Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage Lithium-Ion BatteriesClick to copy article linkArticle link copied!
- Dongsu ParkDongsu ParkCenter for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaSchool of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of KoreaMore by Dongsu Park
- Haesun ParkHaesun ParkMaterials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United StatesJoint Center for Energy Storage Research (JCESR), Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United StatesMore by Haesun Park
- Yongheum LeeYongheum LeeCenter for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of KoreaMore by Yongheum Lee
- Sang-Ok KimSang-Ok KimCenter for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of KoreaMore by Sang-Ok Kim
- Hun-Gi JungHun-Gi JungCenter for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of KoreaMore by Hun-Gi Jung
- Kyung Yoon ChungKyung Yoon ChungCenter for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of KoreaMore by Kyung Yoon Chung
- Joon Hyung ShimJoon Hyung ShimSchool of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of KoreaMore by Joon Hyung Shim
- Seungho Yu*Seungho Yu*Email: [email protected]Center for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaMore by Seungho Yu
Abstract
The development of solid electrolytes (SEs) is a promising pathway to improve the energy density and safety of conventional Li-ion batteries. Several lithium chloride SEs, Li3MCl6 (M = Y, Er, In, and Sc), have gained popularity due to their high ionic conductivity, wide electrochemical window, and good chemical stability. This study systematically investigated 17 Li3MCl6 SEs to identify novel and promising lithium chloride SEs. Calculation results revealed that 12 Li3MCl6 (M = Bi, Dy, Er, Ho, In, Lu, Sc, Sm, Tb, Tl, Tm, and Y) were stable phase with a wide electrochemical stability window and excellent chemical stability against cathode materials and moisture. Li-ion transport properties were examined using bond valence site energy (BVSE) and ab initio molecular dynamics (AIMD) calculation. Li3MCl6 showed the lower migration energy barrier in monoclinic structures, while orthorhombic and trigonal structures exhibited higher energy barriers due to the sluggish diffusion along the two-dimensional path based on the BVSE model. AIMD results confirmed the slower ion migration along the 2D path, exhibiting lower ionic diffusivity and higher activation energy in orthorhombic and trigonal structures. For the further increase of ionic conductivity in monoclinic structures, Li-ion vacancy was formed by the substitution of M3+ with Zr4+. Zr-substituted phase (Li2.5M0.5Zr0.5Cl6, M = In, Sc) exhibited up to a fourfold increase in ionic conductivity. This finding suggested that the optimization of Li vacancy in the Li3MCl6 SEs could lead to superionic Li3MCl6 SEs.
Cited By
This article is cited by 83 publications.
- Jihun Roh, Hyojin Kim, Hyungjin Lee, Hyeri Bu, Alicia Manjón-Sanz, Hyungsub Kim, Seung-Tae Hong. Unraveling Polymorphic Crystal Structures of Li4SiS4 for All-Solid-State Batteries: Enhanced Ionic Conductivity via Aliovalent Sb Substitution. Chemistry of Materials 2024, 36
(14)
, 6973-6984. https://doi.org/10.1021/acs.chemmater.4c01089
- Wentao Zhang, Mouyi Weng, Mingzheng Zhang, Zhefeng Chen, Bingxu Wang, Shunning Li, Feng Pan. Rapid Mining of Fast Ion Conductors via Subgraph Isomorphism Matching. Journal of the American Chemical Society 2024, 146
(27)
, 18535-18543. https://doi.org/10.1021/jacs.4c04202
- Sooyeon Kim, Yongheum Lee, Kwangnam Kim, Brandon C. Wood, Sang Soo Han, Seungho Yu. Fluorine-Substituted Lithium Chloride Solid Electrolytes for High-Voltage All-Solid-State Lithium-Ion Batteries. ACS Energy Letters 2024, 9
(1)
, 38-47. https://doi.org/10.1021/acsenergylett.3c02307
- Yuya Okada, Akira Nasu, Takuya Kimura, Hirofumi Tsukasaki, Shigeo Mori, Hamdi Ben Yahia, Kota Motohashi, Atsushi Sakuda, Akitoshi Hayashi. Mechanochemical Synthesis and Characterization of K2+xZr1–xYxCl6: Potassium-Ion-Conducting Chloride. Chemistry of Materials 2023, 35
(18)
, 7422-7429. https://doi.org/10.1021/acs.chemmater.3c00185
- Laidong Zhou, Tongtong Zuo, Chang Li, Qiang Zhang, Jürgen Janek, Linda F. Nazar. Li3–xZrx(Ho/Lu)1–xCl6 Solid Electrolytes Enable Ultrahigh-Loading Solid-State Batteries with a Prelithiated Si Anode. ACS Energy Letters 2023, 8
(7)
, 3102-3111. https://doi.org/10.1021/acsenergylett.3c00763
- Jing Xu, Yuqi Wang, Siyuan Wu, Qifan Yang, Xiao Fu, Ruijuan Xiao, Hong Li. New Halide-Based Sodium-Ion Conductors Na3Y2Cl9 Inversely Designed by Building Block Construction. ACS Applied Materials & Interfaces 2023, 15
(17)
, 21086-21096. https://doi.org/10.1021/acsami.3c01570
- Jing Wang, Shangqian Zhao, Anbang Zhang, Haoxiang Zhuo, Gangning Zhang, Fujuan Han, Yi Zhang, Ling Tang, Rong Yang, Lijun Wang, Shigang Lu. High Lithium-Ion Conductivity, Halide-Coated, Ni-Rich NCM Improves Cycling Stability in Sulfide All-Solid-State Batteries. ACS Applied Energy Materials 2023, 6
(7)
, 3671-3681. https://doi.org/10.1021/acsaem.2c02774
- Heng Wang, Yuxiang Li, Ya Tang, Daixin Ye, Ting He, Hongbin Zhao, Jiujun Zhang. Electrochemically Stable Li3–xIn1–xHfxCl6 Halide Solid Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Interfaces 2023, 15
(4)
, 5504-5511. https://doi.org/10.1021/acsami.2c21022
- Eveline van der Maas, Wenxuan Zhao, Zhu Cheng, Theodosios Famprikis, Michel Thijs, Steven R. Parnell, Swapna Ganapathy, Marnix Wagemaker. Investigation of Structure, Ionic Conductivity, and Electrochemical Stability of Halogen Substitution in Solid-State Ion Conductor Li3YBrxCl6–x. The Journal of Physical Chemistry C 2023, 127
(1)
, 125-132. https://doi.org/10.1021/acs.jpcc.2c07910
- Yifan Wu, Shou-Hang Bo. Interfacial Behavior of a Thio-LISICON Solid-State Electrolyte under External Pressure. ACS Applied Energy Materials 2022, 5
(11)
, 13571-13579. https://doi.org/10.1021/acsaem.2c02285
- Zhewen Zhu, Yizhou Zhu. Developing Classical Interatomic Potentials for Solid Electrolytes. Accounts of Materials Research 2022, 3
(11)
, 1101-1105. https://doi.org/10.1021/accountsmr.2c00184
- Zhi Deng, Zhou Jin, Diancheng Chen, Dixing Ni, Mengyu Tian, Yuanjie Zhan, Shuai Li, Yang Sun, Xuejie Huang, Yusheng Zhao. Bilayer Halide Electrolytes for All-Inorganic Solid-State Lithium-Metal Batteries with Excellent Interfacial Compatibility. ACS Applied Materials & Interfaces 2022, 14
(43)
, 48619-48626. https://doi.org/10.1021/acsami.2c12444
- Ryo Asakura Arndt Remhof Corsin Battaglia . Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries. , 353-393. https://doi.org/10.1021/bk-2022-1413.ch014
- Feng Li, Jin-Da Luo, Le Tang, Xiaobin Cheng, Guozhen Zhang, Yi-Chen Yin, Te Tian, Hongsheng Mo, Jing-Tian Yang, Hong-Bin Yao. Metal Halide Double Perovskite Fast Lithium Ion Conductors with a Unique Octahedral B-Site Vacancy Migration Mechanism. ACS Applied Energy Materials 2022, 5
(4)
, 4926-4933. https://doi.org/10.1021/acsaem.2c00325
- Gin Hyung Chun, Joon Hyung Shim, Seungho Yu. Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2022, 14
(1)
, 1241-1248. https://doi.org/10.1021/acsami.1c22104
- Tuncay Koç, Florencia Marchini, Gwenaëlle Rousse, Romain Dugas, Jean-Marie Tarascon. In Search of the Best Solid Electrolyte-Layered Oxide Pairing for Assembling Practical All-Solid-State Batteries. ACS Applied Energy Materials 2021, 4
(12)
, 13575-13585. https://doi.org/10.1021/acsaem.1c02187
- Bianca Helm, Roman Schlem, Björn Wankmiller, Ananya Banik, Ajay Gautam, Justine Ruhl, Cheng Li, Michael Ryan Hansen, Wolfgang G. Zeier. Exploring Aliovalent Substitutions in the Lithium Halide Superionic Conductor Li3–xIn1–xZrxCl6 (0 ≤ x ≤ 0.5). Chemistry of Materials 2021, 33
(12)
, 4773-4782. https://doi.org/10.1021/acs.chemmater.1c01348
- Kwangnam Kim, Dongsu Park, Hun-Gi Jung, Kyung Yoon Chung, Joon Hyung Shim, Brandon C. Wood, Seungho Yu. Material Design Strategy for Halide Solid Electrolytes Li3MX6 (X = Cl, Br, and I) for All-Solid-State High-Voltage Li-Ion Batteries. Chemistry of Materials 2021, 33
(10)
, 3669-3677. https://doi.org/10.1021/acs.chemmater.1c00555
- Israel Temprano, Javier Carrasco, Matthieu Bugnet, Ivan T. Lucas, Jigang Zhou, Robert S. Weatherup, Christopher A. O'Keefe, Zachary Ruff, Jiahui Xu, Nicolas Folastre, Jian Wang, Antonin Gajan, Arnaud Demortière. Advanced methods for characterizing battery interfaces: Towards a comprehensive understanding of interfacial evolution in modern batteries. Energy Storage Materials 2024, 73 , 103794. https://doi.org/10.1016/j.ensm.2024.103794
- Jinghua Wu, Jiahao Li, Xiayin Yao. Exploring the Potential of Halide Electrolytes for Next‐Generation All‐Solid‐State Lithium Batteries. Advanced Functional Materials 2024, 7 https://doi.org/10.1002/adfm.202416671
- Cheuk Hei Chan, Hon Ho Wong, Shipeng Liang, Mingzi Sun, Tong Wu, Qiuyang Lu, Lu Lu, Baian Chen, Bolong Huang. Electrolyte Developments for All‐Solid‐State Lithium Batteries: Classifications, Recent Advances and Synthesis Methods. Batteries & Supercaps 2024, 23 https://doi.org/10.1002/batt.202400432
- Yanlong Wu, Limin Wang, Saiqi Wei, Xuanxuan Bi, Haoxiang Zhuo, Wei Xiao, Tianwei Yu, Yi Duan, Changtai Zhao, Rong Yang, Jianwen Liang, Xiaona Li, Jiantao Wang, Xueliang Sun. Exploiting the Mixed Entropy Strategy for the Design of Fast Ion Conductors. Advanced Energy Materials 2024, 14
(38)
https://doi.org/10.1002/aenm.202401528
- Wooyoung Jeong, Jonghyeok Yun, Jong‐Won Lee. Interfacial challenges and recent advances of solid‐state lithium metal batteries. Bulletin of the Korean Chemical Society 2024, 45
(10)
, 806-820. https://doi.org/10.1002/bkcs.12900
- Weijian Chen, Yumeng Zhao, Jiahe Zhou, Shuting Li, Chuanyang Lu, Shoubin Zhou, Huaxin Li, Yafei Li, Yuwen Cheng, Jianguo Yang, Yanming He, Jiayan Luo. High-Throughput Screening of Halide Solid-State Electrolytes for All-Solid-State Li-ion Batteries through Structural Descriptor. Journal of Alloys and Compounds 2024, 120 , 177167. https://doi.org/10.1016/j.jallcom.2024.177167
- KyuJung Jun, Yu Chen, Grace Wei, Xiaochen Yang, Gerbrand Ceder. Diffusion mechanisms of fast lithium-ion conductors. Nature Reviews Materials 2024, 1 https://doi.org/10.1038/s41578-024-00715-9
- Yun Seong Byeon, Dongil Kim, Sang A Han, Jung Ho Kim, Min‐Sik Park. Progress and Challenges in Buffer Layers Between Cathode Materials and Sulfide Solid Electrolytes in All‐Solid‐State Batteries. Advanced Energy and Sustainability Research 2024, 7 https://doi.org/10.1002/aesr.202400135
- Kehao Tao, Zhilong Wang, Zhoujie Lao, An Chen, Yanqiang Han, Lei Shi, Guangmin Zhou, Jinjin Li. Transformer enables ion transport behavior evolution and conductivity regulation for solid electrolyte. Energy Storage Materials 2024, 71 , 103555. https://doi.org/10.1016/j.ensm.2024.103555
- Qiyue Luo, Chen Liu, Chaochao Wei, Zhongkai Wu, Yi Wang, Lin Li, Ziling Jiang, Liang Ming, Jie Yang, Long Zhang, Xia Chen, Shijie Cheng, Chuang Yu. Deep insight of interfacial stability of LiNi0.7Co0.1Mn0.2O2-based all-solid-state battery with superior performances. Journal of Power Sources 2024, 608 , 234616. https://doi.org/10.1016/j.jpowsour.2024.234616
- Jinyin Cheng, Haochang Zhang, Zhixin Wang, Yaqing Zhou, Kangzhe Yu, Yan Cheng, Zhaozhe Yu, Xiao Huang, Bingbing Tian. O2− substituted Li-richened Li2ZrCl6 lattice towards superionic conductivity. Journal of Energy Storage 2024, 89 , 111700. https://doi.org/10.1016/j.est.2024.111700
- Taehun Kim, Hongjun Chang, Gawon Song, Suyeon Lee, Kanghyeon Kim, Seonghyun Lee, Janghyuk Moon, Kyu Tae Lee. Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202404806
- Xiao Fu, Yuqi Wang, Jing Xu, Qifan Yang, Huican Mao, Ruijuan Xiao, Hong Li. First-principles study on a new chloride solid lithium-ion conductor material with high ionic conductivity. Journal of Materials Chemistry A 2024, 12
(17)
, 10562-10570. https://doi.org/10.1039/D3TA07943K
- Zhuoyuan Zheng, Jie Zhou, Yusong Zhu. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning. Chemical Society Reviews 2024, 53
(6)
, 3134-3166. https://doi.org/10.1039/D3CS00572K
- Maurice Abitonze, Catherine Sekyerebea Diko, Yimin Zhu, Yan Yang. Recent progress on inorganic composite electrolytes for all-solid-state lithium batteries. MRS Energy & Sustainability 2024, 2 https://doi.org/10.1557/s43581-023-00076-w
- Tianwei Yu, Yi Duan, Yanlong Wu, Yafei Liu. Superionic fluoro-niobium co-modified yttrium-based chloride solid-state electrolytes for highly stable Li metal in all-solid-state Li batteries. Journal of Solid State Electrochemistry 2024, 28
(2)
, 609-618. https://doi.org/10.1007/s10008-023-05709-1
- Elina Nazmutdinova, Carolin Rosenbach, Christina Schmidt, Sangchai Sarawutankul, Kerstin Neuhaus, André Gröschel, Nella M. Vargas‐Barbosa. On the Influence of Li
3
InCl
6
−PEDOT:PSS Hybrids in Solid‐State Batteries Prepared via an Aqueous One‐Pot Approach. Batteries & Supercaps 2024, 32 https://doi.org/10.1002/batt.202300434
- Fuqian Liu, Lu Gao, Zhipeng Zhang, Linlin Zhang, Nanping Deng, Yixia Zhao, Weimin Kang. Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes. Energy Storage Materials 2024, 64 , 103072. https://doi.org/10.1016/j.ensm.2023.103072
- Limin Wang, Wei Xiao, Lu Sun, Rong Yang, Jinqiu Yu, Ligen Wang. Atomistic mechanism of high ionic conductivity in lithium ytterbium-based halide solid electrolytes: A first-principles study. Journal of Rare Earths 2024, 42
(1)
, 155-162. https://doi.org/10.1016/j.jre.2023.01.013
- Xin Wang, Enyue Zhao, Wenhan Guo. A dual-matrix hybridization strategy for synthesis of cationic-anionic double-doped Li2.99Y0.99Zr0.01Br1.6Cl4.4 halide solid electrolyte. Journal of Solid State Electrochemistry 2023, 27
(12)
, 3597-3602. https://doi.org/10.1007/s10008-023-05612-9
- Kaiyong Tuo, Fusheng Yin, Fanghui Mi, Chunwen Sun. Elucidating the diffusion pathway of lithium ions in superionic halide solid electrolytes Li2+Hf1−In Cl6 for all-solid-state lithium-metal based batteries. Journal of Energy Chemistry 2023, 87 , 12-23. https://doi.org/10.1016/j.jechem.2023.08.016
- Takeshi Usami, Naoto Tanibata, Hayami Takeda, Masanobu Nakayama. Analysis of ion conduction behavior of Nb- and Zr-doped Li3InCl6-based materials via material simulation. APL Materials 2023, 11
(12)
https://doi.org/10.1063/5.0167817
- Xiaofei Yang, Qianwen Yin, Changhong Wang, Kieran Doyle-Davis, Xueliang Sun, Xianfeng Li. Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Progress in Materials Science 2023, 140 , 101193. https://doi.org/10.1016/j.pmatsci.2023.101193
- Seungju Yu, Joohyeon Noh, Byunghoon Kim, Jun-Hyuk Song, Kyungbae Oh, Jaekyun Yoo, Sunyoung Lee, Sung-O Park, Wonju Kim, Byungwook Kang, Donghyun Kil, Kisuk Kang. Design of a trigonal halide superionic conductor by regulating cation order-disorder. Science 2023, 382
(6670)
, 573-579. https://doi.org/10.1126/science.adg6591
- Boran Tao, Dailin Zhong, Hongda Li, Guofu Wang, Haixin Chang. Halide solid-state electrolytes for all-solid-state batteries: structural design, synthesis, environmental stability, interface optimization and challenges. Chemical Science 2023, 14
(33)
, 8693-8722. https://doi.org/10.1039/D3SC02093B
- Yuya OKADA, Takuya KIMURA, Kota MOTOHASHI, Atsushi SAKUDA, Akitoshi HAYASHI. Mechanochemical Synthesis and Characterization of Na3−xIn1−xZrxCl6 Solid Electrolyte. Electrochemistry 2023, 91
(7)
, 077009-077009. https://doi.org/10.5796/electrochemistry.23-00054
- Bui Thi Tham, Min-Sik Park, Jung Ho Kim, Janghyuk Moon. Computational design of a mixed A-site cation halide solid electrolyte for all-solid-state lithium batteries. Journal of Materials Chemistry A 2023, 11
(29)
, 15968-15978. https://doi.org/10.1039/D3TA01787G
- Jili Xu, Heng Wang, Ting He, Xiao Yan, Jia Yu, Jingkun Bi, Daixin Ye, Wenli Yao, Ya Tang, Hongbin Zhao, Jiujun Zhang. Chevrel Phase Mo
6
S
8
Nanosheets Featuring Reversible Electrochemical Li‐Ion Intercalation as Effective Dynamic‐Phase Promoter for Advanced Lithium‐Sulfur Batteries. Small 2023, 19
(29)
https://doi.org/10.1002/smll.202300042
- T. Yu, L. Wang, Q. Sun, B. Xiao, X. Bai, R. Yang, Y. Duan, Y. Wu, G. Li, G. Xu, S. Zhao, L. Wang, J. Yu, J. Wang. Enabling high ionic conductivity in yttrium-based lithium halide electrolytes by composition modulation for all-solid-state batteries. Materials Today Chemistry 2023, 30 , 101510. https://doi.org/10.1016/j.mtchem.2023.101510
- Xiaohan Li, Qing Ye, Zhan Wu, Wenkui Zhang, Hui Huang, Yang Xia, Yongping Gan, Xinping He, Xinhui Xia, Jun Zhang. High-voltage all-solid-state lithium batteries with Li3InCl6 electrolyte and LiNbO3 coated lithium-rich manganese oxide cathode. Electrochimica Acta 2023, 453 , 142361. https://doi.org/10.1016/j.electacta.2023.142361
- Xianhui Nie, Jiulin Hu, Chilin Li. Halide‐based solid electrolytes: The history, progress, and challenges. Interdisciplinary Materials 2023, 2
(3)
, 365-389. https://doi.org/10.1002/idm2.12090
- Xiaomeng Shi, Zhichao Zeng, Hongtu Zhang, Yunhui Huang, Chun‐Hua Yan, Yaping Du. Encapsulating and Operating a Stable Li
3
ErBr
6
‐Based Solid Li–SeS
2
Battery at Room Temperature. Advanced Functional Materials 2023, 33
(15)
https://doi.org/10.1002/adfm.202213638
- Yuriy Yusim, Enrico Trevisanello, Raffael Ruess, Felix H. Richter, Alexander Mayer, Dominic Bresser, Stefano Passerini, Jürgen Janek, Anja Henss. Evaluierung und Verbesserung der Stabilität von Poly(ethylenoxid)‐basierten Festkörperbatterien mit Hochvoltkathoden. Angewandte Chemie 2023, 135
(12)
https://doi.org/10.1002/ange.202218316
- Yuriy Yusim, Enrico Trevisanello, Raffael Ruess, Felix H. Richter, Alexander Mayer, Dominic Bresser, Stefano Passerini, Jürgen Janek, Anja Henss. Evaluation and Improvement of the Stability of Poly(ethylene oxide)‐based Solid‐state Batteries with High‐Voltage Cathodes. Angewandte Chemie International Edition 2023, 62
(12)
https://doi.org/10.1002/anie.202218316
- Hongtu Zhang, Zhichao Zeng, Xiaomeng Shi, Chun‐Hai Wang, Yaping Du. Doping engineering of scandium‐based solid‐state electrolytes toward superior ionic conductivity. EcoMat 2023, 5
(3)
https://doi.org/10.1002/eom2.12315
- Palanivel Molaiyan, Sarah E. Mailhiot, Kevin Voges, Anu M. Kantola, Tao Hu, Peter Michalowski, Arno Kwade, Ville-Veikko Telkki, Ulla Lassi. Investigation of the structure and ionic conductivity of a Li3InCl6 modified by dry room annealing for solid-state Li-ion battery applications. Materials & Design 2023, 227 , 111690. https://doi.org/10.1016/j.matdes.2023.111690
- Tong‐Tong Zuo, Felix Walther, Jun Hao Teo, Raffael Rueß, Yubo Wang, Marcus Rohnke, Daniel Schröder, Linda F. Nazar, Jürgen Janek. Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid‐State Batteries. Angewandte Chemie 2023, 135
(7)
https://doi.org/10.1002/ange.202213228
- Tong‐Tong Zuo, Felix Walther, Jun Hao Teo, Raffael Rueß, Yubo Wang, Marcus Rohnke, Daniel Schröder, Linda F. Nazar, Jürgen Janek. Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid‐State Batteries. Angewandte Chemie International Edition 2023, 62
(7)
https://doi.org/10.1002/anie.202213228
- Carolin Rosenbach, Felix Walther, Justine Ruhl, Matthias Hartmann, Theodoor Anton Hendriks, Saneyuki Ohno, Jürgen Janek, Wolfgang G. Zeier. Visualizing the Chemical Incompatibility of Halide and Sulfide‐Based Electrolytes in Solid‐State Batteries. Advanced Energy Materials 2023, 13
(6)
https://doi.org/10.1002/aenm.202203673
- Yosef Nikodimos, Wei‐Nien Su, Bing Joe Hwang. Halide Solid‐State Electrolytes: Stability and Application for High Voltage All‐Solid‐State Li Batteries. Advanced Energy Materials 2023, 13
(3)
https://doi.org/10.1002/aenm.202202854
- Zhong‐Heng Fu, Xiang Chen, Qiang Zhang. Review on the lithium transport mechanism in solid‐state battery materials. WIREs Computational Molecular Science 2023, 13
(1)
https://doi.org/10.1002/wcms.1621
- Yi-Tzu Wu, Ping-Chun Tsai. Ab initio Interfacial Chemical Stability of Argyrodite Sulfide Electrolytes and Layered-Structure Cathodes in Solid-State Lithium Batteries. JOM 2022, 74
(12)
, 4664-4671. https://doi.org/10.1007/s11837-022-05472-0
- Jiawen Li, Yuchen Ji, Haoran Song, Shiming Chen, Shouxiang Ding, Bingkai Zhang, Luyi Yang, Yongli Song, Feng Pan. Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries. Nano-Micro Letters 2022, 14
(1)
https://doi.org/10.1007/s40820-022-00936-z
- Seungho Yu, Kwangnam Kim, Brandon C. Wood, Hun-Gi Jung, Kyung Yoon Chung. Structural design strategies for superionic sodium halide solid electrolytes. Journal of Materials Chemistry A 2022, 10
(45)
, 24301-24309. https://doi.org/10.1039/D2TA05158C
- Ivan Kochetkov, Tong-Tong Zuo, Raffael Ruess, Baltej Singh, Laidong Zhou, Kavish Kaup, Jürgen Janek, Linda Nazar. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. Energy & Environmental Science 2022, 15
(9)
, 3933-3944. https://doi.org/10.1039/D2EE00803C
- Changhong Wang, Jianwen Liang, Jung Tae Kim, Xueliang Sun. Prospects of halide-based all-solid-state batteries: From material design to practical application. Science Advances 2022, 8
(36)
https://doi.org/10.1126/sciadv.adc9516
- Hao Wu, Haoqin Han, Zhenhua Yan, Qing Zhao, Jun Chen. Chloride solid-state electrolytes for all-solid-state lithium batteries. Journal of Solid State Electrochemistry 2022, 26
(9)
, 1791-1808. https://doi.org/10.1007/s10008-022-05230-x
- Xiu Zheng, En-De Fu, Peng Chen, Sheng Liu, Guo-Ran Li, Xue-Ping Gao. Li3InCl6-coated LiCoO2 for high-performance all solid-state batteries. Applied Physics Letters 2022, 121
(3)
https://doi.org/10.1063/5.0097432
- Jianwen Liang, Eveline van der Maas, Jing Luo, Xiaona Li, Ning Chen, Keegan R. Adair, Weihan Li, Junjie Li, Yongfeng Hu, Jue Liu, Li Zhang, Shangqian Zhao, Shigang Lu, Jiantao Wang, Huan Huang, Wenxuan Zhao, Steven Parnell, Ronald I. Smith, Swapna Ganapathy, Marnix Wagemaker, Xueliang Sun. A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries. Advanced Energy Materials 2022, 12
(21)
https://doi.org/10.1002/aenm.202103921
- Heather Cavers, Palanivel Molaiyan, Mozaffar Abdollahifar, Ulla Lassi, Arno Kwade. Perspectives on Improving the Safety and Sustainability of High Voltage Lithium‐Ion Batteries Through the Electrolyte and Separator Region. Advanced Energy Materials 2022, 12
(23)
https://doi.org/10.1002/aenm.202200147
- Hiram Kwak, Daseul Han, Jun Pyo Son, Jong Seok Kim, Juhyoun Park, Kyung-Wan Nam, Hyungsub Kim, Yoon Seok Jung. Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+xZr1-xMxCl6 (M = In, Sc). Chemical Engineering Journal 2022, 437 , 135413. https://doi.org/10.1016/j.cej.2022.135413
- Heyang Jiang, Xiaowei Mu, Hui Pan, Menghang Zhang, Ping He, Haoshen Zhou. Insights into interfacial chemistry of Ni-rich cathodes and sulphide-based electrolytes in all-solid-state lithium batteries. Chemical Communications 2022, 58
(40)
, 5924-5947. https://doi.org/10.1039/D2CC01220K
- Jing Wang, Shangqian Zhao, Ling Tang, Fujuan Han, Yi Zhang, Yimian Xia, Lijun Wang, Shigang Lu. Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries. International Journal of Minerals, Metallurgy and Materials 2022, 29
(5)
, 1003-1018. https://doi.org/10.1007/s12613-022-2453-0
- Sinclair R. Combs, Paul K. Todd, Prashun Gorai, Annalise E. Maughan. Editors’ Choice—Review—Designing Defects and Diffusion through Substitutions in Metal Halide Solid Electrolytes. Journal of The Electrochemical Society 2022, 169
(4)
, 040551. https://doi.org/10.1149/1945-7111/ac5bad
- Pascal Henkel, Stefan Zahn, Janine Lorenz, Timo Jacob, Jürgen Janek, Doreen Mollenhauer. Temperature-dependent Li vacancy diffusion in Li
4
Ti
5
O
12
by means of first principles molecular dynamic simulations. Physical Chemistry Chemical Physics 2022, 24
(9)
, 5301-5316. https://doi.org/10.1039/D1CP05126A
- Kaiqiang Zhang, Zhong Jin. Halogen-enabled rechargeable batteries: Current advances and future perspectives. Energy Storage Materials 2022, 45 , 332-369. https://doi.org/10.1016/j.ensm.2021.11.048
- Zhi Deng, Dixing Ni, Diancheng Chen, Ying Bian, Shuai Li, Zhaoxiang Wang, Yusheng Zhao. Anti‐perovskite
materials for energy storage batteries. InfoMat 2022, 4
(2)
https://doi.org/10.1002/inf2.12252
- Guofeng Xu, Liang Luo, Jianwen Liang, Shangqian Zhao, Rong Yang, Changhong Wang, Tianwei Yu, Limin Wang, Wei Xiao, Jiantao Wang, Jinqiu Yu, Xueliang Sun. Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy 2022, 92 , 106674. https://doi.org/10.1016/j.nanoen.2021.106674
- J. Vacik, G. Ceccio, A. Cannavò, V. Lavrentiev. Effects of UV irradiation and thermal annealing on LiCl derivatives encapsulation in porous PET membranes coated with a thin Au film. Radiation Effects and Defects in Solids 2022, 177
(1-2)
, 112-123. https://doi.org/10.1080/10420150.2022.2049786
- Guohao Yang, Xianhui Liang, Shisheng Zheng, Haibiao Chen, Wentao Zhang, Shunning Li, Feng Pan. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes. eScience 2022, 2
(1)
, 79-86. https://doi.org/10.1016/j.esci.2022.01.001
- Juhyoun Park, Daseul Han, Hiram Kwak, Yoonjae Han, Yong Jeong Choi, Kyung-Wan Nam, Yoon Seok Jung. Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chemical Engineering Journal 2021, 425 , 130630. https://doi.org/10.1016/j.cej.2021.130630
- Kai Wang, Qingyong Ren, Zhenqi Gu, Chaomin Duan, Jinzhu Wang, Feng Zhu, Yuanyuan Fu, Jipeng Hao, Jinfeng Zhu, Lunhua He, Chin-Wei Wang, Yingying Lu, Jie Ma, Cheng Ma. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-24697-2
- Dongsu Park, Kwangnam Kim, Gin Hyung Chun, Brandon C. Wood, Joon Hyung Shim, Seungho Yu. Materials design of sodium chloride solid electrolytes Na
3
MCl
6
for all-solid-state sodium-ion batteries. Journal of Materials Chemistry A 2021, 9
(40)
, 23037-23045. https://doi.org/10.1039/D1TA07050A
- Changhong Wang, Jianwen Liang, Jing Luo, Jue Liu, Xiaona Li, Feipeng Zhao, Ruying Li, Huan Huang, Shangqian Zhao, Li Zhang, Jiantao Wang, Xueliang Sun. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science Advances 2021, 7
(37)
https://doi.org/10.1126/sciadv.abh1896
- Changhong Wang, Jianwen Liang, Yang Zhao, Matthew Zheng, Xiaona Li, Xueliang Sun. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14
(5)
, 2577-2619. https://doi.org/10.1039/D1EE00551K
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.