ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVFunctional Nanostruc...Functional Nanostructured Materials (including low-D carbon)NEXT

Plasma-Enabled Amorphous TiO2 Nanotubes as Hydrophobic Support for Molecular Sensing by SERS

  • Nicolas Filippin
    Nicolas Filippin
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
  • Javier Castillo-Seoane
    Javier Castillo-Seoane
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
    Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes, Seville E-41012, Spain
  • M. Carmen López-Santos
    M. Carmen López-Santos
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
    Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes, Seville E-41012, Spain
  • Cristina T. Rojas
    Cristina T. Rojas
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
  • Kostya Ostrikov
    Kostya Ostrikov
    School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
    CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Lindfield, New South Wales 2070, Australia
  • Angel Barranco
    Angel Barranco
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
  • Juan R. Sánchez-Valencia*
    Juan R. Sánchez-Valencia
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
    Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes, Seville E-41012, Spain
    *Email: [email protected]
  • , and 
  • Ana Borrás*
    Ana Borrás
    Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)−Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
    *Email:[email protected]
    More by Ana Borrás
Cite this: ACS Appl. Mater. Interfaces 2020, 12, 45, 50721–50733
Publication Date (Web):October 28, 2020
https://doi.org/10.1021/acsami.0c14087
Copyright © 2020 American Chemical Society

    Article Views

    1791

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We devise a unique heteronanostructure array to overcome a persistent issue of simultaneously utilizing the surface-enhanced Raman scattering, inexpensive, Earth-abundant materials, large surface areas, and multifunctionality to demonstrate near single-molecule detection. Room-temperature plasma-enhanced chemical vapor deposition and thermal evaporation provide high-density arrays of vertical TiO2 nanotubes decorated with Ag nanoparticles. The role of the TiO2 nanotubes is 3-fold: (i) providing a high surface area for the homogeneous distribution of supported Ag nanoparticles, (ii) increasing the water contact angle to achieve superhydrophobic limits, and (iii) enhancing the Raman signal by synergizing the localized electromagnetic field enhancement (Ag plasmons) and charge transfer chemical enhancement mechanisms (amorphous TiO2) and by increasing the light scattering because of the formation of vertically aligned nanoarchitectures. As a result, we reach a Raman enhancement factor of up to 9.4 × 107, satisfying the key practical device requirements. The enhancement mechanism is optimized through the interplay of the optimum microstructure, nanotube/shell thickness, Ag nanoparticles size distribution, and density. Vertically aligned amorphous TiO2 nanotubes decorated with Ag nanoparticles with a mean diameter of 10–12 nm provide enough sensitivity for near-instant concentration analysis with an ultralow few-molecule detection limit of 10–12 M (Rh6G in water) and the possibility to scale up device fabrication.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c14087.

    • SEM images of TiO2 NTs with different thicknesses; XRD patterns before and after annealing at 450 °C; SEM image of Ag NPS on Si and the UV–vis transmittance spectra for the three different silver thicknesses; diameter size distribution and density of nanoparticles for the Ag NPs formed on the tip of the TiO2 NTs for the three different silver thicknesses; SEM image of silver nanoparticles over the entire length of the TiO2 NTs; liquid–solid relative radius and area covered by the water drop; EDS results on large area sample; Raman mapping in the coffee-ring area; UV light-assisted photocatalytic removal of the Rh6G analyte; linear response of the Raman sensor for Rh6G; UV–vis transmittance spectra of TiO2 NTs with the two studied shell thicknesses (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 35 publications.

    1. Jianxin Kang, Fengshi Li, Ziyan Xu, Xiangyu Chen, Mingke Sun, Yanhong Li, Xiuyi Yang, Lin Guo. How Amorphous Nanomaterials Enhanced Electrocatalytic, SERS, and Mechanical Properties. JACS Au 2023, 3 (10) , 2660-2676. https://doi.org/10.1021/jacsau.3c00418
    2. Yue Che, Xiangyu Liu, Zhi Shen, Kai Zhang, Xiaonan Hu, Aling Chen, Dengsong Zhang. Improved N2 Selectivity of MnOx Catalysts for NOx Reduction by Engineering Bridged Mn3+ Sites. Langmuir 2023, 39 (21) , 7434-7443. https://doi.org/10.1021/acs.langmuir.3c00663
    3. Ya Lu, Zhuanfang Bi, Guangyi Shang. Facile Method to Fabricate Cactus-like Ag NPs/CuO/Cu2O Nanocomposites for Recyclable SERS Detection of Trace Carbendazim Residues. ACS Applied Nano Materials 2022, 5 (12) , 17806-17818. https://doi.org/10.1021/acsanm.2c03769
    4. Fan-Ching Chien, Ting Fu Zhang, Chi Chen, Thi Anh Nguyet Nguyen, Song-Yu Wang, Syuan Miao Lai, Chia-Hua Lin, Chun-Kai Huang, Cheng-Yi Liu, Kun-Yu Lai. Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots. ACS Applied Nano Materials 2021, 4 (3) , 2614-2620. https://doi.org/10.1021/acsanm.0c03265
    5. Alexander B. Tesler, Stefan Kolle, Lucia H. Prado, Ingo Thievessen, David Böhringer, Matilda Backholm, Bhuvaneshwari Karunakaran, Heikki A. Nurmi, Mika Latikka, Lena Fischer, Shane Stafslien, Zoran M. Cenev, Jaakko V. I. Timonen, Mark Bruns, Anca Mazare, Ulrich Lohbauer, Sannakaisa Virtanen, Ben Fabry, Patrik Schmuki, Robin H. A. Ras, Joanna Aizenberg, Wolfgang H. Goldmann. Long-term stability of aerophilic metallic surfaces underwater. Nature Materials 2023, 22 (12) , 1548-1555. https://doi.org/10.1038/s41563-023-01670-6
    6. Shengmao Chao, Hong Shao, Xiao Wang, Yongzheng Zhang, Ruifeng Jiang, Meikun Fan, Shuwei Chen, Changyu Tang. Plasmon‐Driven Photochemical Reduction Reaction on Silver Nanostructures for Green Fabrication of Superhydrophobic Surface. Small 2023, 19 (47) https://doi.org/10.1002/smll.202303536
    7. Hsiuan Ling Ho, Jung Yen Yang, Chun Hung Lin, Jiann Shieh, Yu Fang Huang, Yi Hong Ho, Tsung Shine Ko, Chiung Chih Hsu, Kostya (Ken) Ostrikov. Plasma‐Etched Nanograss Surface without Lithographic Patterning to Immobilize Water Droplet for Highly Sensitive Raman Sensing. Advanced Materials Interfaces 2023, 10 (33) https://doi.org/10.1002/admi.202300291
    8. Yuanyuan Zhang, Jianhua Yan. Recent advances in the synthesis of defective TiO2 nanofibers and their applications in energy and catalysis. Chemical Engineering Journal 2023, 472 , 144831. https://doi.org/10.1016/j.cej.2023.144831
    9. Ying‐Chun Lu, Pei‐Chieh Tseng, Min‐Jung Yang, Cheng‐Jie Wang, Yi‐Chun Ling, Chia‐Feng Lin, Han‐Yu Hsueh. Fabrication of Gyroid‐Structured Metal/Semiconductor Nanoscaffolds with Ultrasensitive SERS Detection via Block Copolymer Templating. Advanced Optical Materials 2023, 11 (2) https://doi.org/10.1002/adom.202202280
    10. S Simitha, Devika Mohan, Sophia Regi, Jesly Jacob, Vibin Ipe Thomas. Design of hexagonal gold nano disks for surface-enhanced Raman scattering based sensing. Materials Today: Proceedings 2023, 93 , 66-72. https://doi.org/10.1016/j.matpr.2023.10.067
    11. Jingxuan Pei, Zhenfei Tian, Xiang Yu, Shuting Zhang, Shiqing Ma, Yibo Sun, Rabah Boukherroub. Highly-sensitive SERS detection of tetracycline: Sub-enhancement brought by light scattering of nano-diamond. Applied Surface Science 2023, 608 , 155270. https://doi.org/10.1016/j.apsusc.2022.155270
    12. Tung-Hao Chang, Hsin-Wei Di, Yu-Cheng Chang, Chia-Man Chou. Ag Nanoparticles Decorated CuO@RF Core-Shell Nanowires for High-Performance Surface-Enhanced Raman Spectroscopy Application. Molecules 2022, 27 (23) , 8460. https://doi.org/10.3390/molecules27238460
    13. Xuejian Du, Di Liu, Keyu An, Shouzhen Jiang, Zhixian Wei, Shuangpeng Wang, Weng Fai Ip, Hui Pan. Advances in oxide semiconductors for surface enhanced Raman scattering. Applied Materials Today 2022, 29 , 101563. https://doi.org/10.1016/j.apmt.2022.101563
    14. Alisher Sultangaziyev, Aisha Ilyas, Aigerim Dyussupova, Rostislav Bukasov. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. Biosensors 2022, 12 (11) , 967. https://doi.org/10.3390/bios12110967
    15. Abdul Rasheed Paloly, K. S. Anju, M. Junaid Bushiri. High Sensitive and Reusable SERS Substrate Based on Ag/SnO2 Nanocone Arrayed Thin Film. Plasmonics 2022, 17 (5) , 2187-2196. https://doi.org/10.1007/s11468-022-01703-x
    16. Samuel Adesoye, Kristen Dellinger. ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based bio-sensing: A review. Sensing and Bio-Sensing Research 2022, 37 , 100499. https://doi.org/10.1016/j.sbsr.2022.100499
    17. Hanpeng Gao, Siyu Chang, Yan Liu, Zong Meng, Zhiwu Han, Luquan Ren. Interlaced wetting surfaces with switchable wettability for manipulating underwater oil droplets. Chemical Engineering Journal 2022, 437 , 135007. https://doi.org/10.1016/j.cej.2022.135007
    18. Xinyue Song, Xiaohui Ren, Dongyan Tang, Xin Li. Specific iodide effect on surface-enhanced Raman scattering for ultra-sensitive detection of organic contaminants in water. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 272 , 120950. https://doi.org/10.1016/j.saa.2022.120950
    19. Xudong Zheng, Huizhou Zhong, Zhaowu Wang, Jingyu Li, Yinan Hu, Hang Li, Jiazhuang Jia, Shaofeng Zhang, Feng Ren. Fabrication of stable substoichiometric WOx films with high SERS sensitivity by thermal treatment. Vacuum 2022, 198 , 110884. https://doi.org/10.1016/j.vacuum.2022.110884
    20. Jorge Budagosky, Xabier García‐Casas, Juan R. Sánchez‐Valencia, Ángel Barranco, Ana Borrás. Coarse‐grained approach to amorphous and anisotropic materials in kinetic Monte Carlo thin‐film growth simulations: A case study of TiO 2 and ZnO by plasma‐enhanced chemical vapor deposition. Plasma Processes and Polymers 2022, 19 (3) https://doi.org/10.1002/ppap.202100179
    21. Hongji Li, Junfu Wang, Haoqi Fang, Hongda Xu, Haochen Yu, Tianyu Zhou, Chunbo Liu, Guangbo Che, Dandan Wang. Hydrophilic modification of PVDF-based SERS imprinted membrane for the selective detection of L-tyrosine. Journal of Environmental Management 2022, 304 , 114260. https://doi.org/10.1016/j.jenvman.2021.114260
    22. Xabier García-Casas, Ali Ghaffarinejad, Francisco J. Aparicio, Javier Castillo-Seoane, Carmen López-Santos, Juan P. Espinós, José Cotrino, Juan Ramón Sánchez-Valencia, Ángel Barranco, Ana Borrás. Plasma engineering of microstructured piezo – Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting. Nano Energy 2022, 91 , 106673. https://doi.org/10.1016/j.nanoen.2021.106673
    23. Anxin Jiao, Qingqiang Cui, Shuang Li, Hengshuai Li, Linlin Xu, Yue Tian, Hui Ma, Mengya Zhang, Xiangdong Liu, Ming Chen. Aligned TiO2 nanorod arrays decorated with closely interconnected Au/Ag nanoparticles: Near-infrared SERS active sensor for monitoring of antibiotic molecules in water. Sensors and Actuators B: Chemical 2022, 350 , 130848. https://doi.org/10.1016/j.snb.2021.130848
    24. Ya Lu, Zhuanfang Bi, Guangyi Shang. A Facile Method to Fabricate Cactus-Like Ag Nps/Cuo/Cu2o Nanocomposites for Recyclable Sers Detection of Trace Carbendazim Residues. SSRN Electronic Journal 2022, 386 https://doi.org/10.2139/ssrn.4183230
    25. Jingxuan Pei, Zhenfei Tian, Xiang Yu, Shuting Zhang, Shiqing Ma, Yibo Sun, Rabah Boukherroub. Highly-Sensitive Sers Detection of Tetracycline: Sub-Enhancement Brought by Light Scattering of Nano-Diamond. SSRN Electronic Journal 2022, 405 https://doi.org/10.2139/ssrn.4190855
    26. Xiangyu Meng, Lin Qiu, Guangcheng Xi, Xiaotian Wang, Lin Guo. Smart design of high‐performance surface‐enhanced Raman scattering substrates. SmartMat 2021, 2 (4) , 466-487. https://doi.org/10.1002/smm2.1058
    27. Junjie Wang, Chunxiang Xu, Milan Lei, Yi Ma, Xiaoxuan Wang, Ru Wang, Jianli Sun, Ru Wang. Microcavity-based SERS chip for ultrasensitive immune detection of cardiac biomarkers. Microchemical Journal 2021, 171 , 106875. https://doi.org/10.1016/j.microc.2021.106875
    28. Laura Montes, Jose M. Román, Xabier García‐Casas, Javier Castillo‐Seoane, Juan R. Sánchez‐Valencia, Ángel Barranco, Carmen López‐Santos, Ana Borrás. Plasma‐Assisted Deposition of TiO 2 3D Nanomembranes: Selective Wetting, Superomniphobicity, and Self‐Cleaning. Advanced Materials Interfaces 2021, 8 (21) https://doi.org/10.1002/admi.202100767
    29. Savidya Jayawardena, Atsushi Kubono, R.M.G. Rajapakse, Masaru Shimomura. Effect of titanium precursors used in the preparation of graphene oxide/TiO2 composite for gas sensing utilizing quartz crystal microbalance. Nano-Structures & Nano-Objects 2021, 28 , 100780. https://doi.org/10.1016/j.nanoso.2021.100780
    30. Yibing Xie. Enhancement effect of silver nanoparticles decorated titania nanotube array acting as active SERS substrate. Inorganic and Nano-Metal Chemistry 2021, 48 , 1-7. https://doi.org/10.1080/24701556.2021.1984533
    31. Javier Castillo-Seoane, Jorge Gil-Rostra, Víctor López-Flores, Gabriel Lozano, F. Javier Ferrer, Juan P. Espinós, Kostya (Ken) Ostrikov, Francisco Yubero, Agustín R. González-Elipe, Ángel Barranco, Juan R. Sánchez-Valencia, Ana Borrás. One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR. Nanoscale 2021, 13 (32) , 13882-13895. https://doi.org/10.1039/D1NR01937F
    32. Chuanshen Han, Yisheng Wei, Fengcai Lei, Shulong Zhao, Yumeng Wang, Chonghui Li, Shuai Su, Chao Zhang, Zhen Li, Jing Yu. Heterostructured CuO@ZnO@Ag biomimetic setaria as wettability-switchable difunctional SERS substrate for trace pesticide and DNA detections. Nanophotonics 2021, 10 (10) , 2671-2682. https://doi.org/10.1515/nanoph-2021-0179
    33. Abdul Rasheed Paloly, M Junaid Bushiri. Fabrication of antireflective silver-capped tin oxide nano-obelisk arrays as high sensitive SERS substrate. Nanotechnology 2021, 32 (20) , 205504. https://doi.org/10.1088/1361-6528/abe48b
    34. Yibing Xie. Fabrication of Highly Ordered Ag/TiO. Australian Journal of Chemistry 2021, 74 (10) , 715-721. https://doi.org/10.1071/CH21142
    35. Mai Quan Doan, Nguyen Ha Anh, Hoang Van Tuan, Nguyen Cong Tu, Nguyen Huu Lam, Nguyen Tien Khi, Vu Ngoc Phan, Pham Duc Thang, Anh-Tuan Le, . Improving SERS Sensing Efficiency and Catalytic Reduction Activity in Multifunctional Ternary Ag-TiO 2 -GO Nanostructures: Roles of Electron Transfer Process on Performance Enhancement. Adsorption Science & Technology 2021, 2021 https://doi.org/10.1155/2021/1169599

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect