ACS Publications. Most Trusted. Most Cited. Most Read
Improving Hemocompatibility: How Can Smart Surfaces Direct Blood To Fight against Thrombi
My Activity

Figure 1Loading Img
    Biological and Medical Applications of Materials and Interfaces

    Improving Hemocompatibility: How Can Smart Surfaces Direct Blood To Fight against Thrombi
    Click to copy article linkArticle link copied!

    • Fabian Obstals
      Fabian Obstals
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
    • Lena Witzdam
      Lena Witzdam
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
      More by Lena Witzdam
    • Manuela Garay-Sarmiento
      Manuela Garay-Sarmiento
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
    • Nina Yu. Kostina
      Nina Yu. Kostina
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
    • Jonas Quandt
      Jonas Quandt
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
      More by Jonas Quandt
    • Rolf Rossaint
      Rolf Rossaint
      University Hospital Aachen, Pauwelsstraße 30, Aachen D-52074, Germany
    • Smriti Singh
      Smriti Singh
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
      More by Smriti Singh
    • Oliver Grottke
      Oliver Grottke
      University Hospital Aachen, Pauwelsstraße 30, Aachen D-52074, Germany
    • Cesar Rodriguez-Emmenegger*
      Cesar Rodriguez-Emmenegger
      DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen D-52074, Germany
      Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
      *Email: [email protected]
    Other Access OptionsSupporting Information (6)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 10, 11696–11707
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c01079
    Published March 3, 2021
    Copyright © 2021 The Authors. Published by American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Nature utilizes endothelium as a blood interface that perfectly controls hemostasis, preventing the uncontrolled formation of thrombi. The management of positive and negative feedback that finely tunes thrombosis and fibrinolysis is essential for human life, especially for patients who undergo extracorporeal circulation (ECC) after a severe respiratory or cardiac failure. The exposure of blood to a surface different from healthy endothelium inevitably initiates coagulation, drastically increasing the mortality rate by thromboembolic complications. In the present study, an ultrathin antifouling fibrinolytic coating capable of disintegrating thrombi in a self-regulated manner is reported. The coating system is composed of a polymer brush layer that can prevent any unspecific interaction with blood. The brushes are functionalized with a tissue plasminogen activator (tPA) to establish localized fibrinolysis that solely and exclusively is active when it is required. This interactive switching between the dormant and active state is realized through an amplification mechanism that increases (positive feedback) or restores (negative feedback) the activity of tPA depending on whether a thrombus is detected and captured or not. Thus, only a low surface density of tPA is necessary to lyse real thrombi. Our work demonstrates the first report of a coating that self-regulates its fibrinolytic activity depending on the conditions of blood.

    Copyright © 2021 The Authors. Published by American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c01079.

    • Additional data and figures including the grafting of polymer brushes, physicochemical characterization of the surface coating, antifouling measurements, immobilization of tPA on antifouling polymer brushes, feedback loop for the activation of plasminogen by tPA, amplification mechanism to digest fibrin, and static blood experiments (PDF)

    • Video S1. Digestion of a fibrin clot of PMP membranes with tPA-functionalized polymer brushes (MP4)

    • Video S2. No digestion of fibrin on polymer-brush-coated PMP membranes even after 8 h (MP4)

    • Video S3. No digestion of fibrin on bare PMP membranes even after 8 h 30 min (MP4)

    • Video S4. Lab bench video of the full digestion of a fibrin clot of PMP membranes with tPA-functionalized polymer brushes after 5 h compared to the control samples (MP4)

    • Video S5. Lab bench video of the full digestion of a second fibrin clot of PMP membranes with tPA-functionalized polymer brushes after 5 h compared to the control samples (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 23 publications.

    1. Duanqi Fan, Xiaoli Liu, Hong Chen. Endothelium-Mimicking Materials: A “Rising Star” for Antithrombosis. ACS Applied Materials & Interfaces 2024, 16 (40) , 53343-53371. https://doi.org/10.1021/acsami.4c12117
    2. Jenny Englert, Marc Palà, Lena Witzdam, Farahnaz Rayatdoost, Oliver Grottke, Gerard Lligadas, Cesar Rodriguez-Emmenegger. Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility. Langmuir 2023, 39 (50) , 18476-18485. https://doi.org/10.1021/acs.langmuir.3c02765
    3. Chia-Hsuan Lin, Shyh-Chyang Luo. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. Langmuir 2022, 38 (24) , 7383-7399. https://doi.org/10.1021/acs.langmuir.2c00448
    4. Feng Wang, Mengdi Liang, Bei Zhang, Weiqiang Li, Xianchen Huang, Xicheng Zhang, Kaili Chen, Gang Li. Advances in artificial blood vessels: Exploring materials, preparation, and functionality. Journal of Materials Science & Technology 2025, 219 , 225-256. https://doi.org/10.1016/j.jmst.2024.09.029
    5. Lena Witzdam, Samarth Sandhu, Suji Shin, Yeahwa Hong, Shanzeh Kamal, Oliver Grottke, Keith E. Cook, Cesar Rodriguez‐Emmenegger. Enhancing Hemocompatibility in ECMO Systems With a Fibrinolytic Interactive Coating: in Vitro Evaluation of Blood Clot Lysis Using a 3D Microfluidic Model. Macromolecular Bioscience 2025, 122 https://doi.org/10.1002/mabi.202400530
    6. Wenxuan Wang, Qing Ma, Da Li, Wentai Zhang, Zhilu Yang, Wenjie Tian, Nan Huang. Engineered endothelium-mimicking antithrombotic surfaces via combination of nitric oxide-generation with fibrinolysis strategies. Bioactive Materials 2025, 43 , 319-329. https://doi.org/10.1016/j.bioactmat.2024.09.011
    7. Esra Kasapgil, Manuela Garay‐Sarmiento, César Rodriguez‐Emmenegger. Advanced Antibacterial Strategies for Combatting Biomaterial‐Associated Infections: A Comprehensive Review. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (6) https://doi.org/10.1002/wnan.2018
    8. Honghong Chen, Zehong Xiang, Tianci Zhang, Haozheng Wang, Xian Li, Hao Chen, Qiang Shi. Heparinized self‐healing polymer coating with inflammation modulation for blood‐contacting biomedical devices. Acta Biomaterialia 2024, 186 , 201-214. https://doi.org/10.1016/j.actbio.2024.07.010
    9. Lena Witzdam, Tom White, Cesar Rodriguez‐Emmenegger. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromolecular Bioscience 2024, 20 https://doi.org/10.1002/mabi.202400152
    10. Zuzana Riedelová, Andres de los Santos Pereira, Diego Fernando Dorado Daza, Pavel Májek, Filip Dyčka, Tomáš Riedel. Mass‐Spectrometric Identification of Proteins and Pathways Responsible for Fouling on Poly(ethylene glycol) Methacrylate Polymer Brushes. Macromolecular Bioscience 2024, 24 (6) https://doi.org/10.1002/mabi.202300558
    11. Lena Witzdam, Manuela Garay‐Sarmiento, Mick Gagliardi, Yannick L. Meurer, Yannik Rutsch, Jenny Englert, Sandra Philipsen, Anisa Janem, Rawan Alsheghri, Felix Jakob, Daniël G. M. Molin, Ulrich Schwaneberg, Nynke M. S. van den Akker, Cesar Rodriguez‐Emmenegger. Brush‐Like Coatings Provide a Cloak of Invisibility to Titanium Implants. Macromolecular Bioscience 2024, 24 (4) https://doi.org/10.1002/mabi.202300434
    12. Lena Witzdam, Berlind Vosberg, Katharina Große‐Berkenbusch, Sandra Stoppelkamp, Hans Peter Wendel, Cesar Rodriguez‐Emmenegger. Tackling the Root Cause of Surface‐Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting. Macromolecular Bioscience 2024, 24 (2) https://doi.org/10.1002/mabi.202300321
    13. Martin Kohse, Lena Witzdam, Felix Jakob, Alexander Boes, Holger Mescheder, Robin Day, Oliver Grottke, Ulrich Schwaneberg, Cesar Rodriguez-Emmenegger, Thomas Bergs. Bioinspired active hemocompatible coating systems for mechanical circulatory support devices: when engineering meets nano and molecular technology. Procedia CIRP 2024, 125 , 60-65. https://doi.org/10.1016/j.procir.2024.08.011
    14. Kaijun Li, Jinyu Peng, Yuqi Liu, Fanjun Zhang, Dimeng Wu, Rifang Luo, Zongliang Du, Li Yang, Gongyan Liu, Yunbing Wang. Surface Engineering of Central Venous Catheters via Combination of Antibacterial Endothelium‐Mimicking Function and Fibrinolytic Activity for Combating Blood Stream Infection and Thrombosis. Advanced Healthcare Materials 2023, 12 (23) https://doi.org/10.1002/adhm.202300120
    15. Carlos Eduardo Neri-Cruz, Franciane Mouradian Emidio Teixeira, Julien E. Gautrot. A guide to functionalisation and bioconjugation strategies to surface-initiated polymer brushes. Chemical Communications 2023, 59 (49) , 7534-7558. https://doi.org/10.1039/D3CC01082A
    16. Wen Liu, Xiaoyu Wang, Yakai Feng. Restoring endothelial function: shedding light on cardiovascular stent development. Biomaterials Science 2023, 11 (12) , 4132-4150. https://doi.org/10.1039/D3BM00390F
    17. David Coronel-Meneses, Calef Sánchez-Trasviña, Imma Ratera, Karla Mayolo-Deloisa. Strategies for surface coatings of implantable cardiac medical devices. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1173260
    18. Manoj Myneni, Keshava Rajagopal. Future artificial surface physiology. 2023, 25-35. https://doi.org/10.1016/B978-0-443-18918-0.00002-4
    19. Xiongfeng Nie, Chunyan Cui, Tengling Wu, Yang Wu, Xinyu Bian, Rong Yang, Xiaoping Zhang, Yage Sun, Yang Liu, Wenguang Liu. An anticoagulant/hemostatic indwelling needle for oral glucose tolerance test. Biomaterials Science 2022, 10 (22) , 6570-6582. https://doi.org/10.1039/D2BM01133F
    20. Jonas Quandt, Manuela Garay‐Sarmiento, Lena Witzdam, Jenny Englert, Yannik Rutsch, Cornelia Stöcker, Fabian Obstals, Oliver Grottke, Cesar Rodriguez‐Emmenegger. Interactive Hemocompatible Nanocoating to Prevent Surface‐Induced Coagulation in Medical Devices. Advanced Materials Interfaces 2022, 9 (33) https://doi.org/10.1002/admi.202201055
    21. Zuzana Riedelová, Andres de los Santos Pereira, Jan Svoboda, Ognen Pop‐Georgievski, Pavel Májek, Klára Pečánková, Filip Dyčka, Cesar Rodriguez‐Emmenegger, Tomáš Riedel. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromolecular Bioscience 2022, 22 (11) https://doi.org/10.1002/mabi.202200247
    22. Bich Phuong Nguyen Thi, Bao Tran Duy Nguyen, In-Seok Jeong, Jeong F. Kim. Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomaterialia 2022, 152 , 19-46. https://doi.org/10.1016/j.actbio.2022.09.003
    23. Lena Witzdam, Yannick L. Meurer, Manuela Garay‐Sarmiento, Mariia Vorobii, Dominik Söder, Jonas Quandt, Tamás Haraszti, Cesar Rodriguez‐Emmenegger. Brush‐Like Interface on Surface‐Attached Hydrogels Repels Proteins and Bacteria. Macromolecular Bioscience 2022, 22 (5) https://doi.org/10.1002/mabi.202200025

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 10, 11696–11707
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c01079
    Published March 3, 2021
    Copyright © 2021 The Authors. Published by American Chemical Society

    Article Views

    1707

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.