Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Electron Irradiation of Metal Contacts in Monolayer MoS2 Field-Effect Transistors
My Activity

Figure 1Loading Img
  • Open Access
Functional Inorganic Materials and Devices

Electron Irradiation of Metal Contacts in Monolayer MoS2 Field-Effect Transistors
Click to copy article linkArticle link copied!

  • Aniello Pelella
    Aniello Pelella
    Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, Italy
    CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
  • Osamah Kharsah
    Osamah Kharsah
    Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
  • Alessandro Grillo
    Alessandro Grillo
    Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, Italy
    CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
  • Francesca Urban
    Francesca Urban
    Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, Italy
    CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
    INFN—Gruppo Collegato di Salerno, via Giovanni Paolo II, Fisciano 84084, Italy
  • Maurizio Passacantando
    Maurizio Passacantando
    Department of Physical and Chemical Sciences, University of L’Aquila, and CNR-SPIN L’Aquila, via Vetoio, Coppito, L’Aquila 67100, Italy
  • Filippo Giubileo
    Filippo Giubileo
    CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
  • Laura Iemmo
    Laura Iemmo
    Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, Italy
    CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
    More by Laura Iemmo
  • Stephan Sleziona
    Stephan Sleziona
    Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
  • Erik Pollmann
    Erik Pollmann
    Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
  • Lukas Madauß
    Lukas Madauß
    Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
  • Marika Schleberger
    Marika Schleberger
    Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
  • Antonio Di Bartolomeo*
    Antonio Di Bartolomeo
    Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, Italy
    CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
    *Email: [email protected]
Open PDF

ACS Applied Materials & Interfaces

Cite this: ACS Appl. Mater. Interfaces 2020, 12, 36, 40532–40540
Click to copy citationCitation copied!
https://doi.org/10.1021/acsami.0c11933
Published August 10, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Metal contacts play a fundamental role in nanoscale devices. In this work, Schottky metal contacts in monolayer molybdenum disulfide (MoS2) field-effect transistors are investigated under electron beam irradiation. It is shown that the exposure of Ti/Au source/drain electrodes to an electron beam reduces the contact resistance and improves the transistor performance. The electron beam conditioning of contacts is permanent, while the irradiation of the channel can produce transient effects. It is demonstrated that irradiation lowers the Schottky barrier at the contacts because of thermally induced atom diffusion and interfacial reactions. The simulation of electron paths in the device reveals that most of the beam energy is absorbed in the metal contacts. The study demonstrates that electron beam irradiation can be effectively used for contact improvement through local annealing.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2020 American Chemical Society

Introduction

Click to copy section linkSection link copied!

Molybdenum disulfide (MoS2) is one of the most studied transition metal dichalcogenides, owing to its layered structure and useful mechanical, chemical, electronic, and optoelectronic properties. (1−4) A molybdenum (Mo) atomic plane sandwiched between two sulfur (S) planes constitutes the monolayer that is bonded to other monolayers by weak van der Waals forces to form the bulk material. MoS2 is a semiconductor suitable for several applications, (5−9) having a 1.2 eV indirect band gap in the bulk form that widens up to 1.8–1.9 eV and becomes direct in the monolayer. (3) Despite the lower field-effect mobility than graphene, (10,11) ranging from few tenths to hundreds (12−15) of cm2 V–1 s–1, MoS2 field-effect transistors (FETs) have recently become very popular as alternatives to graphene FETs (12−17) for next-generation electronics based on 2D materials. (18−25)
The fabrication and characterization of devices based on 2D materials greatly rely on the application of electron beam (e-beam) lithography or focused ion beam processing and on scanning electron microscopy (SEM) or transmission electron microscopy, which imply irradiation by charged particles. The exposure to low-energy electrons and/or ions can modify the electronic properties of the 2D materials or their interfaces. (9,17,26) Indeed, structural defects can locally modify the band structure and behave as charge traps, thereby changing the device characteristics both in the case of e-beam (27,28) and ion beam irradiation. (29,30) Conversely, electron beam, ion irradiation, or plasma treatments can be intentionally used for nanoincisions, (31) for pores, (32) or to purposely create defects, for instance, to reduce the contact resistance. (33−35) Choi et al. reported the effects of 30 keV electron beam irradiation of monolayer MoS2 FETs, showing that irradiation-induced defects act as trap sites by reducing the carrier mobility and concentration and shifting the threshold voltage. (36) A study of point defects in MoS2 using SEM imaging and first-principles calculations, by Zhou et al., demonstrated that vacancies are created by e-beam irradiation at low energies, (37) below 30 keV. Durand et al. studied the effects of e-beam on the MoS2-based FET, reporting an increase in carrier density and a decrease in mobility explained as irradiation-induced generation of intrinsic defects in MoS2 and as Coulomb scattering by charges at the MoS2–SiO2 interface, respectively. (38) Giubileo et al. reported a negative threshold voltage shift and a carrier mobility enhancement under 10 keV electron irradiation of few-layer MoS2 FETs attributed to beam-induced positive charge trapped in the SiO2 gate oxide. (27)
In this paper, we present the spectroscopic and electrical characterization of monolayer MoS2-based FETs, with Schottky Ti/Au contacts, focusing on the effects of low-energy e-beam irradiation. We show that the long exposure of the metal contacts to 10 keV e-beam in a SEM chamber enhances the transistor’s on-current. We explain such an improvement by radiation-induced lowering of the Schottky barrier at the metal contacts. We perform Monte Carlo simulation to track the e-beam through the device and show that when the beam is focused onto the contacts, most of the beam energy is absorbed within the metal. The local heat can induce atomic diffusion and interfacial reactions that change the chemical composition and structure of the metal–MoS2 interface or can generate or release tensile strain. Both effects cause the lowering of the Schottky barrier and the consequent increase in transistor current.
Our study shows that electron beam exposure during SEM imaging has non-negligible effects on MoS2 devices; however, it also highlights that a suitable exposure, with the e-beam focused on the contact region, can be conveniently exploited to reduce the contact resistance of the transistor. Compared to thermal annealing, our finding provides a way to improve the contact resistance by local conditioning, which avoids the exposure of the entire wafer to a high thermal budget.

Fabrication and Experimental Methods

Click to copy section linkSection link copied!

The MoS2 monolayer flakes were grown via chemical vapor deposition in a three-zone split tube furnace, purged with 500 Ncm3/min Ar gas for 15 min to minimize the O2 content. The growth SiO2/Si substrate was spin-coated with a 1% sodium cholate solution; then, a saturated ammonium heptamolybdate (AHM) solution was first annealed at 300 °C under ambient conditions to turn AHM into MoO3 to be used as the source for molybdenum. The target material was placed in a three-zone tube furnace along with 50 mg of S powder, positioned upstream in a separate heating zone. The zones containing S and AHM were heated to 150 °C and 750 °C, respectively. After 15 min of growth, the process was stopped, and the sample was cooled rapidly.
We realized FETs using the SiO2/Si substrate (thickness of the dielectric: 285 nm) as the back gate and evaporating the drain and source electrodes on selected MoS2 flakes through standard photolithography and lift-off processes. The contacts were made of Ti (10 nm) and Au (40 nm) used as adhesion and cover layers, respectively. Ti was deposited in high vacuum, which could not exclude the formation of TiO2, contributing to the resistance and Schottky barrier at the contacts. Figure 1a,b shows the SEM top view of a typical device and its schematic layout and measurement setup. The channel is made up from a monolayer flake [as confirmed by Raman and photoluminescence (PL), see below] of width and length of 20 and 4 μm, respectively, and a nominal thickness of 0.7 nm. Atomic force microscope (AFM) images (Figure 1c,d,e) show that the flake has an average height of 1.2±0.3 nm (which is typical for single-layer MoS2 measured in air by AFM) and appears to be extremely flat (roughness rms < 0.25 nm) and structurally intact. There are some contaminants because of the lithography process, which are weakly bound and can be swept by the AFM tip. Contacted and noncontacted flake areas do not differ with respect to contamination density—spectroscopic data should thus be comparable.

Figure 1

Figure 1. (a) SEM image of the MoS2 device and contact labels. (b) MoS2 FET layout and schematic of the common source configuration used for electrical characterization. (c) AFM image of the MoS2 flake between the electrical contacts, which appear here in white as the scale has been adjusted to properly image the MoS2 flake. (d) Zoom-in into the upper region of (c), showing that the flake is flat and structurally intact. The rms roughness is 0.221 nm for the SiO2 substrate and 0.237 nm for MoS2. (e) Height distribution taken from image (d), yielding a flake height of ∼1.2 nm.

A total of seven MoS2 channels of identically prepared FETs have been characterized by Raman and PL spectroscopy just after processing. The measurements were performed with a Renishaw InVia Raman microscope at the Interdisciplinary Center for Analytics on the Nanoscale (ICAN). The excitation laser wavelength was 532 nm, and the power density was kept below 0.1 mW/μm2 to avoid damage to the MoS2 flake. Exemplary spectra of Raman characterization are shown in Figure 2. The chosen reference measurements are spectra obtained from MoS2 flakes on the same substrate, which were also in contact with the photoresist and various solvents during the processing and lift-off for the production of the FETs, but are not in contact with metal electrodes themselves. The shape of the PL spectra (Figure 2a) and the difference of the Raman modes (Figure 2b) differ significantly. The PL intensity (sum of all excitons and trions) for noncontacted MoS2 flakes is higher by a factor of 1.7 ± 0.8 than that for contacted MoS2. The mode differences for noncontacted and contacted MoS2 are 21.3 ± 0.7 cm–1 and 19.7 ± 0.7 cm–1, respectively. Both the changes in PL and Raman mode difference can be associated with built-in strain or changes in the electronic properties and the band structure of the MoS2 sheets. (39−43) From the linear dependencies of Raman mode positions on doping and strain, (39,40) we find a reduction of tensile strain by (0.46 ± 0.28) % and an increase in electron doping of 0.44 ± 0.36 × 1013 electrons per cm2 for the contacted 2D material in comparison with noncontacted MoS2 (details of the calculation method can be found in ref (44)). Hence, the significant alterations in the spectroscopic pre-characterization of the MoS2 channels can be clearly attributed to electronic and structural changes at the metal contact.

Figure 2

Figure 2. (a) PL and (b) Raman spectrum of monolayer MoS2 after FET processing. Blue: contacted MoS2 monolayer flake and red: noncontacted monolayer MoS2 flake.

In the following, most of the electrical characterization refers to the transistor between the contacts labeled C2 and C3 in Figure 1a. The contact C3 was used as the drain and C2 as the grounded source. The electrical measurements were carried out inside a SEM chamber (LEO 1530, Zeiss), endowed with two metallic probes with nanometer positioning capability, connected to a Keithley 4200 SCS (source measurement units, Tektronix Inc.), at room temperature and a pressure of about 10–6 mbar. The e-beam of SEM, set to 10 keV and 10 pA, was used for the time-controlled irradiation of specific parts of the device.

Results and Discussion

Click to copy section linkSection link copied!

The output (IdsVds) and the transfer (IdsVgs) characteristics of the transistor are shown in Figure 3a,b, respectively. The output curve shows rectification with the forward current appearing at negative Vds, typical of a p-type Schottky diode, while the transfer characteristic shows an n-type transistor. This apparently contradictory behavior has been previously reported for MoS2 and WSe2 transistors and explained by the formation of two back-to-back and possibly asymmetric Schottky barriers at the contacts. (45,46) The forward current at negative Vds is caused by the different contact areas and by the image force barrier lowering of the forced junction (i.e., the drain, C3, in our case), while the reverse current at Vds > 0 V is limited by the grounded junction at the source (C2) contact. As the barrier lowering is more effective on the forced junction, the voltage being directly applied to it, the negative bias gives rise to the higher (apparently forward) current.

Figure 3

Figure 3. Output (a) and transfer (b) characteristics of the device between C2 and C3 contacts, with C3 used as the drain and C2 as the grounded source.

After the initial electrical characterization, we performed two sets of exposures to the SEM electron beam. Each exposure lasted 300 s, corresponding to a fluence of ∼180 e/nm2, over a surface area of ∼100 μm2. The two sets of irradiations were carried out first on the drain contact (C3) and then on the grounded source contact (C2). A final exposure of the MoS2 channel to the e-beam was performed as well.
Figure 4 summarizes the obtained results. The IdsVds curves were measured at the end of each irradiation, ∼120 s after the blanking of the e-beam, to allow cooling down. Starting from the bottom (black) line in Figure 4a, representing the output curve of the unexposed device, the current increases with the e-beam exposures. We note two major discontinuities in the sequence of IdsVds curves, corresponding to the start of the two irradiations sets. These gaps are likely due to the uncontrolled exposure of the whole device during the selection of the drain (C3) and grounded source (C2) contact areas for the respective irradiation sets.

Figure 4

Figure 4. (a) Output characteristics at Vgs = 0 V of the transistor formed by contacts C2–C3 exposed to two sets of electron irradiations performed first on contact C3 and then on C2. (b) Rectification ratio and (c) maximum forward and reverse current, at Vds = ±5 V, as a function of the irradiation number. (d) Zero-bias Schottky barrier variation at the contacts C2 and C3 as a function of the irradiation number.

A different behavior of the forward with respect to the reverse current can be observed in Figure 4a, and a distinction of the effects of the irradiations on the drain (C3) and the grounded source (C2) can be made. Although the irradiation of the drain increases both the forward and the reverse currents, keeping the rectification ratio almost constant (see Figure 4 b), the irradiation of the source augments the reverse current in a faster way, rendering the output curves more symmetric. Figure 4b shows that repeated irradiations of the drain contact (C3) do not change the rectification ratio (at Vds = ±5 V), while the irradiation of the grounded source contact (C2) dramatically decreases the rectification ratio. Figure 4c shows that the maximum reverse and forward currents, at Vds = ±5 V, have different variation rates when the irradiation is either on the drain or source. Noticeably, Figure 4c shows that the increase in both the reverse and forward currents is an exponential function of the fluence, which is proportional to and can be parametrized by the irradiation number.
As the shape and the current intensity of the output characteristics are related to the Schottky barrier heights at the contacts, the exponentially increasing current and the changing rectification ratio point to radiation-induced Schottky barrier lowering. The energy release in the metal contacts can modify the chemistry of the metal–MoS2 interface or create stress and defects that can lead to a lowering of the barrier and a consequent contact resistance reduction. We note that the reduction of contact resistance by chemical reactions between the metal contacts and MoS2 channel has been reported for the metal deposited under ultrahigh vacuum (47) and contact laser annealing. (48) A disordered, compositionally graded layer, composed of Mo and TixSy species, forms on the surface of the MoS2 crystal following the deposition of Ti, and thermal annealing in the 100–600 °C temperature range can cause Ti diffusion inducing further chemical and structural changes at the Ti–MoS2 interface. (49,50) It is also possible that diffusion of Au atoms to the interface with MoS2 occurs under the energetic electron beam irradiation. Au does not react with MoS2 but reduces the contact resistance and therefore the Schottky barrier height. (51)
Similarly, tensile strain has been demonstrated to induce considerable Schottky and tunneling barrier lowering. (52)
A Schottky barrier of ∼0.2 eV is formed by several metals on MoS2 because of Fermi level pinning below the MoS2 conduction band. (53−55) Density functional theory calculations have indicated that the pinning at the metal–MoS2 interface is different from the well-known Bardeen pinning effect, metal-induced gap states, and defect/disorder-induced gap states, which are applicable to traditional metal–semiconductor junctions. At metal–MoS2 interfaces, the Fermi level is pinned either by a metal work function modification due to interface dipole formation arising from the charge redistribution or by the production of gap states mainly of Mo d-orbitals, characterized by the weakened intralayer S–Mo bonding because of the interface metal–S interaction. (56,57) The observed decrease in the Schottky barrier by e-beam irradiation, up to its complete disappearance, supports the occurrence of interface modifications that cause Fermi level depinning.
As the forward current at Vds < 0 V is limited by the Schottky barrier at the drain contact (C3), while the reverse current at Vds > 0 V is limited by the Schottky barrier at the grounded source contact C2 (which are the reverse-biased junctions for negative and positive Vds, respectively), the output curves of Figure 4a, which correspond always to reverse current, can be used to extract the behavior of the Schottky barriers as a function of the fluence (i.e., the e-beam irradiation number). Let us consider the thermionic current through a reverse-biased Schottky barrier (58,59)
(1)
where φBn and Isn are the barrier height and the reverse saturation current at the n-th e-beam irradiation, S is the junction area, A2D* is the 2D Richardson constant, k is the Boltzmann constant, T is the temperature, n is the ideality factor, and Va is the negative voltage across the barrier that makes . Let us define I0 as the reverse saturation current before e-beam exposure, that is, associated to the maximum barrier height φB0. To avoid the effect of bias which can induce image-force barrier lowering, (60) both In and I0 are obtained by extrapolating the measured currents to zero bias. Then, eq 1 can be used to evaluate the variation of the Schottky barrier, ΔφBn = φBn – φB0, as a function of the irradiation number
(2)
The zero-bias Schottky barrier variation, ΔφBn, is shown in Figure 4d for both source (C2) and drain (C3) contacts. The overall reduction of both barriers is comparable to the expected initial barrier height based on Fermi level pinning, meaning that the long irradiation can completely remove the barriers. The plot indicates that the two barriers behave differently for the irradiation of C2 or C3. Although the beam irradiation of either contact results in a lowering of both Schottky barriers, the barrier decrease is faster for the irradiation of the grounded source. Besides, the Schottky barrier at the source contact is the most affected by the irradiation of the source.
To explain these results, we propose the model based on the energy band diagrams, shown in Figure 5. A negative (positive) voltage applied to the drain contact (C3) causes an upward (downward) shift of the energy bands in the drain region. Electron beam irradiation of the contact lowers the Schottky barrier and the relative built-in potential, as shown by the red dashed lines in Figure 5. The reduction of a Schottky barrier and of its associated built-in potential, at the irradiated contact, results also in the lowering of the unexposed barrier, which can experience a stronger potential drop because of the reduced contact resistance of the first contact. Figure 5a represents the situation in which the e-beam is focused on the biased drain contact (C3). At Vds < 0 V, the current is limited mainly by the drain contact barrier which is lowered by the successive irradiations, causing the exponential increase in maximum forward current. At Vds > 0 V, the current is limited by the un-irradiated source contact (C2) barrier, and its dependence on the irradiation cycle is caused by the lowering of the built-in potential at the drain (C3). As the barrier and built-in lowering are the same, the rectification ratio remains almost constant. For irradiation of the grounded source (C2, Figure 5b), the current increases because of a similar mechanism, with the difference that the drain contact barrier limits the current for Vds > 0 V to a lesser extent, having been already irradiation-lowered. Therefore, the reverse current increases faster with the repeated irradiation and the rectification ratio decreases.

Figure 5

Figure 5. Low-bias energy band diagrams (black) and their modification under electron irradiation (red) of C3 (a) and of C2 (b) contacts resulting in barrier lowering (φ̅B).

The effect of irradiation on the transfer characteristic of the transistor is shown in Figure 6 and confirms the radiation-induced increase in channel current. Besides, Figure 6a shows that the e-beam, independent of onto which contact it is focused on, causes a left shift of the transfer curve. Such a shift corresponds to a decrease in threshold voltage, defined as the x-axis intercept of the linear fit of the transfer curve on the linear scale. The threshold voltage as a function of the irradiation is displayed in Figure 6b. Although the e-beam exposure of the contacts provokes a left shift (the transfer curves are taken at the end of the two irradiation sets on the drain (C3) and grounded source (C2)), further left shift of the threshold voltage is observed when two successive irradiations are performed in the channel region.

Figure 6

Figure 6. (a) FET transfer characteristics at Vds = −4 V before and after e-beam irradiations of contacts C3 and C2 and of the channel. (b) Left shift of the threshold voltage extrapolated from the transfer characteristics over the e-beam exposure.

The observed negative shift of the threshold voltage has been reported and discussed before. (27) It can be explained by the pile-up of positive charge in trap states of the SiO2 gate dielectric or at the SiO2–Si interface. The e-beam exposures produce electron–hole pairs in the SiO2 gate oxide and in the Si substrate: although mobile electrons are easily swept by the applied bias, the positive charges can be stored for long times. (27) The positive charge storage acts as an extra gate (similarly to the gating effect under light irradiation (61,62)) and enhances the n-type doping of the channel.
Indeed, Figure 6 shows that there is a slight recovery of the threshold voltage after 12 h of annealing at room temperature. However, we highlight that, as demonstrated by Figure 6a, the maximum channel current, which is limited by the contact resistances, remains unchanged after annealing, demonstrating that the irradiation-induced improvement of the contacts is permanent.
To further confirm our model, we performed a Monte Carlo simulation to track the path of the electrons under the contacts and in the channel region (Figure 7a,b), using the CASINO software package. (63−65) We simulated a 10 keV beam with one million electrons and a radius beam of 10 nm. The cathodoluminescence spectrum (Figure 7c) shows that electrons lose their energy and are stopped (Figure 7d) mostly in the Ti/Au metal stack, while they reach and are absorbed in the Si substrate when the irradiation is on the channel. The high release of energy in the metal contacts, similarly to thermal annealing, (66,67) induces Ti–MoS2 reactions and creates contact with the reduced Schottky barrier and contact resistance. Conversely, when we directly irradiate the MoS2 channel, energy is prevalently adsorbed in the Si bulk and its effect manifests only through the positive charge traps generated in the SiO2 layer.

Figure 7

Figure 7. Monte Carlo simulation using CASINO v2 of e-beam irradiation of the device (a) contacts and (b) of the MoS2 channel. (c) Simulated cathodoluminescence intensity through the sample, with the e-beam focused onto the contacts and the flake. (d) Simulation of the electrons' penetration depth through the sample.

Conclusions

Click to copy section linkSection link copied!

We investigated the effects of 10 keV electron beam irradiation of the Schottky metal contacts in MoS2-based FETs. Spectroscopic analysis by Raman and PL shows that the presence of metal contacts changes the properties of monolayer MoS2 with respect to strain and doping. The electrical measurements revealed that electron beam irradiation improves the device conductance, reduces the rectification of the output characteristic, and causes a left shift of the threshold voltage. To explain such a feature, we propose that the energy absorbed in the metal contacts induces atomic diffusion and interfacial reactions that lower the Schottky barrier at the contacts and improve the contact resistance. We corroborate our model by direct measurement of the Schottky barrier height variation and by simulation of the electron trajectories in the contact regions.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Antonio Di Bartolomeo - Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, ItalyCNR-SPIN, via Giovanni Paolo II, Fisciano 84084, ItalyOrcidhttp://orcid.org/0000-0002-3629-726X Email: [email protected]
  • Authors
    • Aniello Pelella - Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, ItalyCNR-SPIN, via Giovanni Paolo II, Fisciano 84084, ItalyOrcidhttp://orcid.org/0000-0002-3831-0210
    • Osamah Kharsah - Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
    • Alessandro Grillo - Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, ItalyCNR-SPIN, via Giovanni Paolo II, Fisciano 84084, ItalyOrcidhttp://orcid.org/0000-0002-8909-9865
    • Francesca Urban - Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, ItalyCNR-SPIN, via Giovanni Paolo II, Fisciano 84084, ItalyINFN—Gruppo Collegato di Salerno, via Giovanni Paolo II, Fisciano 84084, ItalyOrcidhttp://orcid.org/0000-0003-2109-1370
    • Maurizio Passacantando - Department of Physical and Chemical Sciences, University of L’Aquila, and CNR-SPIN L’Aquila, via Vetoio, Coppito, L’Aquila 67100, ItalyOrcidhttp://orcid.org/0000-0002-3680-5295
    • Filippo Giubileo - CNR-SPIN, via Giovanni Paolo II, Fisciano 84084, ItalyOrcidhttp://orcid.org/0000-0003-2233-3810
    • Laura Iemmo - Department of Physics and Interdepartmental Centre NanoMates, University of Salerno, via Giovanni Paolo II, Fisciano 84084, ItalyCNR-SPIN, via Giovanni Paolo II, Fisciano 84084, Italy
    • Stephan Sleziona - Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, Germany
    • Erik Pollmann - Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, GermanyOrcidhttp://orcid.org/0000-0002-3961-0426
    • Lukas Madauß - Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, GermanyOrcidhttp://orcid.org/0000-0003-2556-5967
    • Marika Schleberger - Fakultät für Physik and CENIDE, Universität Duisburg-Essen, Lotharstrasse 1, Duisburg 47057, GermanyOrcidhttp://orcid.org/0000-0002-5785-1186
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

A.D.B. acknowledges the financial support from MIUR—Italian Ministry of Education, University and Research (projects Pico & Pro ARS01_01061 and RINASCIMENTO ARS01_01088). M.S. acknowledges the financial support from DFG—German Research Foundation (project number 406129719). The authors thank ICAN—facility founded by the German Research Foundation (DFG, reference RI_00313)—for Raman and PL spectroscopy, and A. Lorke of University of Duisburg-Essen for providing access to the clean room facilities.

References

Click to copy section linkSection link copied!

This article references 67 other publications.

  1. 1
    Santhosh, S.; Madhavan, A. A. A Review on the Structure, Properties and Characterization of 2D Molybdenum Disulfide. In 2019 Advances in Science and Engineering Technology International Conferences (ASET); IEEE: Dubai, United Arab Emirates, 2019; pp 15.
  2. 2
    Urban, F.; Passacantando, M.; Giubileo, F.; Iemmo, L.; Di Bartolomeo, A. Transport and Field Emission Properties of MoS2 Bilayers. Nanomaterials 2018, 8, 151,  DOI: 10.3390/nano8030151
  3. 3
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805,  DOI: 10.1103/physrevlett.105.136805
  4. 4
    Urban, F.; Giubileo, F.; Grillo, A.; Iemmo, L.; Luongo, G.; Passacantando, M.; Foller, T.; Madauß, L.; Pollmann, E.; Geller, M. P.; Oing, D.; Schleberger, M.; Di Bartolomeo, A. Gas Dependent Hysteresis in MoS2 Field Effect Transistors. 2D Mater. 2019, 6, 045049,  DOI: 10.1088/2053-1583/ab4020
  5. 5
    Hasani, A.; Le, Q. V.; Tekalgne, M.; Choi, M.-J.; Lee, T. H.; Jang, H. W.; Kim, S. Y. Direct Synthesis of Two-Dimensional MoS2 on p-Type Si and Application to Solar Hydrogen Production. NPG Asia Mater. 2019, 11, 47,  DOI: 10.1038/s41427-019-0145-7
  6. 6
    Bazaka, K.; Levchenko, I.; Lim, J. W. M.; Baranov, O.; Corbella, C.; Xu, S.; Keidar, M. MoS2 -Based Nanostructures: Synthesis and Applications in Medicine. J. Phys. D: Appl. Phys. 2019, 52, 183001,  DOI: 10.1088/1361-6463/ab03b3
  7. 7
    Giubileo, F.; Grillo, A.; Passacantando, M.; Urban, F.; Iemmo, L.; Luongo, G.; Pelella, A.; Loveridge, M.; Lozzi, L.; Di Bartolomeo, A. Field Emission Characterization of MoS2 Nanoflowers. Nanomaterials 2019, 9, 717,  DOI: 10.3390/nano9050717
  8. 8
    Dragoman, M.; Cismaru, A.; Aldrigo, M.; Radoi, A.; Dinescu, A.; Dragoman, D. MoS 2 Thin Films as Electrically Tunable Materials for Microwave Applications. Appl. Phys. Lett. 2015, 107, 243109,  DOI: 10.1063/1.4938145
  9. 9
    Madauß, L.; Zegkinoglou, I.; Vázquez Muiños, H.; Choi, Y.-W.; Kunze, S.; Zhao, M.-Q.; Naylor, C. H.; Ernst, P.; Pollmann, E.; Ochedowski, O.; Lebius, H.; Benyagoub, A.; Ban-d’Etat, B.; Johnson, A. T. C.; Djurabekova, F.; Roldan Cuenya, B.; Schleberger, M. Highly Active Single-Layer MoS2 Catalysts Synthesized by Swift Heavy Ion Irradiation. Nanoscale 2018, 10, 2290822916,  DOI: 10.1039/c8nr04696d
  10. 10
    Urban, F.; Lupina, G.; Grillo, A.; Martucciello, N.; Di Bartolomeo, A. Contact Resistance and Mobility in Back-Gate Graphene Transistors. Nano Express 2020, 1, 010001,  DOI: 10.1088/2632-959x/ab7055
  11. 11
    Bolotin, K. I. Electronic Transport in Graphene: Towards High Mobility. Graphene; Elsevier, 2014; pp 199227.
  12. 12
    Di Bartolomeo, A.; Santandrea, S.; Giubileo, F.; Romeo, F.; Petrosino, M.; Citro, R.; Barbara, P.; Lupina, G.; Schroeder, T.; Rubino, A. Effect of Back-Gate on Contact Resistance and on Channel Conductance in Graphene-Based Field-Effect Transistors. Diamond Relat. Mater. 2013, 38, 1923,  DOI: 10.1016/j.diamond.2013.06.002
  13. 13
    Wilmart, Q.; Boukhicha, M.; Graef, H.; Mele, D.; Palomo, J.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Bouchiat, V.; Baudin, E.; Berroir, J.-M.; Bocquillon, E.; Fève, G.; Pallecchi, E.; Plaçais, B. High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation. Appl. Sci. 2020, 10, 446,  DOI: 10.3390/app10020446
  14. 14
    Piccinini, E.; Alberti, S.; Longo, G. S.; Berninger, T.; Breu, J.; Dostalek, J.; Azzaroni, O.; Knoll, W. Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. J. Phys. Chem. C 2018, 122, 1018110188,  DOI: 10.1021/acs.jpcc.7b11128
  15. 15
    Di Bartolomeo, A.; Giubileo, F.; Iemmo, L.; Romeo, F.; Russo, S.; Unal, S.; Passacantando, M.; Grossi, V.; Cucolo, A. M. Leakage and Field Emission in Side-Gate Graphene Field Effect Transistors. Appl. Phys. Lett. 2016, 109, 023510,  DOI: 10.1063/1.4958618
  16. 16
    Bartolomeo, A. D.; Giubileo, F.; Romeo, F.; Sabatino, P.; Carapella, G.; Iemmo, L.; Schroeder, T.; Lupina, G. Graphene Field Effect Transistors with Niobium Contacts and Asymmetric Transfer Characteristics. Nanotechnology 2015, 26, 475202,  DOI: 10.1088/0957-4484/26/47/475202
  17. 17
    Li, F.; Gao, F.; Xu, M.; Liu, X.; Zhang, X.; Wu, H.; Qi, J. Tuning Transport and Photoelectric Performance of Monolayer MoS2 Device by E-Beam Irradiation. Adv. Mater. Interfaces 2018, 5, 1800348,  DOI: 10.1002/admi.201800348
  18. 18
    Wang, J.; Yao, Q.; Huang, C.-W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; Jiang, C.; Wu, W.-W. High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h-BN as a Tunneling Layer. Adv. Mater. 2016, 28, 83028308,  DOI: 10.1002/adma.201602757
  19. 19
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768779,  DOI: 10.1038/nnano.2014.207
  20. 20
    Kim, M. J.; Choi, Y.; Seok, J.; Lee, S.; Kim, Y. J.; Lee, J. Y.; Cho, J. H. Defect-Free Copolymer Gate Dielectrics for Gating MoS2 Transistors. J. Phys. Chem. C 2018, 122, 1219312199,  DOI: 10.1021/acs.jpcc.8b03092
  21. 21
    Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 1316913183,  DOI: 10.1021/acs.jpcc.5b02950
  22. 22
    Di Bartolomeo, A.; Pelella, A.; Liu, X.; Miao, F.; Passacantando, M.; Giubileo, F.; Grillo, A.; Iemmo, L.; Urban, F.; Liang, S. J. Pressure-Tunable Ambipolar Conduction and Hysteresis in Thin Palladium Diselenide Field Effect Transistors. Adv. Funct. Mater. 2019, 29, 1902483,  DOI: 10.1002/adfm.201902483
  23. 23
    Di Bartolomeo, A.; Luongo, G.; Iemmo, L.; Urban, F.; Giubileo, F. Graphene–Silicon Schottky Diodes for Photodetection. IEEE Trans. Nanotechnol. 2018, 17, 11331137,  DOI: 10.1109/tnano.2018.2853798
  24. 24
    Jin, C.; Rasmussen, F. A.; Thygesen, K. S. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping: Density Functional Theory and Many-Body Calculations. J. Phys. Chem. C 2015, 119, 1992819933,  DOI: 10.1021/acs.jpcc.5b05580
  25. 25
    Grillo, A.; Di Bartolomeo, A.; Urban, F.; Passacantando, M.; Caridad, J. M.; Sun, J.; Camilli, L. Observation of 2D Conduction in Ultrathin Germanium Arsenide Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12, 1299813004,  DOI: 10.1021/acsami.0c00348
  26. 26
    Schleberger, M.; Kotakoski, J. 2D Material Science: Defect Engineering by Particle Irradiation. Materials 2018, 11, 1885,  DOI: 10.3390/ma11101885
  27. 27
    Giubileo, F.; Iemmo, L.; Passacantando, M.; Urban, F.; Luongo, G.; Sun, L.; Amato, G.; Enrico, E.; Di Bartolomeo, A. Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer MoS2 Field-Effect Transistors. J. Phys. Chem. C 2019, 123, 14541461,  DOI: 10.1021/acs.jpcc.8b09089
  28. 28
    Di Bartolomeo, A.; Urban, F.; Pelella, A.; Grillo, A.; Passacantando, M.; Liu, X.; Giubileo, F. Electron Irradiation of Multilayer PdSe2 Field Effect Transistors. Nanotechnology 2020, 31, 375204,  DOI: 10.1088/1361-6528/ab9472
  29. 29
    Ochedowski, O.; Marinov, K.; Wilbs, G.; Keller, G.; Scheuschner, N.; Severin, D.; Bender, M.; Maultzsch, J.; Tegude, F. J.; Schleberger, M. Radiation Hardness of Graphene and MoS2 Field Effect Devices against Swift Heavy Ion Irradiation. J. Appl. Phys. 2013, 113, 214306,  DOI: 10.1063/1.4808460
  30. 30
    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M. Irradiation of Graphene Field Effect Transistors with Highly Charged Ions. Nucl. Instrum. Methods Phys. Res., Sect. B 2016, 382, 7175,  DOI: 10.1016/j.nimb.2016.03.043
  31. 31
    Madauß, L.; Ochedowski, O.; Lebius, H.; Ban-d’Etat, B.; Naylor, C. H.; Johnson, A. T. C.; Kotakoski, J.; Schleberger, M. Defect Engineering of Single- and Few-Layer MoS2 by Swift Heavy Ion Irradiation. 2D Mater. 2016, 4, 015034,  DOI: 10.1088/2053-1583/4/1/015034
  32. 32
    Kozubek, R.; Tripathi, M.; Ghorbani-Asl, M.; Kretschmer, S.; Madauß, L.; Pollmann, E.; O’Brien, M.; McEvoy, N.; Ludacka, U.; Susi, T.; Duesberg, G. S.; Wilhelm, R. A.; Krasheninnikov, A. V.; Kotakoski, J.; Schleberger, M. Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. J. Phys. Chem. Lett. 2019, 10, 904910,  DOI: 10.1021/acs.jpclett.8b03666
  33. 33
    Giubileo, F.; Di Bartolomeo, A. The Role of Contact Resistance in Graphene Field-Effect Devices. Prog. Surf. Sci. 2017, 92, 143175,  DOI: 10.1016/j.progsurf.2017.05.002
  34. 34
    Shahzad, K.; Jia, K.; Zhao, C.; Wang, D.; Usman, M.; Luo, J. Effects of Different Ion Irradiation on the Contact Resistance of Pd/Graphene Contacts. Materials 2019, 12, 3928,  DOI: 10.3390/ma12233928
  35. 35
    Yan, X.; Jia, K.; Su, Y.; Ma, Y.; Luo, J.; Zhu, H.; Wei, Y. Edge-Contact Formed by Oxygen Plasma and Rapid Thermal Annealing to Improve Metal-Graphene Contact Resistance. ECS J. Solid State Sci. Technol. 2018, 7, M11M15,  DOI: 10.1149/2.0251802jss
  36. 36
    Choi, B. Y.; Cho, K.; Pak, J.; Kim, T.-Y.; Kim, J.-K.; Shin, J.; Seo, J.; Chung, S.; Lee, T. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors. J. Korean Phys. Soc. 2018, 72, 12031208,  DOI: 10.3938/jkps.72.1203
  37. 37
    Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13, 26152622,  DOI: 10.1021/nl4007479
  38. 38
    Durand, C.; Zhang, X.; Fowlkes, J.; Najmaei, S.; Lou, J.; Li, A.-P. Defect-Mediated Transport and Electronic Irradiation Effect in Individual Domains of CVD-Grown Monolayer MoS2. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2015, 33, 02B110,  DOI: 10.1116/1.4906331
  39. 39
    Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 081307,  DOI: 10.1103/physrevb.87.081307
  40. 40
    Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-Dependent Phonon Renormalization in Monolayer MoS2 Transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 161403,  DOI: 10.1103/physrevb.85.161403
  41. 41
    Scheuschner, N.; Ochedowski, O.; Kaulitz, A.-M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of Freestanding Single- and Few-Layer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 125406,  DOI: 10.1103/physrevb.89.125406
  42. 42
    Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 36263630,  DOI: 10.1021/nl4014748
  43. 43
    Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly Bound Trions in Monolayer MoS2. Nat. Mater. 2013, 12, 207211,  DOI: 10.1038/nmat3505
  44. 44
    Pollmann, E.; Madauß, L.; Schumacher, S.; Kumar, U.; Heuvel, F.; Ende, C. vom.; Yilmaz, S.; Gündörmüs, S.; Schleberger, M. Apparent Differences between Single Layer Molybdenum Disulfide Fabricated via Chemical Vapor Deposition and Exfoliation. 2020, arXiv:2006.05789 [cond-mat].
  45. 45
    Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L.; Liang, S.-J.; Ang, L. K. Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors. Adv. Funct. Mater. 2018, 28, 1800657,  DOI: 10.1002/adfm.201800657
  46. 46
    Di Bartolomeo, A.; Urban, F.; Passacantando, M.; McEvoy, N.; Peters, L.; Iemmo, L.; Luongo, G.; Romeo, F.; Giubileo, F. A WSe2 Vertical Field Emission Transistor. Nanoscale 2019, 11, 15381548,  DOI: 10.1039/c8nr09068h
  47. 47
    Smyth, C. M.; Addou, R.; McDonnell, S.; Hinkle, C. L.; Wallace, R. M. Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2 -Based Device Performance. J. Phys. Chem. C 2016, 120, 1471914729,  DOI: 10.1021/acs.jpcc.6b04473
  48. 48
    Kwon, H.; Baik, S.; Jang, J.; Jang, J.; Kim, S.; Grigoropoulos, C.; Kwon, H.-J. Ultra-Short Pulsed Laser Annealing Effects on MoS2 Transistors with Asymmetric and Symmetric Contacts. Electronics 2019, 8, 222,  DOI: 10.3390/electronics8020222
  49. 49
    Freedy, K. M.; Zhang, H.; Litwin, P. M.; Bendersky, L. A.; Davydov, A. V.; McDonnell, S. Thermal Stability of Titanium Contacts to MoS2. ACS Appl. Mater. Interfaces 2019, 11, 3538935393,  DOI: 10.1021/acsami.9b08829
  50. 50
    McDonnell, S.; Smyth, C.; Hinkle, C. L.; Wallace, R. M. MoS2 −Titanium Contact Interface Reactions. ACS Appl. Mater. Interfaces 2016, 8, 82898294,  DOI: 10.1021/acsami.6b00275
  51. 51
    English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 2016, 16, 38243830,  DOI: 10.1021/acs.nanolett.6b01309
  52. 52
    Wang, Q.; Deng, B.; Shi, X. A New Insight for Ohmic Contacts to MoS2 : By Tuning MoS2 Affinity Energies but Not Metal Work-Functions. Phys. Chem. Chem. Phys. 2017, 19, 2615126157,  DOI: 10.1039/c7cp05109c
  53. 53
    Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11, 15881596,  DOI: 10.1021/acsnano.6b07159
  54. 54
    Guo, Y.; Liu, D.; Robertson, J. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. ACS Appl. Mater. Interfaces 2015, 7, 2570925715,  DOI: 10.1021/acsami.5b06897
  55. 55
    Pan, Y.; Gu, J.; Tang, H.; Zhang, X.; Li, J.; Shi, B.; Yang, J.; Zhang, H.; Yan, J.; Liu, S.; Hu, H.; Wu, M.; Lu, J. Reexamination of the Schottky Barrier Heights in Monolayer MoS2 Field-Effect Transistors. ACS Appl. Nano Mater. 2019, 2, 47174726,  DOI: 10.1021/acsanm.9b00200
  56. 56
    Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS2 Interfaces. Nano Lett. 2014, 14, 17141720,  DOI: 10.1021/nl403465v
  57. 57
    Zhong, H.; Quhe, R.; Wang, Y.; Ni, Z.; Ye, M.; Song, Z.; Pan, Y.; Yang, J.; Yang, L.; Lei, M.; Shi, J.; Lu, J. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations. Sci. Rep. 2016, 6, 21786,  DOI: 10.1038/srep21786
  58. 58
    Di Bartolomeo, A. Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor Heterojunction. Phys. Rep. 2016, 606, 158,  DOI: 10.1016/j.physrep.2015.10.003
  59. 59
    Anwar, A.; Nabet, B.; Culp, J.; Castro, F. Effects of Electron Confinement on Thermionic Emission Current in a Modulation Doped Heterostructure. J. Appl. Phys. 1999, 85, 26632666,  DOI: 10.1063/1.369627
  60. 60
    Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
  61. 61
    Di Bartolomeo, A.; Genovese, L.; Foller, T.; Giubileo, F.; Luongo, G.; Croin, L.; Liang, S.-J.; Ang, L. K.; Schleberger, M. Electrical Transport and Persistent Photoconductivity in Monolayer MoS2 Phototransistors. Nanotechnology 2017, 28, 214002,  DOI: 10.1088/1361-6528/aa6d98
  62. 62
    Zhang, K.; Peng, M.; Yu, A.; Fan, Y.; Zhai, J.; Wang, Z. L. A Substrate-Enhanced MoS2 Photodetector through a Dual-Photogating Effect. Mater. Horiz. 2019, 6, 826833,  DOI: 10.1039/c8mh01429a
  63. 63
    Cheng, Y. J.; Yan, L.; Shi, F.; Liu, F.; Li, M.; Shi, H. L.; Hou, Z. P. Monte Carlo Simulation of Electron Scattering in Ion Barrier Film in Generation III Image Intensifier. Key Eng. Mater. 2013, 552, 193200,  DOI: 10.4028/www.scientific.net/kem.552.193
  64. 64
    Movla, H.; Babazadeh, M. Simulation Analysis of the Aluminum Thin Film Thickness Measurement by Using Low Energy Electron Beam. Optik 2014, 125, 7174,  DOI: 10.1016/j.ijleo.2013.06.033
  65. 65
    Drouin, D.; Couture, A. R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A Fast and Easy-to-Use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users. Scanning 2007, 29, 92101,  DOI: 10.1002/sca.20000
  66. 66
    Abraham, M.; Mohney, S. E. Annealed Ag Contacts to MoS2 Field-Effect Transistors. J. Appl. Phys. 2017, 122, 115306,  DOI: 10.1063/1.4991961
  67. 67
    Goyal, N.; Mackenzie, D. M. A.; Panchal, V.; Jawa, H.; Kazakova, O.; Petersen, D. H.; Lodha, S. Enhanced Thermally Aided Memory Performance Using Few-Layer ReS2 Transistors. Appl. Phys. Lett. 2020, 116, 052104,  DOI: 10.1063/1.5126809

Cited By

Click to copy section linkSection link copied!

This article is cited by 50 publications.

  1. Seema Rani, Subhabrata Das, Shumile Ahmed Siddiqui, Ayushi Jain, Daya Rani, Mansi Pahuja, Nikita Chaudhary, Mohd Afshan, Rishita Ghosh, Devansh Swadia, S. k. Riyajuddin, Chandan Bera, Kaushik Ghosh. Harnessing Environmental Sensitivity in SnSe-Based Metal–Semiconductor–Metal Devices: Unveiling Negative Photoconductivity for Enhanced Photodetector Performance and Humidity Sensing. ACS Applied Materials & Interfaces 2024, 16 (20) , 26899-26914. https://doi.org/10.1021/acsami.4c02539
  2. Su-Yeon Joung, Haena Yim, Donghun Lee, Jaehyung Shim, So Yeon Yoo, Yeon Ho Kim, Jin Seok Kim, Hyunjun Kim, Seok-Ki Hyeong, Junhee Kim, Yong-Young Noh, Sukang Bae, Myung Jin Park, Ji-Won Choi, Chul-Ho Lee. All-Solution-Processed High-Performance MoS2 Thin-Film Transistors with a Quasi-2D Perovskite Oxide Dielectric. ACS Nano 2024, 18 (3) , 1958-1968. https://doi.org/10.1021/acsnano.3c06972
  3. Kimberly Intonti, Enver Faella, Arun Kumar, Loredana Viscardi, Filippo Giubileo, Nadia Martucciello, Hoi Tung Lam, Konstantinos Anastasiou, Monica Craciun, Saverio Russo, Antonio Di Bartolomeo. Temperature-Dependent Conduction and Photoresponse in Few-Layer ReS2. ACS Applied Materials & Interfaces 2023, 15 (43) , 50302-50311. https://doi.org/10.1021/acsami.3c12973
  4. Aristide Djoulde, Mengfan He, Xinyue Liu, Lingdi Kong, Pengfei Zhao, Jinjun Rao, Jinbo Chen, Lingjun Meng, Zhiming Wang, Mei Liu. Electrical Activity and Extremes of Individual Suspended ZnO Nanowires for 3D Nanoelectronic Applications. ACS Applied Materials & Interfaces 2023, 15 (37) , 44433-44443. https://doi.org/10.1021/acsami.3c07418
  5. Somayeh Tajik, Abbas Aghaei Afshar, Saeedeh Shamsaddini, Mohammad Bagher Askari, Zahra Dourandish, Fariba Garkani Nejad, Hadi Beitollahi, Antonio Di Bartolomeo. Fe3O4@MoS2/rGO Nanocomposite/Ionic Liquid Modified Carbon Paste Electrode for Electrochemical Sensing of Dasatinib in the Presence of Doxorubicin. Industrial & Engineering Chemistry Research 2023, 62 (11) , 4473-4480. https://doi.org/10.1021/acs.iecr.2c00370
  6. Hongfeng Wan, Weixuan Li, Xiaoqing Ma, Yanqi Mu, Guancai Xie, Mengshan Li, Beidou Guo, Jian Ru Gong. 3 nm Channel MoS2 Transistors by Electromigration of Metal Interconnection. ACS Applied Electronic Materials 2023, 5 (1) , 247-254. https://doi.org/10.1021/acsaelm.2c01306
  7. Yanxiao Sun, Luyue Jiang, Zhe Wang, Zhenfei Hou, Liyan Dai, Yankun Wang, Jinyan Zhao, Ya-Hong Xie, Libo Zhao, Zhuangde Jiang, Wei Ren, Gang Niu. Multiwavelength High-Detectivity MoS2 Photodetectors with Schottky Contacts. ACS Nano 2022, 16 (12) , 20272-20280. https://doi.org/10.1021/acsnano.2c06062
  8. Wenxuan Guo, Mengge Li, Xiaoxiang Wu, Yali Liu, Tianjian Ou, Cong Xiao, Zhanjie Qiu, Yuan Zheng, Yewu Wang. Nonvolatile n-Type Doping and Metallic State in Multilayer-MoS2 Induced by Hydrogenation Using Ionic-Liquid Gating. Nano Letters 2022, 22 (22) , 8957-8965. https://doi.org/10.1021/acs.nanolett.2c03159
  9. Ungrae Cho, Seokjin Kim, Chang Yeop Shin, Intek Song. Tabletop Fabrication of High-Performance MoS2 Field-Effect Transistors. ACS Omega 2022, 7 (24) , 21220-21224. https://doi.org/10.1021/acsomega.2c02188
  10. Erik Pollmann, Stephan Sleziona, Tobias Foller, Ulrich Hagemann, Claudia Gorynski, Oliver Petri, Lukas Madauß, Lars Breuer, Marika Schleberger. Large-Area, Two-Dimensional MoS2 Exfoliated on Gold: Direct Experimental Access to the Metal–Semiconductor Interface. ACS Omega 2021, 6 (24) , 15929-15939. https://doi.org/10.1021/acsomega.1c01570
  11. Anima Mahajan, Menaka Jha, Arushi Arora, G. R. Umapathy, Santanu Ghosh. Synthesis of MoS 2 @NdS heterostructures featuring augmented field emission performance. Journal of Materials Chemistry A 2024, 12 (37) , 25274-25290. https://doi.org/10.1039/D4TA03897E
  12. Filippo Giubileo, Enver Faella, Daniele Capista, Maurizio Passacantando, Ofelia Durante, Arun Kumar, Aniello Pelella, Kimberly Intonti, Loredana Viscardi, Sebastiano De Stefano, Nadia Martucciello, Monica F. Craciun, Saverio Russo, Antonio Di Bartolomeo. Field enhancement induced by surface defects in two-dimensional ReSe 2 field emitters. Nanoscale 2024, 16 (35) , 16718-16728. https://doi.org/10.1039/D4NR02109F
  13. Jaewan Park, Sungmin Park, Seongin Hong. Thermally stable photosensing using poly(methyl methacrylate)-coated MoS 2 phototransistor for improved imaging reliability. Physica Scripta 2024, 99 (9) , 095546. https://doi.org/10.1088/1402-4896/ad6cc8
  14. Yijing Yang, Shiyu Ling, Pengfei Hou. Electron Irradiation Effect on 2-D WSe 2 Phototransistors. IEEE Transactions on Nuclear Science 2024, 71 (5) , 1273-1278. https://doi.org/10.1109/TNS.2023.3315936
  15. Hei Wong, Jieqiong Zhang, Jun Liu. Contacts at the Nanoscale and for Nanomaterials. Nanomaterials 2024, 14 (4) , 386. https://doi.org/10.3390/nano14040386
  16. Mohamed Bahri, Dongmei Yu, Can Yang Zhang, Zhenglin Chen, Chengming Yang, Lyes Douadji, Peiwu Qin. Unleashing the potential of tungsten disulfide: Current trends in biosensing and nanomedicine applications. Heliyon 2024, 10 (2) , e24427. https://doi.org/10.1016/j.heliyon.2024.e24427
  17. Byeongchan Kim, Seojoo Lee, Jin-Hong Park. Innovations of metallic contacts on semiconducting 2D transition metal dichalcogenides toward advanced 3D-structured field-effect transistors. Nanoscale Horizons 2024, 9 https://doi.org/10.1039/D4NH00030G
  18. Matteo Gardella, Giorgio Zambito, Giulio Ferrando, Francesco Bisio, Maria Caterina Giordano, Francesco Buatier de Mongeot. Large area van der Waals MoS 2 –WS 2 heterostructures for visible-light energy conversion. RSC Applied Interfaces 2024, 11 https://doi.org/10.1039/D3LF00220A
  19. Stephan Sleziona, Aniello Pelella, Enver Faella, Osamah Kharsah, Lucia Skopinski, André Maas, Yossarian Liebsch, Jennifer Schmeink, Antonio Di Bartolomeo, Marika Schleberger. Manipulation of the electrical and memory properties of MoS 2 field-effect transistors by highly charged ion irradiation. Nanoscale Advances 2023, 5 (24) , 6958-6966. https://doi.org/10.1039/D3NA00543G
  20. A. Di Bartolomeo, A. Kumar, O. Durante, A. Sessa, E. Faella, L. Viscardi, K. Intonti, F. Giubileo, N. Martucciello, P. Romano, S. Sleziona, M. Schleberger. Temperature-dependent photoconductivity in two-dimensional MoS2 transistors. Materials Today Nano 2023, 24 , 100382. https://doi.org/10.1016/j.mtnano.2023.100382
  21. Tong Bu, Xinpei Duan, Chang Liu, Wanhan Su, Xitong Hong, Ruohao Hong, Xinjie Zhou, Yuan Liu, Zhiyong Fan, Xuming Zou, Lei Liao, Xingqiang Liu. Electrically Dynamic Configurable WSe 2 Transistor and the Applications in Photodetector. Advanced Functional Materials 2023, 33 (48) https://doi.org/10.1002/adfm.202305490
  22. Jun Zhang, Zixian Lian, Pengfei Hou. Electron Irradiation Engineering Modulated MoS 2 -Based Phototransistor. IEEE Transactions on Nuclear Science 2023, 70 (10) , 2297-2302. https://doi.org/10.1109/TNS.2023.3307938
  23. Loredana Viscardi, Kimberly Intonti, Arun Kumar, Enver Faella, Aniello Pelella, Filippo Giubileo, Stephan Sleziona, Osamah Kharsah, Marika Schleberger, Antonio Di Bartolomeo. Black Phosphorus Nanosheets in Field Effect Transistors with Ni and NiCr Contacts. physica status solidi (b) 2023, 260 (9) https://doi.org/10.1002/pssb.202200537
  24. Chintan P. Chavda, Ashok Srivastava, Erin Vaughan, Jianwei Wang, Manas Ranjan Gartia, Georgios Veronis. Effect of gamma irradiation on the physical properties of MoS 2 monolayer. Physical Chemistry Chemical Physics 2023, 25 (33) , 22359-22369. https://doi.org/10.1039/D3CP02925E
  25. Kimberly Intonti, Enver Faella, Loredana Viscardi, Arun Kumar, Ofelia Durante, Filippo Giubileo, Maurizio Passacantando, Hoi Tung Lam, Konstantinos Anastasiou, Monica F. Craciun, Saverio Russo, Antonio Di Bartolomeo. Hysteresis and Photoconductivity of Few‐Layer ReSe 2 Field Effect Transistors Enhanced by Air Pressure. Advanced Electronic Materials 2023, 9 (8) https://doi.org/10.1002/aelm.202300066
  26. Arun Kumar, Enver Faella, Ofelia Durante, Filippo Giubileo, Aniello Pelella, Loredana Viscardi, Kimberly Intonti, Stephan Sleziona, Marika Schleberger, Antonio Di Bartolomeo. Optoelectronic memory in 2D MoS2 field effect transistor. Journal of Physics and Chemistry of Solids 2023, 179 , 111406. https://doi.org/10.1016/j.jpcs.2023.111406
  27. Chaojian Hou, Kun Wang, Wenqi Zhang, Donglei Chen, Xiaokai Wang, Lu Fan, Chunyang Li, Jing Zhao, Lixin Dong. In Situ Device‐Level TEM Characterization Based on Ultra‐Flexible Multilayer MoS 2 Micro‐Cantilever. Advanced Materials 2023, 35 (28) https://doi.org/10.1002/adma.202301439
  28. Saisai Chen, Yuke Mao, Guidong Wang, Hao Zhang, Yu Zhang, Xiong Chen, Rujian Gu, Mingyi Zhao, Jun Wang. Molybdenum disulfide field-effect transistors with enhanced charge-injection by inserting ultrathin pentacene layer under source/drain electrodes. Vacuum 2022, 206 , 111500. https://doi.org/10.1016/j.vacuum.2022.111500
  29. Filippo Giubileo, Aniello Pelella, Alessandro Grillo, Enver Faella, Stephan Sleziona, Osamah Kharsah, Marika Schleberger, Antonio Di Bartolomeo. Characterization of the electric transport properties of black phosphorous back-gated field-effect transistors. Journal of Physics: Conference Series 2022, 2353 (1) , 012005. https://doi.org/10.1088/1742-6596/2353/1/012005
  30. Enver Faella, Kimberly Intonti, Loredana Viscardi, Filippo Giubileo, Arun Kumar, Hoi Tung Lam, Konstantinos Anastasiou, Monica F. Craciun, Saverio Russo, Antonio Di Bartolomeo. Electric Transport in Few-Layer ReSe2 Transistors Modulated by Air Pressure and Light. Nanomaterials 2022, 12 (11) , 1886. https://doi.org/10.3390/nano12111886
  31. Jing Xie, Naim Md Patoary, Guantong Zhou, Mohammed Yasir Sayyad, Sefaattin Tongay, Ivan Sanchez Esqueda. Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS 2 field-effect-transistors. Nanotechnology 2022, 33 (22) , 225702. https://doi.org/10.1088/1361-6528/ac55d2
  32. Kookjin Lee, Hyunjin Ji, Yanghee Kim, Ben Kaczer, Hyebin Lee, Jae‐Pyoung Ahn, Junhee Choi, Alexander Grill, Luca Panarella, Quentin Smets, Devin Verreck, Simon Van Beek, Adrian Chasin, Dimitri Linten, Junhong Na, Jae Woo Lee, Ingrid De Wolf, Gyu‐Tae Kim. Deep Understanding of Electron Beam Effects on 2D Layered Semiconducting Devices Under Bias Applications. Advanced Materials Interfaces 2022, 9 (9) https://doi.org/10.1002/admi.202102488
  33. Jiangtao Chen, Xiaofei Dong, Lunlin Shang, Jianbiao Chen, Yun Zhao, Bingjun Yang, Zhiguo Wu, Yan Li. The current hysteresis effect of tower-like MoS2 nanocrystalline film for field emission and memristor applications. Journal of Alloys and Compounds 2022, 892 , 162091. https://doi.org/10.1016/j.jallcom.2021.162091
  34. Ghasem Habibi Jetani, Mohammad Bagher Rahmani. Exploring the effect of hydrothermal precursor pH on the photosensitivity of 1T/2H–MoS2 nanosheets. Optical Materials 2022, 124 , 111974. https://doi.org/10.1016/j.optmat.2022.111974
  35. Helin Zhu, Jejin Jang, Gyuwan Im, Hyungsoo Mok, Jehwang Ryu, Kyung-Seo Kim. Investigation of the Pulsing Characteristic of a Carbon Nanotube Emitter. Nanomaterials 2022, 12 (3) , 522. https://doi.org/10.3390/nano12030522
  36. Silviu Polosan, Claudiu Constantin Ciobotaru, Iulia Corina Ciobotaru, Monica Enculescu, Doru Iosub, Aurelia Mandes, Rodica Vladoiu. Electron Irradiation of Titanium-Doped Chromium Nanostructured Thin Films for Higher Conductive Electrodes. IEEE Transactions on Nanotechnology 2022, 21 , 823-829. https://doi.org/10.1109/TNANO.2022.3227366
  37. Jing Guo, Kai Liu. Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions. Nanomaterials 2022, 12 (1) , 110. https://doi.org/10.3390/nano12010110
  38. Hyeyeon Sunwoo, Woong Choi. Enhanced performance of multilayer MoS 2 transistors encapsulated with a photoresist. Nanotechnology 2021, 32 (42) , 42LT01. https://doi.org/10.1088/1361-6528/ac1542
  39. Antonio Di Bartolomeo, Alessandro Grillo, Aniello Pelella, Enver Faella, Maurizio Passacantando, Nadia Martucciello, Filippo Giubileo. Modification of contacts and channel properties in two-dimensional field-effect transistors by 10 keV electron beam irradiation. 2021, 165-168. https://doi.org/10.1109/NANO51122.2021.9514329
  40. Hamin Park, Dong Sik Oh, Woonggi Hong, Juyeon Kang, Geon‐Beom Lee, Gwang Hyuk Shin, Yang‐Kyu Choi, Sung Gap Im, Sung‐Yool Choi. Hybrid Gate Dielectric of MoS 2 Transistors for Enhanced Photo‐Electronic Stability. Advanced Materials Interfaces 2021, 8 (14) https://doi.org/10.1002/admi.202100599
  41. Hong Yu, Yan Shang, Lei Pei, Guiling Zhang, Hong Yan. Spin-polarized gate-tuned transport property of a four-terminal MoS2 device: a theoretical study. Journal of Materials Science 2021, 56 (20) , 11847-11865. https://doi.org/10.1007/s10853-021-06046-2
  42. Kui Yin, Tao Huang, Hong-Yu Wu, Yuan Si, Ji-Chun Lian, Yu-Wen Xiao, Zhaogang Zhang, Wei-Qing Huang, Wangyu Hu, Guo-Fang Huang. Effects of Se substitution on the Schottky barrier of a MoS x Se (2−x) /graphene heterostructure. Journal of Physics D: Applied Physics 2021, 54 (26) , 265302. https://doi.org/10.1088/1361-6463/abf44d
  43. A Di Bartolomeo, F Urban, E Faella, A Grillo, A Pelella, F Giubileo, M B Askari, N McEvoy, F Gity, P K Hurley. PtSe 2 phototransistors with negative photoconductivity. Journal of Physics: Conference Series 2021, 1866 (1) , 012001. https://doi.org/10.1088/1742-6596/1866/1/012001
  44. Hou Pengfei, Zhang Yiming, Wang Xinhao, Cai Chuanyang, Guo Hongxia, Zhong Xiangli, Wang Jinbin, Ouyang Xiaoping. Electron Irradiation Effect on Van Der Waals Transistor for High-Detectivity Near-Infrared Photodetectors. IEEE Transactions on Nuclear Science 2021, 68 (3) , 318-324. https://doi.org/10.1109/TNS.2021.3055615
  45. Aniello Pelella, Alessandro Grillo, Francesca Urban, Filippo Giubileo, Maurizio Passacantando, Erik Pollmann, Stephan Sleziona, Marika Schleberger, Antonio Di Bartolomeo. Gate‐Controlled Field Emission Current from MoS 2 Nanosheets. Advanced Electronic Materials 2021, 7 (2) https://doi.org/10.1002/aelm.202000838
  46. Alessandro Grillo, Antonio Di Bartolomeo. A Current–Voltage Model for Double Schottky Barrier Devices. Advanced Electronic Materials 2021, 7 (2) https://doi.org/10.1002/aelm.202000979
  47. Tingyan Luo, Baojun Pan, Kenan Zhang, Youqing Dong, Chao Zou, Zhiyang Gu, Lijie Zhang. Electron beam lithography induced doping in multilayer MoTe2. Applied Surface Science 2021, 540 , 148276. https://doi.org/10.1016/j.apsusc.2020.148276
  48. Erik Pollmann, Lukas Madauß, Simon Schumacher, Uttam Kumar, Flemming Heuvel, Christina vom Ende, Sümeyra Yilmaz, Sümeyra Güngörmüs, Marika Schleberger. Apparent differences between single layer molybdenum disulphide fabricated via chemical vapour deposition and exfoliation. Nanotechnology 2020, 31 (50) , 505604. https://doi.org/10.1088/1361-6528/abb5d2
  49. Francesca Urban, Farzan Gity, Paul K. Hurley, Niall McEvoy, Antonio Di Bartolomeo. Isotropic conduction and negative photoconduction in ultrathin PtSe2 films. Applied Physics Letters 2020, 117 (19) https://doi.org/10.1063/5.0021009
  50. Antonio Di Bartolomeo, Francesca Urban, Aniello Pelella, Alessandro Grillo, Laura Iemmo, Enver Faella, Filippo Giubileo. Electrical transport in two-dimensional PdSe2 and Mos2 nanosheets. 2020, 276-281. https://doi.org/10.1109/NANO47656.2020.9183617
Open PDF

ACS Applied Materials & Interfaces

Cite this: ACS Appl. Mater. Interfaces 2020, 12, 36, 40532–40540
Click to copy citationCitation copied!
https://doi.org/10.1021/acsami.0c11933
Published August 10, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

3254

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) SEM image of the MoS2 device and contact labels. (b) MoS2 FET layout and schematic of the common source configuration used for electrical characterization. (c) AFM image of the MoS2 flake between the electrical contacts, which appear here in white as the scale has been adjusted to properly image the MoS2 flake. (d) Zoom-in into the upper region of (c), showing that the flake is flat and structurally intact. The rms roughness is 0.221 nm for the SiO2 substrate and 0.237 nm for MoS2. (e) Height distribution taken from image (d), yielding a flake height of ∼1.2 nm.

    Figure 2

    Figure 2. (a) PL and (b) Raman spectrum of monolayer MoS2 after FET processing. Blue: contacted MoS2 monolayer flake and red: noncontacted monolayer MoS2 flake.

    Figure 3

    Figure 3. Output (a) and transfer (b) characteristics of the device between C2 and C3 contacts, with C3 used as the drain and C2 as the grounded source.

    Figure 4

    Figure 4. (a) Output characteristics at Vgs = 0 V of the transistor formed by contacts C2–C3 exposed to two sets of electron irradiations performed first on contact C3 and then on C2. (b) Rectification ratio and (c) maximum forward and reverse current, at Vds = ±5 V, as a function of the irradiation number. (d) Zero-bias Schottky barrier variation at the contacts C2 and C3 as a function of the irradiation number.

    Figure 5

    Figure 5. Low-bias energy band diagrams (black) and their modification under electron irradiation (red) of C3 (a) and of C2 (b) contacts resulting in barrier lowering (φ̅B).

    Figure 6

    Figure 6. (a) FET transfer characteristics at Vds = −4 V before and after e-beam irradiations of contacts C3 and C2 and of the channel. (b) Left shift of the threshold voltage extrapolated from the transfer characteristics over the e-beam exposure.

    Figure 7

    Figure 7. Monte Carlo simulation using CASINO v2 of e-beam irradiation of the device (a) contacts and (b) of the MoS2 channel. (c) Simulated cathodoluminescence intensity through the sample, with the e-beam focused onto the contacts and the flake. (d) Simulation of the electrons' penetration depth through the sample.

  • References


    This article references 67 other publications.

    1. 1
      Santhosh, S.; Madhavan, A. A. A Review on the Structure, Properties and Characterization of 2D Molybdenum Disulfide. In 2019 Advances in Science and Engineering Technology International Conferences (ASET); IEEE: Dubai, United Arab Emirates, 2019; pp 15.
    2. 2
      Urban, F.; Passacantando, M.; Giubileo, F.; Iemmo, L.; Di Bartolomeo, A. Transport and Field Emission Properties of MoS2 Bilayers. Nanomaterials 2018, 8, 151,  DOI: 10.3390/nano8030151
    3. 3
      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805,  DOI: 10.1103/physrevlett.105.136805
    4. 4
      Urban, F.; Giubileo, F.; Grillo, A.; Iemmo, L.; Luongo, G.; Passacantando, M.; Foller, T.; Madauß, L.; Pollmann, E.; Geller, M. P.; Oing, D.; Schleberger, M.; Di Bartolomeo, A. Gas Dependent Hysteresis in MoS2 Field Effect Transistors. 2D Mater. 2019, 6, 045049,  DOI: 10.1088/2053-1583/ab4020
    5. 5
      Hasani, A.; Le, Q. V.; Tekalgne, M.; Choi, M.-J.; Lee, T. H.; Jang, H. W.; Kim, S. Y. Direct Synthesis of Two-Dimensional MoS2 on p-Type Si and Application to Solar Hydrogen Production. NPG Asia Mater. 2019, 11, 47,  DOI: 10.1038/s41427-019-0145-7
    6. 6
      Bazaka, K.; Levchenko, I.; Lim, J. W. M.; Baranov, O.; Corbella, C.; Xu, S.; Keidar, M. MoS2 -Based Nanostructures: Synthesis and Applications in Medicine. J. Phys. D: Appl. Phys. 2019, 52, 183001,  DOI: 10.1088/1361-6463/ab03b3
    7. 7
      Giubileo, F.; Grillo, A.; Passacantando, M.; Urban, F.; Iemmo, L.; Luongo, G.; Pelella, A.; Loveridge, M.; Lozzi, L.; Di Bartolomeo, A. Field Emission Characterization of MoS2 Nanoflowers. Nanomaterials 2019, 9, 717,  DOI: 10.3390/nano9050717
    8. 8
      Dragoman, M.; Cismaru, A.; Aldrigo, M.; Radoi, A.; Dinescu, A.; Dragoman, D. MoS 2 Thin Films as Electrically Tunable Materials for Microwave Applications. Appl. Phys. Lett. 2015, 107, 243109,  DOI: 10.1063/1.4938145
    9. 9
      Madauß, L.; Zegkinoglou, I.; Vázquez Muiños, H.; Choi, Y.-W.; Kunze, S.; Zhao, M.-Q.; Naylor, C. H.; Ernst, P.; Pollmann, E.; Ochedowski, O.; Lebius, H.; Benyagoub, A.; Ban-d’Etat, B.; Johnson, A. T. C.; Djurabekova, F.; Roldan Cuenya, B.; Schleberger, M. Highly Active Single-Layer MoS2 Catalysts Synthesized by Swift Heavy Ion Irradiation. Nanoscale 2018, 10, 2290822916,  DOI: 10.1039/c8nr04696d
    10. 10
      Urban, F.; Lupina, G.; Grillo, A.; Martucciello, N.; Di Bartolomeo, A. Contact Resistance and Mobility in Back-Gate Graphene Transistors. Nano Express 2020, 1, 010001,  DOI: 10.1088/2632-959x/ab7055
    11. 11
      Bolotin, K. I. Electronic Transport in Graphene: Towards High Mobility. Graphene; Elsevier, 2014; pp 199227.
    12. 12
      Di Bartolomeo, A.; Santandrea, S.; Giubileo, F.; Romeo, F.; Petrosino, M.; Citro, R.; Barbara, P.; Lupina, G.; Schroeder, T.; Rubino, A. Effect of Back-Gate on Contact Resistance and on Channel Conductance in Graphene-Based Field-Effect Transistors. Diamond Relat. Mater. 2013, 38, 1923,  DOI: 10.1016/j.diamond.2013.06.002
    13. 13
      Wilmart, Q.; Boukhicha, M.; Graef, H.; Mele, D.; Palomo, J.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Bouchiat, V.; Baudin, E.; Berroir, J.-M.; Bocquillon, E.; Fève, G.; Pallecchi, E.; Plaçais, B. High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation. Appl. Sci. 2020, 10, 446,  DOI: 10.3390/app10020446
    14. 14
      Piccinini, E.; Alberti, S.; Longo, G. S.; Berninger, T.; Breu, J.; Dostalek, J.; Azzaroni, O.; Knoll, W. Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. J. Phys. Chem. C 2018, 122, 1018110188,  DOI: 10.1021/acs.jpcc.7b11128
    15. 15
      Di Bartolomeo, A.; Giubileo, F.; Iemmo, L.; Romeo, F.; Russo, S.; Unal, S.; Passacantando, M.; Grossi, V.; Cucolo, A. M. Leakage and Field Emission in Side-Gate Graphene Field Effect Transistors. Appl. Phys. Lett. 2016, 109, 023510,  DOI: 10.1063/1.4958618
    16. 16
      Bartolomeo, A. D.; Giubileo, F.; Romeo, F.; Sabatino, P.; Carapella, G.; Iemmo, L.; Schroeder, T.; Lupina, G. Graphene Field Effect Transistors with Niobium Contacts and Asymmetric Transfer Characteristics. Nanotechnology 2015, 26, 475202,  DOI: 10.1088/0957-4484/26/47/475202
    17. 17
      Li, F.; Gao, F.; Xu, M.; Liu, X.; Zhang, X.; Wu, H.; Qi, J. Tuning Transport and Photoelectric Performance of Monolayer MoS2 Device by E-Beam Irradiation. Adv. Mater. Interfaces 2018, 5, 1800348,  DOI: 10.1002/admi.201800348
    18. 18
      Wang, J.; Yao, Q.; Huang, C.-W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; Jiang, C.; Wu, W.-W. High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h-BN as a Tunneling Layer. Adv. Mater. 2016, 28, 83028308,  DOI: 10.1002/adma.201602757
    19. 19
      Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768779,  DOI: 10.1038/nnano.2014.207
    20. 20
      Kim, M. J.; Choi, Y.; Seok, J.; Lee, S.; Kim, Y. J.; Lee, J. Y.; Cho, J. H. Defect-Free Copolymer Gate Dielectrics for Gating MoS2 Transistors. J. Phys. Chem. C 2018, 122, 1219312199,  DOI: 10.1021/acs.jpcc.8b03092
    21. 21
      Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 1316913183,  DOI: 10.1021/acs.jpcc.5b02950
    22. 22
      Di Bartolomeo, A.; Pelella, A.; Liu, X.; Miao, F.; Passacantando, M.; Giubileo, F.; Grillo, A.; Iemmo, L.; Urban, F.; Liang, S. J. Pressure-Tunable Ambipolar Conduction and Hysteresis in Thin Palladium Diselenide Field Effect Transistors. Adv. Funct. Mater. 2019, 29, 1902483,  DOI: 10.1002/adfm.201902483
    23. 23
      Di Bartolomeo, A.; Luongo, G.; Iemmo, L.; Urban, F.; Giubileo, F. Graphene–Silicon Schottky Diodes for Photodetection. IEEE Trans. Nanotechnol. 2018, 17, 11331137,  DOI: 10.1109/tnano.2018.2853798
    24. 24
      Jin, C.; Rasmussen, F. A.; Thygesen, K. S. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping: Density Functional Theory and Many-Body Calculations. J. Phys. Chem. C 2015, 119, 1992819933,  DOI: 10.1021/acs.jpcc.5b05580
    25. 25
      Grillo, A.; Di Bartolomeo, A.; Urban, F.; Passacantando, M.; Caridad, J. M.; Sun, J.; Camilli, L. Observation of 2D Conduction in Ultrathin Germanium Arsenide Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12, 1299813004,  DOI: 10.1021/acsami.0c00348
    26. 26
      Schleberger, M.; Kotakoski, J. 2D Material Science: Defect Engineering by Particle Irradiation. Materials 2018, 11, 1885,  DOI: 10.3390/ma11101885
    27. 27
      Giubileo, F.; Iemmo, L.; Passacantando, M.; Urban, F.; Luongo, G.; Sun, L.; Amato, G.; Enrico, E.; Di Bartolomeo, A. Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer MoS2 Field-Effect Transistors. J. Phys. Chem. C 2019, 123, 14541461,  DOI: 10.1021/acs.jpcc.8b09089
    28. 28
      Di Bartolomeo, A.; Urban, F.; Pelella, A.; Grillo, A.; Passacantando, M.; Liu, X.; Giubileo, F. Electron Irradiation of Multilayer PdSe2 Field Effect Transistors. Nanotechnology 2020, 31, 375204,  DOI: 10.1088/1361-6528/ab9472
    29. 29
      Ochedowski, O.; Marinov, K.; Wilbs, G.; Keller, G.; Scheuschner, N.; Severin, D.; Bender, M.; Maultzsch, J.; Tegude, F. J.; Schleberger, M. Radiation Hardness of Graphene and MoS2 Field Effect Devices against Swift Heavy Ion Irradiation. J. Appl. Phys. 2013, 113, 214306,  DOI: 10.1063/1.4808460
    30. 30
      Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M. Irradiation of Graphene Field Effect Transistors with Highly Charged Ions. Nucl. Instrum. Methods Phys. Res., Sect. B 2016, 382, 7175,  DOI: 10.1016/j.nimb.2016.03.043
    31. 31
      Madauß, L.; Ochedowski, O.; Lebius, H.; Ban-d’Etat, B.; Naylor, C. H.; Johnson, A. T. C.; Kotakoski, J.; Schleberger, M. Defect Engineering of Single- and Few-Layer MoS2 by Swift Heavy Ion Irradiation. 2D Mater. 2016, 4, 015034,  DOI: 10.1088/2053-1583/4/1/015034
    32. 32
      Kozubek, R.; Tripathi, M.; Ghorbani-Asl, M.; Kretschmer, S.; Madauß, L.; Pollmann, E.; O’Brien, M.; McEvoy, N.; Ludacka, U.; Susi, T.; Duesberg, G. S.; Wilhelm, R. A.; Krasheninnikov, A. V.; Kotakoski, J.; Schleberger, M. Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. J. Phys. Chem. Lett. 2019, 10, 904910,  DOI: 10.1021/acs.jpclett.8b03666
    33. 33
      Giubileo, F.; Di Bartolomeo, A. The Role of Contact Resistance in Graphene Field-Effect Devices. Prog. Surf. Sci. 2017, 92, 143175,  DOI: 10.1016/j.progsurf.2017.05.002
    34. 34
      Shahzad, K.; Jia, K.; Zhao, C.; Wang, D.; Usman, M.; Luo, J. Effects of Different Ion Irradiation on the Contact Resistance of Pd/Graphene Contacts. Materials 2019, 12, 3928,  DOI: 10.3390/ma12233928
    35. 35
      Yan, X.; Jia, K.; Su, Y.; Ma, Y.; Luo, J.; Zhu, H.; Wei, Y. Edge-Contact Formed by Oxygen Plasma and Rapid Thermal Annealing to Improve Metal-Graphene Contact Resistance. ECS J. Solid State Sci. Technol. 2018, 7, M11M15,  DOI: 10.1149/2.0251802jss
    36. 36
      Choi, B. Y.; Cho, K.; Pak, J.; Kim, T.-Y.; Kim, J.-K.; Shin, J.; Seo, J.; Chung, S.; Lee, T. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors. J. Korean Phys. Soc. 2018, 72, 12031208,  DOI: 10.3938/jkps.72.1203
    37. 37
      Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13, 26152622,  DOI: 10.1021/nl4007479
    38. 38
      Durand, C.; Zhang, X.; Fowlkes, J.; Najmaei, S.; Lou, J.; Li, A.-P. Defect-Mediated Transport and Electronic Irradiation Effect in Individual Domains of CVD-Grown Monolayer MoS2. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2015, 33, 02B110,  DOI: 10.1116/1.4906331
    39. 39
      Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 081307,  DOI: 10.1103/physrevb.87.081307
    40. 40
      Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-Dependent Phonon Renormalization in Monolayer MoS2 Transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 161403,  DOI: 10.1103/physrevb.85.161403
    41. 41
      Scheuschner, N.; Ochedowski, O.; Kaulitz, A.-M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of Freestanding Single- and Few-Layer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 125406,  DOI: 10.1103/physrevb.89.125406
    42. 42
      Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 36263630,  DOI: 10.1021/nl4014748
    43. 43
      Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly Bound Trions in Monolayer MoS2. Nat. Mater. 2013, 12, 207211,  DOI: 10.1038/nmat3505
    44. 44
      Pollmann, E.; Madauß, L.; Schumacher, S.; Kumar, U.; Heuvel, F.; Ende, C. vom.; Yilmaz, S.; Gündörmüs, S.; Schleberger, M. Apparent Differences between Single Layer Molybdenum Disulfide Fabricated via Chemical Vapor Deposition and Exfoliation. 2020, arXiv:2006.05789 [cond-mat].
    45. 45
      Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L.; Liang, S.-J.; Ang, L. K. Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors. Adv. Funct. Mater. 2018, 28, 1800657,  DOI: 10.1002/adfm.201800657
    46. 46
      Di Bartolomeo, A.; Urban, F.; Passacantando, M.; McEvoy, N.; Peters, L.; Iemmo, L.; Luongo, G.; Romeo, F.; Giubileo, F. A WSe2 Vertical Field Emission Transistor. Nanoscale 2019, 11, 15381548,  DOI: 10.1039/c8nr09068h
    47. 47
      Smyth, C. M.; Addou, R.; McDonnell, S.; Hinkle, C. L.; Wallace, R. M. Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2 -Based Device Performance. J. Phys. Chem. C 2016, 120, 1471914729,  DOI: 10.1021/acs.jpcc.6b04473
    48. 48
      Kwon, H.; Baik, S.; Jang, J.; Jang, J.; Kim, S.; Grigoropoulos, C.; Kwon, H.-J. Ultra-Short Pulsed Laser Annealing Effects on MoS2 Transistors with Asymmetric and Symmetric Contacts. Electronics 2019, 8, 222,  DOI: 10.3390/electronics8020222
    49. 49
      Freedy, K. M.; Zhang, H.; Litwin, P. M.; Bendersky, L. A.; Davydov, A. V.; McDonnell, S. Thermal Stability of Titanium Contacts to MoS2. ACS Appl. Mater. Interfaces 2019, 11, 3538935393,  DOI: 10.1021/acsami.9b08829
    50. 50
      McDonnell, S.; Smyth, C.; Hinkle, C. L.; Wallace, R. M. MoS2 −Titanium Contact Interface Reactions. ACS Appl. Mater. Interfaces 2016, 8, 82898294,  DOI: 10.1021/acsami.6b00275
    51. 51
      English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 2016, 16, 38243830,  DOI: 10.1021/acs.nanolett.6b01309
    52. 52
      Wang, Q.; Deng, B.; Shi, X. A New Insight for Ohmic Contacts to MoS2 : By Tuning MoS2 Affinity Energies but Not Metal Work-Functions. Phys. Chem. Chem. Phys. 2017, 19, 2615126157,  DOI: 10.1039/c7cp05109c
    53. 53
      Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11, 15881596,  DOI: 10.1021/acsnano.6b07159
    54. 54
      Guo, Y.; Liu, D.; Robertson, J. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. ACS Appl. Mater. Interfaces 2015, 7, 2570925715,  DOI: 10.1021/acsami.5b06897
    55. 55
      Pan, Y.; Gu, J.; Tang, H.; Zhang, X.; Li, J.; Shi, B.; Yang, J.; Zhang, H.; Yan, J.; Liu, S.; Hu, H.; Wu, M.; Lu, J. Reexamination of the Schottky Barrier Heights in Monolayer MoS2 Field-Effect Transistors. ACS Appl. Nano Mater. 2019, 2, 47174726,  DOI: 10.1021/acsanm.9b00200
    56. 56
      Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS2 Interfaces. Nano Lett. 2014, 14, 17141720,  DOI: 10.1021/nl403465v
    57. 57
      Zhong, H.; Quhe, R.; Wang, Y.; Ni, Z.; Ye, M.; Song, Z.; Pan, Y.; Yang, J.; Yang, L.; Lei, M.; Shi, J.; Lu, J. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations. Sci. Rep. 2016, 6, 21786,  DOI: 10.1038/srep21786
    58. 58
      Di Bartolomeo, A. Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor Heterojunction. Phys. Rep. 2016, 606, 158,  DOI: 10.1016/j.physrep.2015.10.003
    59. 59
      Anwar, A.; Nabet, B.; Culp, J.; Castro, F. Effects of Electron Confinement on Thermionic Emission Current in a Modulation Doped Heterostructure. J. Appl. Phys. 1999, 85, 26632666,  DOI: 10.1063/1.369627
    60. 60
      Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
    61. 61
      Di Bartolomeo, A.; Genovese, L.; Foller, T.; Giubileo, F.; Luongo, G.; Croin, L.; Liang, S.-J.; Ang, L. K.; Schleberger, M. Electrical Transport and Persistent Photoconductivity in Monolayer MoS2 Phototransistors. Nanotechnology 2017, 28, 214002,  DOI: 10.1088/1361-6528/aa6d98
    62. 62
      Zhang, K.; Peng, M.; Yu, A.; Fan, Y.; Zhai, J.; Wang, Z. L. A Substrate-Enhanced MoS2 Photodetector through a Dual-Photogating Effect. Mater. Horiz. 2019, 6, 826833,  DOI: 10.1039/c8mh01429a
    63. 63
      Cheng, Y. J.; Yan, L.; Shi, F.; Liu, F.; Li, M.; Shi, H. L.; Hou, Z. P. Monte Carlo Simulation of Electron Scattering in Ion Barrier Film in Generation III Image Intensifier. Key Eng. Mater. 2013, 552, 193200,  DOI: 10.4028/www.scientific.net/kem.552.193
    64. 64
      Movla, H.; Babazadeh, M. Simulation Analysis of the Aluminum Thin Film Thickness Measurement by Using Low Energy Electron Beam. Optik 2014, 125, 7174,  DOI: 10.1016/j.ijleo.2013.06.033
    65. 65
      Drouin, D.; Couture, A. R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A Fast and Easy-to-Use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users. Scanning 2007, 29, 92101,  DOI: 10.1002/sca.20000
    66. 66
      Abraham, M.; Mohney, S. E. Annealed Ag Contacts to MoS2 Field-Effect Transistors. J. Appl. Phys. 2017, 122, 115306,  DOI: 10.1063/1.4991961
    67. 67
      Goyal, N.; Mackenzie, D. M. A.; Panchal, V.; Jawa, H.; Kazakova, O.; Petersen, D. H.; Lodha, S. Enhanced Thermally Aided Memory Performance Using Few-Layer ReS2 Transistors. Appl. Phys. Lett. 2020, 116, 052104,  DOI: 10.1063/1.5126809