF/BNNS suspension for constructing 3D vertically aligned skeleton in epoxy-based thermal management composites. Science China Technological Sciences 2022, 65 (11) , 2675-2686. https://doi.org/10.1007/s11431-022-2168-3
    56. Luyang Yu, Jiayi Gu, Chen Pan, Jingyi Zhang, Zhenzhen Wei, Yan Zhao. Recent developments of composite separators based on high-performance fibers for lithium batteries. Composites Part A: Applied Science and Manufacturing 2022, 162 , 107132. https://doi.org/10.1016/j.compositesa.2022.107132
    57. Xinke Dai, Xiaoming Zhang, Jiawei Wen, Chunxia Wang, Xinlong Ma, Yue Yang, Guoyong Huang, Hai-Mu Ye, Shengming Xu. Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Materials 2022, 51 , 638-659. https://doi.org/10.1016/j.ensm.2022.07.011
    58. Ji-Young Seo, Yong-Hyeok Lee, Jung-Hui Kim, Young-Kuk Hong, Wenshuai Chen, Young-Gi Lee, Sang-Young Lee. Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Materials 2022, 50 , 783-791. https://doi.org/10.1016/j.ensm.2022.06.013
    59. Jianxin Xing, Jiayi Li, Wenxuan Fan, Tongqing Zhao, Xinyang Chen, Heqin Li, Yujia Cui, Zhenzhen Wei, Yan Zhao. A review on nanofibrous separators towards enhanced mechanical properties for lithium-ion batteries. Composites Part B: Engineering 2022, 243 , 110105. https://doi.org/10.1016/j.compositesb.2022.110105
    60. Jianwei Liu, Jianan Wang, Lei Zhu, Xin Chen, Gong Yi, Qianyue Ma, Shiyi Sun, Ning Wang, Xiangming Cui, Qinqin Chai, Jiangtao Feng, Wei Yan. In situ grown MOFs and PVDF-HFP co-modified aramid gel nanofiber separator for high-safety lithium–sulfur batteries. Journal of Materials Chemistry A 2022, 10 (26) , 14098-14110. https://doi.org/10.1039/D2TA03301A
    61. Sufeng Zhang, Jin Luo, Fengjiao Zhang, Min Du, Hongying Hui, Fuxuan Zhao, Xinning He, Zixiong Sun. A porous, mechanically strong and thermally stable zeolitic imidazolate framework-8@bacterial cellulose/aramid nanofibers composite separator for advanced lithium-ion batteries. Journal of Membrane Science 2022, 652 , 120461. https://doi.org/10.1016/j.memsci.2022.120461
    62. Jing Zhao, Di Song, Jing Jia, Ning Wang, Ke Liu, Tingting Zuo, Quantong Che. Constructing proton exchange membranes with high and stable proton conductivity at subzero temperature through vacuum assisted flocculation technique. Applied Surface Science 2022, 585 , 152579. https://doi.org/10.1016/j.apsusc.2022.152579
    63. Sufeng Zhang, Jin Luo, Min Du, Hongying Hui, Zixiong Sun. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. European Polymer Journal 2022, 171 , 111222. https://doi.org/10.1016/j.eurpolymj.2022.111222
    64. Shunxi Song, Yujie Shi, Jiaojun Tan, Zeshi Wu, Meiyun Zhang, Sheng Qiang, Jingyi Nie, Haitang Liu. An efficient approach to fabricate lightweight polyimide/aramid sponge with excellent heat insulation and sound absorption performance. Journal of Industrial and Engineering Chemistry 2022, 109 , 404-412. https://doi.org/10.1016/j.jiec.2022.02.027
    65. Ji-Ping Gu, Kai-Yuan Zhang, Xiu-Ting Li, Jie Dong, Qing-Hua Zhang, Xin Zhao. Construction of Safety and Non-flammable Polyimide Separator Containing Carboxyl Groups for Advanced Fast Charing Lithium-ion Batteries. Chinese Journal of Polymer Science 2022, 40 (4) , 345-354. https://doi.org/10.1007/s10118-022-2678-4
    66. Kecong Yang, Zelin Liu, Jingchao Chai, Yun Zheng, Xiangnan Fu, Yang huan Shen, Jia Chen, Zhihong Liu, Shengwei Shi. High performance polyimide-based separator for 4.5V high voltage LiCoO2 battery with superior safety. Materials Chemistry and Physics 2022, 282 , 125975. https://doi.org/10.1016/j.matchemphys.2022.125975
    67. Huijie Pei, Chengyin Yang, Qiyue Wu, Xingping Zhou, Xiaolin Xie, Bingjoe Hwang, Yunsheng Ye. Ion-selective aramid nanofiber-based Janus separators fabricated by a dry-wet phase inversion approach for lithium–sulfur batteries. Journal of Materials Chemistry A 2022, 10 (10) , 5317-5327. https://doi.org/10.1039/D1TA09533A
    68. O.A. Tafreshi, S.G. Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, C.B. Park, H.E. Naguib. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Materials Today Chemistry 2022, 23 , 100736. https://doi.org/10.1016/j.mtchem.2021.100736
    69. Ashish Gupta, Pankaj Kumar, Mandeep Singh, Hema Garg, Anisha Chaudhary, Sanjay R. Dhakate. Nonstructural Applications of Synthetic Fibers Composites. 2022, 93-116. https://doi.org/10.1002/9783527832996.ch6
    70. Adriana M. Navarro-Suárez, Milo S. P. Shaffer. Designing Structural Electrochemical Energy Storage Systems: A Perspective on the Role of Device Chemistry. Frontiers in Chemistry 2022, 9 https://doi.org/10.3389/fchem.2021.810781
    71. Mohammad Mudassir Hashmi, Nadeem Ahmad Arif, Syed Mehfooz Ali, Mohd Bilal Khan, Mukesh P. Singh, Zishan H. Khan. Recent Progress in Separators for Rechargeable Batteries. 2022, 417-498. https://doi.org/10.1007/978-981-19-0553-7_11
    72. Mingqiang Wang, Chunyan Wang, Zhimin Fan, Guangyu Wu, Li Liu, Yudong Huang. Aramid nanofiber-based porous membrane for suppressing dendrite growth of metal-ion batteries with enhanced electrochemistry performance. Chemical Engineering Journal 2021, 426 , 131924. https://doi.org/10.1016/j.cej.2021.131924
    73. Tingting Wang, Chengmei Wei, Lei Yan, Yun Liao, Guoli Wang, Lihua Zhao, Mingli Fu, Junwen Ren. Thermally conductive, mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Composite Interfaces 2021, 28 (11) , 1067-1080. https://doi.org/10.1080/09276440.2020.1855573
    74. Jian-hui Deng, Dong-qing Cao, Liang-jun Li, You-peng Chen, Guo-qing Zhang, Xiao-qing Yang. Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery. Journal of Materials Science 2021, 56 (27) , 15215-15228. https://doi.org/10.1007/s10853-021-06201-9
    75. Wenbin Fu, Kostiantyn Turcheniuk, Olga Naumov, Roman Mysyk, Fujia Wang, Michael Liu, Doyoub Kim, Xiaolei Ren, Alexandre Magasinski, Minghao Yu, Xinliang Feng, Zhong Lin Wang, Gleb Yushin. Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today 2021, 48 , 176-197. https://doi.org/10.1016/j.mattod.2021.01.026
    76. Yangyang Fan, Zhihua Li, Junchao Wei. Application of Aramid Nanofibers in Nanocomposites: A Brief Review. Polymers 2021, 13 (18) , 3071. https://doi.org/10.3390/polym13183071
    77. Sergiy Kalnaus, Leif E. Asp, Jianlin Li, Gabriel M. Veith, Jagjit Nanda, Claus Daniel, Xi Chelsea Chen, Andrew Westover, Nancy J. Dudney. Multifunctional approaches for safe structural batteries. Journal of Energy Storage 2021, 40 , 102747. https://doi.org/10.1016/j.est.2021.102747
    78. Tianwei Jin, Yirui Ma, Zechen Xiong, Xiaoyu Fan, Yu Luo, Zeyu Hui, Xi Chen, Yuan Yang. Bioinspired, Tree‐Root‐Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties. Advanced Energy Materials 2021, 11 (25) https://doi.org/10.1002/aenm.202100997
    79. Miaomiao Su, Guang Huang, Suqing Wang, Yanjie Wang, Haihui Wang. High safety separators for rechargeable lithium batteries. Science China Chemistry 2021, 64 (7) , 1131-1156. https://doi.org/10.1007/s11426-021-1011-9
    80. Pan Zhai, Kexin Liu, Zhuyi Wang, Liyi Shi, Shuai Yuan. Multifunctional separators for high-performance lithium ion batteries. Journal of Power Sources 2021, 499 , 229973. https://doi.org/10.1016/j.jpowsour.2021.229973
    81. Bin Yang, Lin Wang, Meiyun Zhang, Weiwei Li, Qiankun Zhou, Linxin Zhong. Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. Journal of Materials Chemistry A 2021, 9 (22) , 12923-12946. https://doi.org/10.1039/D1TA03125B
    82. Jiaoyang Li, Zhaoqing Lu, Fan Xie, Jizhen Huang, Doudou Ning, Meiyun Zhang. Highly compressible, heat-insulating and self-extinguishing cellulose nanofiber/aramid nanofiber nanocomposite foams. Carbohydrate Polymers 2021, 261 , 117837. https://doi.org/10.1016/j.carbpol.2021.117837
    83. Zhanfan Jin, Songfeng E, Zhirong Luo, Doudou Ning, Jizhen Huang, Qin Ma, Fengfeng Jia, Zhaoqing Lu. Investigations on the thermal conduction behaviors of reduced graphene oxide/aramid nanofibers composites. Diamond and Related Materials 2021, 116 , 108422. https://doi.org/10.1016/j.diamond.2021.108422
    84. Jianwei Liu, Jianan Wang, Lei Zhu, Xin Chen, Qianyue Ma, Ling Wang, Xi Wang, Wei Yan. A high-safety and multifunctional MOFs modified aramid nanofiber separator for lithium-sulfur batteries. Chemical Engineering Journal 2021, 411 , 128540. https://doi.org/10.1016/j.cej.2021.128540
    85. Tianyang Zhou, Emma Dickinson, James G Boyd, Jodie L Lutkenhaus, Dimitris C Lagoudas. Multifunctional efficiency metric for structural supercapacitors. Multifunctional Materials 2020, 3 (4) , 044002. https://doi.org/10.1088/2399-7532/abcd87
    86. Yaqian Li, Le Yu, Weiren Hu, Xianluo Hu. Thermotolerant separators for safe lithium-ion batteries under extreme conditions. Journal of Materials Chemistry A 2020, 8 (39) , 20294-20317. https://doi.org/10.1039/D0TA07511F
    87. Jooyoung Jang, Jiwoong Oh, Hyebin Jeong, Woosuk Kang, Changshin Jo. A Review of Functional Separators for Lithium Metal Battery Applications. Materials 2020, 13 (20) , 4625. https://doi.org/10.3390/ma13204625
    88. Paraskevi Flouda, Alexander H. Quinn, Anish G. Patel, Dimitrios Loufakis, Dimitris C. Lagoudas, Jodie L. Lutkenhaus. Branched aramid nanofiber-polyaniline electrodes for structural energy storage. Nanoscale 2020, 12 (32) , 16840-16850. https://doi.org/10.1039/D0NR04573J

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2020, 12, 23, 25756–25766
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.0c03671
    Published May 5, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4486

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.