ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3–CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics

  • Rhys E. Williams
    Rhys E. Williams
    Department of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
  • Quentin M. Ramasse
    Quentin M. Ramasse
    School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
    SuperSTEM Laboratory, Daresbury Science and Innovation Campus, Daresbury WA4 4AD, U.K.
  • Keith P. McKenna
    Keith P. McKenna
    Department of Physics, University of York, Heslington, York YO10 5DD, U.K.
  • Laurie J. Phillips
    Laurie J. Phillips
    Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool L69 7ZF, U.K.
  • Peter J. Yates
    Peter J. Yates
    Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool L69 7ZF, U.K.
  • Oliver S. Hutter
    Oliver S. Hutter
    Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool L69 7ZF, U.K.
    Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
  • Ken Durose
    Ken Durose
    Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool L69 7ZF, U.K.
    More by Ken Durose
  • Jonathan D. Major
    Jonathan D. Major
    Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool L69 7ZF, U.K.
  • , and 
  • Budhika G. Mendis*
    Budhika G. Mendis
    Department of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
    *Email: [email protected]
Cite this: ACS Appl. Mater. Interfaces 2020, 12, 19, 21730–21738
Publication Date (Web):April 21, 2020
https://doi.org/10.1021/acsami.0c03690
Copyright © 2020 American Chemical Society

    Article Views

    1525

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6)n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6)n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6)n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c03690.

    • (i) FIB cross-sectional images of devices, (ii) measuring the orientation of Sb2Se3 ribbons relative to the substrate, (iii) X-ray diffraction plots, (iv) electronic density of states (DOS) for the (273) free surface and (041) tilt boundary, (v) EDX chemical mapping across an intact CSS Sb2Se3–CdS interface, and (vi) EDX chemical mapping across the TE Sb2Se3–CdS interface (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 56 publications.

    1. Geumha Lim, Ha Kyung Park, Yazi Wang, Seung Hwan Ji, Byungha Shin, William Jo. Tailored Band Alignment for Improved Carrier Transport in Composition-Controlled Sb2(S,Se)3. The Journal of Physical Chemistry Letters 2024, 15 (10) , 2825-2833. https://doi.org/10.1021/acs.jpclett.4c00257
    2. Thi-Thong Ho, Zi-Liang Yang, Fang-Yu Fu, Efat Jokar, Hung-Chang Hsu, Pei-Chi Liu, Shaham Quadir, Cheng-Ying Chen, Ya-Ping Chiu, Chih-I Wu, Kuei-Hsien Chen, Li-Chyong Chen. Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-Friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells. ACS Applied Energy Materials 2022, 5 (11) , 14531-14540. https://doi.org/10.1021/acsaem.2c03129
    3. Swapnil Barthwal, Rahul Kumar, Sandeep Pathak. Present Status and Future Perspective of Antimony Chalcogenide (Sb2X3) Photovoltaics. ACS Applied Energy Materials 2022, 5 (6) , 6545-6585. https://doi.org/10.1021/acsaem.2c00420
    4. Xiaoli Mao, Moran Bian, Changxue Wang, Ru Zhou, Lei Wan, Zibin Zhang, Jun Zhu, Wangchao Chen, Chengwu Shi, Baomin Xu. Ultrathin SnO2 Buffer Layer Aids in Interface and Band Engineering for Sb2(S,Se)3 Solar Cells with over 8% Efficiency. ACS Applied Energy Materials 2022, 5 (3) , 3022-3033. https://doi.org/10.1021/acsaem.1c03660
    5. Weihuang Wang, Zixiu Cao, Li Wu, Guilin Chen, Jianping Ao, Jingshan Luo, Yi Zhang. Interface Etching Leads to the Inversion of the Conduction Band Offset between the CdS/Sb2Se3 Heterojunction and High-Efficient Sb2Se3 Solar Cells. ACS Applied Energy Materials 2022, 5 (2) , 2531-2541. https://doi.org/10.1021/acsaem.1c04078
    6. Weihuang Wang, Zixiu Cao, Li Wu, Fangfang Liu, Jianping Ao, Yi Zhang. Remarkable Sb2Se3 Solar Cell with a Carbon Electrode by Tailoring Film Growth during the VTD Process. ACS Applied Energy Materials 2021, 4 (11) , 13335-13346. https://doi.org/10.1021/acsaem.1c03055
    7. Wooseok Yang, Xi Zhang, S. David Tilley. Emerging Binary Chalcogenide Light Absorbers: Material Specific Promises and Challenges. Chemistry of Materials 2021, 33 (10) , 3467-3489. https://doi.org/10.1021/acs.chemmater.1c00741
    8. Huw Shiel, Oliver S. Hutter, Laurie J. Phillips, Jack E. N. Swallow, Leanne A. H. Jones, Thomas J. Featherstone, Matthew J. Smiles, Pardeep K. Thakur, Tien-Lin Lee, Vinod R. Dhanak, Jonathan D. Major, Tim D. Veal. Natural Band Alignments and Band Offsets of Sb2Se3 Solar Cells. ACS Applied Energy Materials 2020, 3 (12) , 11617-11626. https://doi.org/10.1021/acsaem.0c01477
    9. Nicole Fleck, Oliver S. Hutter, Laurie J. Phillips, Huw Shiel, Theodore D. C. Hobson, Vin R. Dhanak, Tim D. Veal, Frank Jäckel, Ken Durose, Jonathan D. Major. How Oxygen Exposure Improves the Back Contact and Performance of Antimony Selenide Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (47) , 52595-52602. https://doi.org/10.1021/acsami.0c14256
    10. Donglou Ren, Shuo Chen, Michel Cathelinaud, Guangxing Liang, Hongli Ma, Xianghua Zhang. Fundamental Physical Characterization of Sb2Se3-Based Quasi-Homojunction Thin Film Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (27) , 30572-30583. https://doi.org/10.1021/acsami.0c08180
    11. Daniya A. Sindi, Thomas P. Shalvey, Jonathan D. Major. Comparison of one and two-stage growth approaches for close space sublimation deposition of Sb2Se3 thin film solar cells. Materials Science in Semiconductor Processing 2024, 174 , 108161. https://doi.org/10.1016/j.mssp.2024.108161
    12. Ali Hajjiah, Aliaa Hajiah, M. Khalid Hossain, Nima E. Gorji. Modeling the impact of grain size on device characteristics of Sb2Se3 solar cells. Materials Science and Engineering: B 2024, 303 , 117319. https://doi.org/10.1016/j.mseb.2024.117319
    13. J. Quirk, M. Rothmann, W. Li, D. Abou-Ras, K. P. McKenna. Grain boundaries in polycrystalline materials for energy applications: First principles modeling and electron microscopy. Applied Physics Reviews 2024, 11 (1) https://doi.org/10.1063/5.0175150
    14. Pardis Adams, Ramon Schnyder, Thomas Moehl, Jan Bühler, Angel Labordet Alvarez, Mirjana Dimitrievska, Keith McKenna, Wooseok Yang, S. David Tilley. Post‐Synthetic Silver Ion and Sulfurization Treatment for Enhanced Performance in Sb 2 Se 3 Water Splitting Photocathodes. Advanced Functional Materials 2024, 34 (10) https://doi.org/10.1002/adfm.202310596
    15. R.A. Lomas-Zapata, K.P. McKenna, Q.M. Ramasse, R.E. Williams, L.J. Phillips, K. Durose, J.D. Major, B.G. Mendis. Grain-Boundary Structural Relaxation in Sb 2 Se 3 Thin-Film Photovoltaics. PRX Energy 2024, 3 (1) https://doi.org/10.1103/PRXEnergy.3.013006
    16. Santunu Ghosh, Elvis O. López, Andre do N. Barbosa, Noemi R.C. Huaman, José G. da Silva Filho, Syed A. Raza, Ricardo Santos, Fernando L. Freire Jr., Alexandre Mello. Comprehensive structural and surface investigation of Sb2Se3 thin-films. Surfaces and Interfaces 2024, 44 , 103693. https://doi.org/10.1016/j.surfin.2023.103693
    17. Jaemin Park, Thomas P. Shalvey, Thomas Moehl, Kyoohee Woo, Jonathan D. Major, S. David Tilley, Wooseok Yang. Impedance spectroscopy of Sb 2 Se 3 photovoltaics consisting of (Sb 4 Se 6 ) n nanoribbons under light illumination. Nanoscale 2023, 15 (48) , 19757-19766. https://doi.org/10.1039/D3NR04082H
    18. Yuqi Zhao, Xueling Chen, Jianmin Li, Xudong Xiao. A Review of Carrier Transport in High‐Efficiency Sb 2 (S,Se) 3 Solar Cells. Solar RRL 2023, 7 (23) https://doi.org/10.1002/solr.202300565
    19. Zhi-yuan Cai, Yue-hao Gu, Wen-hao Liang, Rong-feng Tang, Tao Chen. Dimension-dependent intrinsic point defect characteristics of binary photovoltaic materials. Materials Chemistry Frontiers 2023, 7 (23) , 6188-6201. https://doi.org/10.1039/D3QM00333G
    20. Yuqi Zhao, Jianmin Li, Xudong Xiao. Progress on defects of antimony chalcogenide thin film solar cells. Chinese Science Bulletin 2023, 68 (31) , 4135-4151. https://doi.org/10.1360/TB-2023-0326
    21. R.A. Lomas-Zapata, A.W. Prior, B.G. Mendis. A simulation study of the role of anisotropic charge transport and grain boundary recombination in thin-film Sb2Se3 photovoltaics. Solar Energy 2023, 264 , 112054. https://doi.org/10.1016/j.solener.2023.112054
    22. Christopher H. Don, Thomas P. Shalvey, Matthew J. Smiles, Luke Thomas, Laurie J. Phillips, Theodore D. C. Hobson, Harry Finch, Leanne A. H. Jones, Jack E. N. Swallow, Nicole Fleck, Christopher Markwell, Pardeep K. Thakur, Tien‐Lin Lee, Deepnarayan Biswas, Leon Bowen, Benjamin A. D. Williamson, David O. Scanlon, Vinod R. Dhanak, Ken Durose, Tim D. Veal, Jonathan D. Major. Multi‐Phase Sputtered TiO 2 ‐Induced Current–Voltage Distortion in Sb 2 Se 3 Solar Cells. Advanced Materials Interfaces 2023, 10 (20) https://doi.org/10.1002/admi.202300238
    23. Xingyu Pan, Yanlin Pan, Lijun Wang, Chunhu Zhao, Xiaobo Hu, Jinchun Jiang, Bochuan Yang, Shaoqiang Chen, Pingxiong Yang, Junhao Chu, Jiahua Tao. Interfacial engineering by applying double CdS structure electron transport layer for high-performance Sb2(S,Se)3 solar cells. Ceramics International 2023, 49 (13) , 22471-22478. https://doi.org/10.1016/j.ceramint.2023.04.079
    24. Anchal Vashishtha, Jitendra Kumar, Neetika Singh, Eran Edri. Surface potential variation across (hk1) and non-(hk1) grain boundaries of antimony triselenide. Journal of Alloys and Compounds 2023, 948 , 169714. https://doi.org/10.1016/j.jallcom.2023.169714
    25. Swapnil Barthwal, Ramashanker Gupta, Amit Kumar, K. Ramesh, Sandeep Pathak, Supravat Karak. Band offset engineering in antimony sulfide (Sb2S3) solar cells, using SCAPS simulation: A route toward PCE > 10%. Optik 2023, 282 , 170868. https://doi.org/10.1016/j.ijleo.2023.170868
    26. Abdelaziz Ait Abdelkadir, Mustapha Sahal, Essaadia Oublal, Naveen Kumar, Abdellah Benami. New Sb2Se3-based solar cell for achieving high efficiency theoretical modeling. Optical and Quantum Electronics 2023, 55 (6) https://doi.org/10.1007/s11082-023-04797-7
    27. Joao Otavio Mendes, Andrea Merenda, Karen Wilson, Adam Fraser Lee, Enrico Della Gaspera, Joel van Embden. Substrate Morphology Directs (001) Sb 2 Se 3 Thin Film Growth by Crystallographic Orientation Filtering. Small 2023, 22 https://doi.org/10.1002/smll.202302721
    28. Pardis Adams, Fabrizio Creazzo, Thomas Moehl, Rowena Crockett, Peng Zeng, Zbynek Novotny, Sandra Luber, Wooseok Yang, S. David Tilley. Solution phase treatments of Sb 2 Se 3 heterojunction photocathodes for improved water splitting performance. Journal of Materials Chemistry A 2023, 11 (15) , 8277-8284. https://doi.org/10.1039/D3TA00554B
    29. Thomas Paul Weiss, Ignacio Minguez‐Bacho, Elena Zuccalà, Michele Melchiorre, Nathalie Valle, Brahime El Adib, Tadahiro Yokosawa, Erdmann Spiecker, Julien Bachmann, Phillip J. Dale, Susanne Siebentritt. Post‐deposition annealing and interfacial atomic layer deposition buffer layers of Sb 2 Se 3 /CdS stacks for reduced interface recombination and increased open‐circuit voltages. Progress in Photovoltaics: Research and Applications 2023, 31 (3) , 203-219. https://doi.org/10.1002/pip.3625
    30. Subila Kurukkal Balakrishnan, Priyakumari Chakkingal Parambil, Lothar Houben, Maor Asher, Omer Yaffe, Eran Edri. Revealing hidden phases and self-healing in antimony trichalcogenides and chalcoiodides. Cell Reports Physical Science 2023, 4 (3) , 101298. https://doi.org/10.1016/j.xcrp.2023.101298
    31. Liu Xiao, Zhiying Liu, Wenlin Feng. Self-powered photodetector with fast response based on Sb2Se3/Cu2S/Si heterojunction. Optical Materials 2023, 137 , 113512. https://doi.org/10.1016/j.optmat.2023.113512
    32. Udari Wijesinghe, Giulia Longo, Oliver S. Hutter. Defect engineering in antimony selenide thin film solar cells. Energy Advances 2023, 2 (1) , 12-33. https://doi.org/10.1039/D2YA00232A
    33. Iman Gharibshahian, Ali Asghar Orouji, Samaneh Sharbati. An Analytical Model for Sb 2 Se 3 Thin‐Film Solar Cells by Considering Current‐Voltage Distortion. Advanced Theory and Simulations 2023, 6 (1) https://doi.org/10.1002/adts.202200438
    34. O. M. Rigby, T. Richards-Hlabangana, Q. M. Ramasse, I. MacLaren, R. A. Lomas-Zapata, M. S. Rumsey, K. P. McKenna, B. G. Mendis. Structure and electronic properties of domain walls and stacking fault defects in prospective photoferroic materials bournonite and enargite. Journal of Applied Physics 2022, 132 (18) https://doi.org/10.1063/5.0095091
    35. Yiyu Zeng, Jialiang Huang, Jianjun Li, Kaiwen Sun, Usman Ali Shah, Hui Deng, Xueyun Zhang, Chuhan Sha, Chen Qian, Haisheng Song, Xiaojing Hao. Comparative Study of TiO 2 and CdS as the Electron Transport Layer for Sb 2 S 3 Solar Cells. Solar RRL 2022, 6 (10) https://doi.org/10.1002/solr.202200435
    36. Stephen Campbell, Laurie J. Phillips, Jonathan D. Major, Oliver S. Hutter, Ryan Voyce, Yongtao Qu, Neil S. Beattie, Guillaume Zoppi, Vincent Barrioz. Routes to increase performance for antimony selenide solar cells using inorganic hole transport layers. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.954588
    37. Joao O. Mendes, Enrico Della Gaspera, Joel van Embden. High‐Resistance Metal Oxide Window Layers for Optimal Front Contact Interfaces in Sb 2 Se 3 Solar Cells. Solar RRL 2022, 6 (8) https://doi.org/10.1002/solr.202200265
    38. M M Nicolás-Marín, J R González-Castillo, O Vigil-Galán, Maykel Courel. The state of the art of Sb 2 (S, Se) 3 thin film solar cells: current progress and future prospect. Journal of Physics D: Applied Physics 2022, 55 (30) , 303001. https://doi.org/10.1088/1361-6463/ac5f32
    39. Jing Zhou, Dan Meng, Tinghe Yang, Xintong Zhang, Zheqing Tang, Yu Cao, Jian Ni, Jianjun Zhang, Ziyang Hu, Jinbo Pang. Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications. Applied Surface Science 2022, 591 , 153169. https://doi.org/10.1016/j.apsusc.2022.153169
    40. Jitendra Kumar, Yaniv Dror, Eran Edri. (Bi x Sb 1− x ) 2 Se 3 thin films for short wavelength infrared region solar cells. Journal of Materials Chemistry C 2022, 10 (22) , 8702-8710. https://doi.org/10.1039/D2TC01300B
    41. Yanlin Pan, Dongliang Zheng, Jianxin Chen, Jun Zhou, Rui Wang, Xingyu Pan, Xiaobo Hu, Shaoqiang Chen, Pingxiong Yang, Jiahua Tao, Junhao Chu. Controllable vapor transport deposition of efficient Sb2(S,Se)3 solar cells via adjusting evaporation source area. Journal of Alloys and Compounds 2022, 906 , 164320. https://doi.org/10.1016/j.jallcom.2022.164320
    42. Juan Carlos González, Henrique Limborço, Rodrigo Ribeiro‐Andrade, Bruno Cordeiro Silva, Klaus Krambrock. Deciphering the Role of Defects in the Ambipolar Electrical Transport in Nanocrystalline Sb 2 Se 3 Thin Films. Advanced Electronic Materials 2022, 8 (4) https://doi.org/10.1002/aelm.202100985
    43. Thi-Thong Ho, Efat Jokar, Shaham Quadir, Ruei-San Chen, Fang-Chen Liu, Cheng-Ying Chen, Kuei-Hsien Chen, Li-Chyong Chen. Enhancing the photovoltaic properties of SnS-Based solar cells by crystallographic orientation engineering. Solar Energy Materials and Solar Cells 2022, 236 , 111499. https://doi.org/10.1016/j.solmat.2021.111499
    44. Axel Gon Medaille, Kunal J. Tiwari, Sergio Giraldo, Marcel Placidi, Edgardo Saucedo, Zacharie Jehl Li-Kao. Numerical Investigation of Interface Passivation Strategies for Sb 2 Se 3 /CdS Solar Cells. Solar RRL 2022, 6 (2) https://doi.org/10.1002/solr.202100911
    45. Robert L. Z. Hoye, Juanita Hidalgo, Robert A. Jagt, Juan‐Pablo Correa‐Baena, Thomas Fix, Judith L. MacManus‐Driscoll. The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives. Advanced Energy Materials 2022, 12 (4) https://doi.org/10.1002/aenm.202100499
    46. Manuel Daum, Sarah Deumel, Mykhailo Sytnyk, Hany A. Afify, Rainer Hock, Andreas Eigen, Baolin Zhao, Marus Halik, Albert These, Gebhard J. Matt, Christoph J. Brabec, Sandro F. Tedde, Wolfgang Heiss. Self‐Healing Cs 3 Bi 2 Br 3 I 6 Perovskite Wafers for X‐Ray Detection. Advanced Functional Materials 2021, 31 (47) https://doi.org/10.1002/adfm.202102713
    47. Pedro Vidal-Fuentes, Maxim Guc, Ignacio Becerril-Romero, Diouldé Sylla, Xavier Alcobé, Yudania Sánchez, Alejandro Pérez-Rodríguez, Edgardo Saucedo, Victor Izquierdo-Roca. Insights on the Thermal Stability of the Sb 2 Se 3 Quasi‐1D Photovoltaic Technology. Solar RRL 2021, 5 (10) https://doi.org/10.1002/solr.202100517
    48. Tao Liu, Xiaoyang Liang, Yufan Liu, Xiaoli Li, Shufang Wang, Yaohua Mai, Zhiqiang Li. Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells. Advanced Science 2021, 8 (16) https://doi.org/10.1002/advs.202100868
    49. Rongfeng Tang, Tao Chen, Liming Ding. Engineering microstructures for efficient Sb 2 (S x Se 1−x ) 3 solar cells. Journal of Semiconductors 2021, 42 (7) , 070203. https://doi.org/10.1088/1674-4926/42/7/070203
    50. Huw Shiel, Theodore D. C. Hobson, Oliver S. Hutter, Laurie J. Phillips, Matthew J. Smiles, Leanne A. H. Jones, Thomas J. Featherstone, Jack E. N. Swallow, Pardeep K. Thakur, Tien-Lin Lee, Jonathan D. Major, Ken Durose, Tim D. Veal. Band alignment of Sb2O3 and Sb2Se3. Journal of Applied Physics 2021, 129 (23) https://doi.org/10.1063/5.0055366
    51. Nicolae Spalatu, Robert Krautmann, Atanas Katerski, Erki Karber, Raavo Josepson, Jaan Hiie, Ilona Oja Acik, Malle Krunks. Screening and optimization of processing temperature for Sb2Se3 thin film growth protocol: Interrelation between grain structure, interface intermixing and solar cell performance. Solar Energy Materials and Solar Cells 2021, 225 , 111045. https://doi.org/10.1016/j.solmat.2021.111045
    52. Keith Patrick McKenna. Self‐Healing of Broken Bonds and Deep Gap States in Sb 2 Se 3 and Sb 2 S 3. Advanced Electronic Materials 2021, 7 (3) https://doi.org/10.1002/aelm.202000908
    53. S. Ghosh, M.V.B. Moreira, C. Fantini, J.C. González. Growth and optical properties of nanocrystalline Sb2Se3 thin-films for the application in solar-cells. Solar Energy 2020, 211 , 613-621. https://doi.org/10.1016/j.solener.2020.10.001
    54. Christopher H. Don, Huw Shiel, Theodore D. C. Hobson, Christopher N. Savory, Jack E. N. Swallow, Matthew J. Smiles, Leanne A. H. Jones, Thomas J. Featherstone, Pardeep K. Thakur, Tien-Lin Lee, Ken Durose, Jonathan D. Major, Vinod R. Dhanak, David O. Scanlon, Tim D. Veal. Sb 5s 2 lone pairs and band alignment of Sb 2 Se 3 : a photoemission and density functional theory study. Journal of Materials Chemistry C 2020, 8 (36) , 12615-12622. https://doi.org/10.1039/D0TC03470C
    55. Jonathan Major. Step up in performance. Nature Energy 2020, 5 (8) , 559-560. https://doi.org/10.1038/s41560-020-0672-z
    56. Theodore D. C. Hobson, Laurie J. Phillips, Oliver S. Hutter, K. Durose, Jonathan D. Major. Defect properties of Sb2Se3 thin film solar cells and bulk crystals. Applied Physics Letters 2020, 116 (26) https://doi.org/10.1063/5.0012697

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect