ACS Publications. Most Trusted. Most Cited. Most Read
Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries
My Activity

Figure 1Loading Img
    Energy, Environmental, and Catalysis Applications

    Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries
    Click to copy article linkArticle link copied!

    • Xingwen Yu
      Xingwen Yu
      Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
      More by Xingwen Yu
    • Yijie Liu
      Yijie Liu
      Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
      More by Yijie Liu
    • John B. Goodenough
      John B. Goodenough
      Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
    • Arumugam Manthiram*
      Arumugam Manthiram
      Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 26, 30703–30711
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c07547
    Published June 28, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A novel composite electrolyte is rationally designed with a polyethylene glycol diacrylate (PEGDA) polymer and a garnet-type fast lithium-ion conductor (Li6.4La3Zr1.4Ta0.6O12, LLZTO) for solid-state lithium batteries. The LLZTO ceramic phase is incorporated into the PEGDA polymeric matrix as nanoparticles. The ionic conductivity of the composite is further optimized with a succinonitrile plasticizer. The solid composite membranes are synthesized via a tape casting process followed by a UV curing procedure. The resulting solid-state composite electrolyte delivers a room-temperature Li+-ion conductivity of 3.1 × 10–4 S cm–1 and can sustain an electrochemical polarization potential up to 4.6–4.7 V (vs Li+/Li). The compositing approach harnesses the advantages of both polymeric PEGDA and ceramic LLZTO. In addition to enhancing the ionic conductivity, the LLZTO ceramic filler can suppress Li dendrites. The polymeric phase of PEGDA facilitates good interfacial contact between the solid electrolyte and the electrodes. The solid-state cells fabricated with the composite solid electrolyte, lithium–metal anode, and LiNi0.8Mn0.1Co0.1O2 (NMC 811) cathode show long cyclability.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c07547.

    • Schematic of synthesizing the PEGDA–SCN–LiTFSI polymeric electrolytes; schematic of a Swagelok symmetric cell with two stainless-steel rods and an equivalent circuit for the electrochemical impedance spectrum of the electrolyte membranes; picture of a PEGDA–SCN–LiTFSI polymeric membrane; SEM images of the synthesized LLZTO powder after the first-step sintering and after the second-step sintering; schematic of synthesizing the PEGDA–SCN–LiTFSI–LLZTO composite electrolytes; picture of a piece of the PEGDA–SCN–LiTFSI–LLZTO composite membrane; ATR–FTIR profile of a PEGDA–SCN membrane; SEM image of the NMC 811 cathode powder; and XRD characteristics of the NMC 811 cathode (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 70 publications.

    1. Zhihao Yang, Weiying Wu, Minghong Duan, Suyue Chen, Meiling Liu, Jiaxing Liu, Tieqi Huang, Hongtao Liu. Strategies for Advanced Solid Electrolytes toward Efficient Lithium-Ion Conduction in All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces 2025, 17 (15) , 22184-22209. https://doi.org/10.1021/acsami.4c23123
    2. Michael Ruby Raj, Gibaek Lee, Mogalahalli Venkatashamy Reddy, Karim Zaghib. Recent Advances in Development of Organic Battery Materials for Monovalent and Multivalent Metal-Ion Rechargeable Batteries. ACS Applied Energy Materials 2024, 7 (19) , 8196-8255. https://doi.org/10.1021/acsaem.3c02382
    3. Faiz Ahmed, Anna Chen, M. Virginia P. Altoé, Gao Liu. Argyrodite-Li6PS5Cl/Polymer-based Highly Conductive Composite Electrolyte for All-Solid-State Batteries. ACS Applied Energy Materials 2024, 7 (5) , 1842-1853. https://doi.org/10.1021/acsaem.3c02858
    4. Zining Man, Hao Tian, Xingbao Zhu, Zhe Lü. High Charging Voltage Stable and Air Atmosphere Stable Li–O2 Batteries with an Electrolyte Based on Succinonitrile and In Situ Artificial SEI Construction. ACS Sustainable Chemistry & Engineering 2024, 12 (10) , 3996-4006. https://doi.org/10.1021/acssuschemeng.3c06792
    5. Hongkai Hu, Weiya Li, Haojing Liu, Guohong Kang, Hui Chang, Shengrui Cui, Ge Su, Wei Liu, Yongcheng Jin. Studies on Composite Solid Electrolytes with a Dual Selective Confinement Interface Structure of Anions for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces 2024, 16 (3) , 3552-3563. https://doi.org/10.1021/acsami.3c17567
    6. Mingxu Zhang, Wenhao Xie, Meng Liu, Siyu liu, Weikun Wang, Zhaoqing Jin, Anbang Wang, Jingyi Qiu, Pengcheng Zhao, Zhicong Shi. New Quasi-Solid-State Li-SPAN Battery Enhanced by In Situ Thermally Polymerized Gel Polymer Electrolytes. ACS Applied Materials & Interfaces 2024, 16 (1) , 1578-1586. https://doi.org/10.1021/acsami.3c16173
    7. Pengcheng Zhou, Yuxian Liu, Jian Chen, Huiyang Li. Versatile Inorganic/Polymer Composite Electrolyte Added with 2-Methylsuccinic Anhydride via a Solvent-Free Preparation Method for High-Performance All-Solid-State Li-Metal Batteries: High Voltage, Long Cycle Life, and Room-Temperature Operation. ACS Sustainable Chemistry & Engineering 2023, 11 (36) , 13458-13469. https://doi.org/10.1021/acssuschemeng.3c03756
    8. Dan Cai, Jiaheng Zhang, Fanqun Li, Xiao Han, Yu Zhong, Xiuli Wang, Jiangping Tu. LLZTO Nanoparticle- and Cellulose Mesh-Coreinforced Flexible Composite Electrolyte for Stable Li Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (31) , 37884-37892. https://doi.org/10.1021/acsami.3c05058
    9. Sumana Bandyopadhyay, Neelam Gupta, Aashish Joshi, Amit Gupta, Rajiv K. Srivastava, Biplab Kumar Kuila, Bhanu Nandan. Solid Polymer Electrolyte Based on an Ionically Conducting Unique Organic Polymer Framework for All-Solid-State Lithium Batteries. ACS Applied Energy Materials 2023, 6 (8) , 4390-4403. https://doi.org/10.1021/acsaem.3c00436
    10. Sheng Chen, Yunping Wu, Shuwen Niu, Zhengyu Wei, Youshen Wu, Wei Wei. Interface Manipulation of Composite Solid Polymer Electrolyte with Polydopamine to Construct Durable and Fast Li+ Conduction Pathways. ACS Applied Energy Materials 2023, 6 (3) , 1989-2000. https://doi.org/10.1021/acsaem.2c03911
    11. Hyunji Choi, Hyeokjin Kwon, Hee-Tak Kim. Hybrid Electrolyte of Li1.3Al0.3Ti1.7(PO4)3 Nanofibers and Cross-linked Gel Electrolyte for Li Metal Batteries. ACS Applied Energy Materials 2023, 6 (2) , 802-811. https://doi.org/10.1021/acsaem.2c03090
    12. Yuan Yao, Zhongqiang Wang, Qiannan Cao, Hui Li, Shufang Ge, Jinjian Liu, Penghui Sun, Zhihao Liu, Yuanhao Wu, Wei Wang, Jianfeng Liu. Degradable Tumor-Responsive Iron-Doped Phosphate-Based Glass Nanozyme for H2O2 Self-Supplying Cancer Therapy. ACS Applied Materials & Interfaces 2022, 14 (15) , 17153-17163. https://doi.org/10.1021/acsami.2c02669
    13. Xueyan Zhang, Shichao Cheng, Chuankai Fu, Geping Yin, Liguang Wang, Yongmin Wu, Hua Huo. Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Nano-Micro Letters 2025, 17 (1) https://doi.org/10.1007/s40820-024-01498-y
    14. Savitha Hosamane, Nagaraju Kottam, Aishwarya Chalil Suresh. Strategies to Boost the Safety and Ionic Conductivity of Lithium‐Ion Batteries Using Solid State Electrolytes: A Review. WIREs Energy and Environment 2025, 14 (1) https://doi.org/10.1002/wene.544
    15. Wenyi Ma, Yuxiang Guo, Jianqi Sun, Chenyi Zhang, Yuwen Zhu, Hengda Sun, Liqiang Huang, Zuming Hu, Hongzhi Wang, Meifang Zhu, Gang Wang. Self‐Assembled Monolayer in Hybrid Quasi‐Solid Electrolyte Enables Boosted Interface Stability and Ion Conduction. Angewandte Chemie International Edition 2025, 64 (7) https://doi.org/10.1002/anie.202418999
    16. Wenyi Ma, Yuxiang Guo, Jianqi Sun, Chenyi Zhang, Yuwen Zhu, Hengda Sun, Liqiang Huang, Zuming Hu, Hongzhi Wang, Meifang Zhu, Gang Wang. Self‐Assembled Monolayer in Hybrid Quasi‐Solid Electrolyte Enables Boosted Interface Stability and Ion Conduction. Angewandte Chemie 2025, 137 (7) https://doi.org/10.1002/ange.202418999
    17. Zixi Wang, Jin Wang, Yunlong Liao, Zhiping Lin. In-situ polymerization of poly(1,3-dioxolane) gel electrolytes modified with LLZTO nanoparticles for high-performance lithium-metal batteries. Electrochimica Acta 2025, 513 , 145593. https://doi.org/10.1016/j.electacta.2024.145593
    18. Christian Julien, Alain Mauger. Polymers. 2025, 207-406. https://doi.org/10.1007/978-3-031-67470-9_4
    19. Alexander J. Hoffmann, Wissam Fawaz, K. Y. Simon Ng. Passive Filler Ionic Conductivity Enhancement of Poly(Ethylene Glycol) Diacrylate Solid-State Electrolytes. Journal of The Electrochemical Society 2025, 172 (1) , 010510. https://doi.org/10.1149/1945-7111/ad9a0a
    20. Zhixuan Wang, Hang Yang, Suo Li, Hao Tong, Wenhao Xu, Yangmingyue Zhao, Libo Li. Small components play a big role - fillers in composite solid-state electrolytes for lithium metal batteries. Energy Materials 2024, 4 (6) https://doi.org/10.20517/energymater.2024.57
    21. Seung Ho Kwon, Seongmin Kim, Jinseok Park, Michael J. Lee, Youyoung Byun, Hyun Jung Kim, Young Min Baek, Jaegyeom Kim, Eunji Lee, Seung Woo Lee, Bumjoon J. Kim. In‐situ photo‐polymerized elastomeric composite electrolytes containing Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 particles for stable operation in lithium metal batteries. EcoMat 2024, 6 (12) https://doi.org/10.1002/eom2.12503
    22. Yongquan Zhang, Zengxu Chen, Jingshun Wang, Shuo Fan, Tiandong Zhang, Changhai Zhang, Yue Zhang, Qingguo Chi. High‐Performance Pure Polymer Electrolytes with Enhanced Ionic Conductivity for Room‐Temperature Applications. Small 2024, 20 (51) https://doi.org/10.1002/smll.202405565
    23. Muhammad Kashif Majeed, Arshad Hussain, Ghulam Hussain, Muhammad Umar Majeed, Muhammad Zeeshan Ashfaq, Rashid Iqbal, Adil Saleem. Interfacial Engineering of Polymer Solid‐State Lithium Battery Electrolytes and Li‐Metal Anode: Current Status and Future Directions. Small 2024, 20 (52) https://doi.org/10.1002/smll.202406357
    24. Leqi Zhao, Yijun Zhong, Chencheng Cao, Tony Tang, Zongping Shao. Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer. Nano-Micro Letters 2024, 16 (1) https://doi.org/10.1007/s40820-024-01358-9
    25. Elmira Nurgaziyeva, Gulnur Turlybay, Aigul Tugelbayeva, Almagul Mentbayeva, Sandugash Kalybekkyzy. PTHF/LATP Composite Polymer Electrolyte for Solid State Batteries. Polymers 2024, 16 (22) , 3176. https://doi.org/10.3390/polym16223176
    26. Pandurangan Swathi, Thamayanthi Panneerselvam, O.V. Sreejith, Ramaswamy Murugan, Arun Prasath Ramaswamy. UV cross-linked highly stable polymer garnet composite electrolyte with improved interphase for lithium metal batteries. Journal of Electroanalytical Chemistry 2024, 968 , 118492. https://doi.org/10.1016/j.jelechem.2024.118492
    27. Pravin Kumar Singh, Soumyoraj Mallick, Gun Anit Kaur, Sapna Balayan, Ashutosh Tiwari. John B. Goodenough's pioneering contributions towards advancements in photo-rechargeable lithium batteries. Nano Energy 2024, 128 , 109792. https://doi.org/10.1016/j.nanoen.2024.109792
    28. Lu Nie, Jinling Zhu, Xiaoyan Wu, Mengtian Zhang, Xiao Xiao, Runhua Gao, Xinru Wu, Yanfei Zhu, Shaojie Chen, Zhiyuan Han, Yi Yu, Shaogang Wang, Shengjie Ling, Guangmin Zhou. A Large‐Scale Fabrication of Flexible, Ultrathin, and Robust Solid Electrolyte for Solid‐State Lithium‐Sulfur Batteries. Advanced Materials 2024, 36 (29) https://doi.org/10.1002/adma.202400115
    29. Yaqing Wang, Qiujun Wang, Di Zhang, Zhaojin Li, Huilan Sun, Qujiang Sun, Bo Wang. Enabling stable interface by constructing asymmetric organic-inorganic bi-functional composite electrolyte of high-voltage lithium metal batteries. Journal of Energy Storage 2024, 91 , 112009. https://doi.org/10.1016/j.est.2024.112009
    30. Yingkang Wu, Yuzhou Bai, Wujie Dong, Xue Wang, Wenqin Ma, Fuqiang Huang. In-situ construction of PDOL electrolyte with dual-reinforced stable interface for high-voltage lithium metal batteries. Science China Chemistry 2024, 67 (5) , 1664-1671. https://doi.org/10.1007/s11426-023-1953-2
    31. Yang Zhang, Lei Zhang, Peng Guo, Chaoyan Zhang, Xiaochuan Ren, Zhen Jiang, Jianjun Song, Chuan Shi. Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries. Nano Research 2024, 17 (4) , 2663-2670. https://doi.org/10.1007/s12274-023-6065-4
    32. Zhenxing Wang, Rui Liu, Zhaohu Ba, Ke Xu, Xiuting Li, Jie Dong, Qinghua Zhang, Xin Zhao. Built-in garnet-rich composite solid electrolyte towards fast ion transport and dendrite-free for high-energy lithium batteries. Composites Communications 2024, 47 , 101871. https://doi.org/10.1016/j.coco.2024.101871
    33. Haoyang Yuan, Changhao Tian, Mengyuan Song, Wenjun Lin, Tao Huang, Aishui Yu. Revealing the specific role of sulfide and nano-alumina in composite solid-state electrolytes for performance-reinforced ether-nitrile copolymers. Journal of Energy Chemistry 2024, 91 , 628-636. https://doi.org/10.1016/j.jechem.2024.01.018
    34. Zhengyi Lu, Changfei Liu, Enli Wang, Ruizhi Yang, Hongxun Yang, Chao Jin. Two-step strategy to optimize interfacial compatibility of polyether sulfone-Li6.75La3Zr1.75Ta0.25O12 composite polymer electrolytes with Li anode for solid lithium battery with a wide working temperature range. Journal of Power Sources 2024, 596 , 234101. https://doi.org/10.1016/j.jpowsour.2024.234101
    35. Zengxu Chen, Yongquan Zhang, Baoshan Zhu, Jingshun Wang, Jingrun Hu, Jianxin Zou, Zhao Jin, Xinhe Li, Yue Zhang, Changhai Zhang. Construction of high-performance solid-state electrolytes for lithium metal batteries by UV-curing technology. Polymer Testing 2024, 132 , 108386. https://doi.org/10.1016/j.polymertesting.2024.108386
    36. K. Daems, P. Yadav, K.B. Dermenci, J. Van Mierlo, M. Berecibar. Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance. Renewable and Sustainable Energy Reviews 2024, 191 , 114136. https://doi.org/10.1016/j.rser.2023.114136
    37. Jin Wang, Yunlong Liao, Xi Wu, Lingfeng Ye, Zixi Wang, Fugen Wu, Zhiping Lin. In Situ Construction of Elastic Solid-State Polymer Electrolyte with Fast Ionic Transport for Dendrite-Free Solid-State Lithium Metal Batteries. Nanomaterials 2024, 14 (5) , 433. https://doi.org/10.3390/nano14050433
    38. Zhao Wang, Basem Al Alwan, Wissam Fawaz, K.Y. Simon Ng. Novel PEO-based composite solid electrolytes for All-Solid-State Li-S battery. Journal of Electroanalytical Chemistry 2024, 954 , 118017. https://doi.org/10.1016/j.jelechem.2023.118017
    39. Zhengdao Chen, Yingjun Wu, Can Xu, . The Influence of Organic-Inorganic Composite Solid Electrolytes on Electrochemical Performance in Solid-State Lithium Batteries. E3S Web of Conferences 2024, 553 , 01006. https://doi.org/10.1051/e3sconf/202455301006
    40. Huimin Lian, Roya Momen, Yudong Xiao, Bai Song, Xinyu Hu, Fangjun Zhu, Huaxin Liu, Laiqiang Xu, Wentao Deng, Hongshuai Hou, Guoqiang Zou, Xiaobo Ji. High Ionic Conductivity Motivated by Multiple Ion‐Transport Channels in 2D MOF‐Based Lithium Solid State Battery. Advanced Functional Materials 2023, 33 (49) https://doi.org/10.1002/adfm.202306060
    41. Weiqi Mai, Qiaoying Cao, Mingtao Zheng, Yong Xiao, Hang Hu, Yingliang Liu, Yeru Liang. A fast ionic transport copolymeric network for stable quasi-solid lithium metal battery. Journal of Energy Chemistry 2023, 87 , 491-500. https://doi.org/10.1016/j.jechem.2023.08.045
    42. Xiaofei Yang, Qianwen Yin, Changhong Wang, Kieran Doyle-Davis, Xueliang Sun, Xianfeng Li. Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Progress in Materials Science 2023, 140 , 101193. https://doi.org/10.1016/j.pmatsci.2023.101193
    43. Haitao Zhao, Yan Zhang, Zehua Zhao, Zhuangzhuang Xue, Lei Li. Uniting Young's modulus and the flexibility of solid-state electrolytes for high-performance Li-batteries at room temperature. Dalton Transactions 2023, 52 (46) , 17449-17457. https://doi.org/10.1039/D3DT02571C
    44. Guixiang Xu, Xin Zhang, Shuyang Sun, Yangfan Zhou, Yongfeng Liu, Hangwang Yang, Zhenguo Huang, Fang Fang, Wenping Sun, Zijiang Hong, Mingxia Gao, Hongge Pan. Synergized Tricomponent All‐Inorganics Solid Electrolyte for Highly Stable Solid‐State Li‐Ion Batteries. Advanced Science 2023, 10 (25) https://doi.org/10.1002/advs.202207627
    45. Sheng Chen, Zhengyu Wei, Caihe Bai, Shuwen Niu, Wei Wei. Multiple intermolecular engineering of polymer electrolyte interphase by polyoxometalate-modified polydopamine filler for all-solid-state batteries. Chemical Engineering Journal 2023, 472 , 145140. https://doi.org/10.1016/j.cej.2023.145140
    46. Arunkumar Rajamani, Thamayanthi Panneerselvam, Sona Elsin Abraham, Ramaswamy Murugan, Sivaraman Sivaprakasam. Recent progress in polymer garnet composite electrolytes for solid-state lithium metal batteries. Sustainable Energy & Fuels 2023, 7 (14) , 3185-3212. https://doi.org/10.1039/D3SE00421J
    47. Min He, Changyong Mo, Zecheng Lu, Yonghao Huang, Zhancai Qiu, Weishan Li, Youhao Liao. Ceramic-in-polymer solid electrolyte reinforced by in-situ polymerization of PEGDA interlayer for lithium metal battery. Solid State Ionics 2023, 395 , 116217. https://doi.org/10.1016/j.ssi.2023.116217
    48. Mingzhe Chen, Limin Zhou, Tong Wang, Hui Xia, Hua‐Kun Liu, Shi‐Xue Dou, Shulei Chou. Nitrogen as An Anionic Center/Dopant for Next‐Generation High‐Performance Lithium/Sodium‐Ion Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials 2023, 33 (20) https://doi.org/10.1002/adfm.202214786
    49. Zhiguang Zhao, Borong Wu, Yuanxing Zhang, Jingwen Cui, Ling Zhang, Yuefeng Su, Feng Wu. A promising composite solid electrolyte of garnet-type LLZTO and succinonitrile in thermal polyurethane matrix for all-solid-state lithium-ion batteries. Electrochemistry Communications 2023, 150 , 107472. https://doi.org/10.1016/j.elecom.2023.107472
    50. Kaiming Wang, Ao Yu, Zhiyi Zhou, Fei Shen, Manni Li, Liang Zhang, Weichang Guo, Yifei Chen, Le Shi, Xiaogang Han. Electrode structure enabling dendrite inhibition for high cycle stability quasi-solid-state lithium metal batteries. Journal of Energy Chemistry 2023, 79 , 232-241. https://doi.org/10.1016/j.jechem.2022.12.009
    51. Shuyang Bian, Guoji Huang, Yufeng Xuan, Boying He, Jincheng Liu, Bingqing Xu, Gen Zhang. Pore surface engineering of covalent organic framework membrane by alkyl chains for lithium based batteries. Journal of Membrane Science 2023, 669 , 121268. https://doi.org/10.1016/j.memsci.2022.121268
    52. Meng Yang, Fan Feng, Zhenhai Shi, Junhong Guo, Rui Wang, Zijian Xu, Zhanming Liu, Tongxiang Cai, Zhenyu Wang, Chuanxi Wang, Suli Chen, Zi-Feng Ma, Tianxi Liu. Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Materials 2023, 56 , 611-620. https://doi.org/10.1016/j.ensm.2023.01.043
    53. Xueping Liu, Zhe Xiao, Huarong Peng, Dongting Jiang, Honggui Xie, Yiling Sun, Shengkui Zhong, Zhengfang Qian, Renheng Wang. Rational Design of LLZO/Polymer Solid Electrolytes for Solid‐State Batteries. Chemistry – An Asian Journal 2022, 17 (24) https://doi.org/10.1002/asia.202200929
    54. Hyesun Jeon, Hai Anh Hoang, Dukjoon Kim. Flexible PVA/BMIMOTf/LLZTO composite electrolyte with liquid-comparable ionic conductivity for solid-state lithium metal battery. Journal of Energy Chemistry 2022, 74 , 128-139. https://doi.org/10.1016/j.jechem.2022.07.014
    55. Poramane Chiochan, Chonticha Jangsan, Nichakarn Anansuksawat, Kan Homlamai, Nattanon Joraleechanchai, Worapol Tejangkura, Montree Sawangphruk. Reducing Intrinsic Drawbacks of Ni-rich Layered Oxide Cathode Materials with a Dry Coating Concept of Quasi-solid Nanomaterials towards High-performance Cylindrical Li-ion Batteries. Journal of The Electrochemical Society 2022, 169 (11) , 110532. https://doi.org/10.1149/1945-7111/aca2e2
    56. Zhiheng Ren, Jixiao Li, Yangyang Gong, Chuan Shi, Jianneng Liang, Yongliang Li, Chuanxin He, Qianling Zhang, Xiangzhong Ren. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Materials 2022, 51 , 130-138. https://doi.org/10.1016/j.ensm.2022.06.037
    57. Balasubramaniam Ramkumar, Vanchiappan Aravindan, Harivignesh Ramasamy, Kanalli V. Ajeya, Je-Gwang Ryu, Ho-Young Jung, Yun-Sung Lee. Ternary metal oxide filled PEO-based polymer electrolyte for solid-state lithium metal battery: The role of filler particle size. Solid State Sciences 2022, 132 , 106958. https://doi.org/10.1016/j.solidstatesciences.2022.106958
    58. Feng Jiang, Yantao Wang, Jiangwei Ju, Qian Zhou, Longfei Cui, Jinzhi Wang, Guoxi Zhu, Huancheng Miao, Xinhong Zhou, Guanglei Cui. Percolated Sulfide in Salt‐Concentrated Polymer Matrices Extricating High‐Voltage All‐Solid‐State Lithium‐metal Batteries. Advanced Science 2022, 9 (25) https://doi.org/10.1002/advs.202202474
    59. Yongquan Zhang, Baoshan Zhu, Qingguo Chi, Hongchang Gao, Changhai Zhang, Tiandong Zhang, Kai Zhu, Dianxue Cao. Improvement in lithium-ion transport performance of cathodes by PEGDA-based solid-state electrolyte. Frontiers in Energy Research 2022, 10 https://doi.org/10.3389/fenrg.2022.967756
    60. Lei Zhang, Quanchao Zhuang, Runguo Zheng, Zhiyuan Wang, Hongyu Sun, Hamidreza Arandiyan, Yuan Wang, Yanguo Liu, Zongping Shao. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Materials 2022, 49 , 299-338. https://doi.org/10.1016/j.ensm.2022.04.026
    61. Jun Pan, Pei Zhao, Nana Wang, Fuqiang Huang, Shixue Dou. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy & Environmental Science 2022, 15 (7) , 2753-2775. https://doi.org/10.1039/D1EE03466A
    62. Zining Man, Hao Tian, Xingbao Zhu, Yu Wang, Yuanguo Wu, Xiangyu Wen, Zhe Lü. PEGDA-SN as Both Solid-State Electrolyte and Solid-Solid Interface Material for Li-O 2 Battery. Journal of The Electrochemical Society 2022, 169 (6) , 060507. https://doi.org/10.1149/1945-7111/ac7356
    63. Dan Cai, Xinhong Qi, Jiayuan Xiang, Xianzhang Wu, Zhongxu Li, Xuming Luo, Xiuli Wang, Xinhui Xia, Changdong Gu, Jiangping Tu. A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chemical Engineering Journal 2022, 435 , 135030. https://doi.org/10.1016/j.cej.2022.135030
    64. Wenzhuo Cao, Jiaze Lu, Kun Zhou, Guochen Sun, Jieyun Zheng, Zhen Geng, Hong Li. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy 2022, 95 , 106983. https://doi.org/10.1016/j.nanoen.2022.106983
    65. Ruilu Yang, Zheng Zhang, Qi Zhang, Jian Shi, Shusen Kang, Yanchen Fan. Flexible Asymmetric Organic-Inorganic Composite Solid-State Electrolyte Based on PI Membrane for Ambient Temperature Solid-State Lithium Metal Batteries. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.855800
    66. Liansheng Li, Jie Wang, Leiting Zhang, Huanhuan Duan, Yuanfu Deng, Guohua Chen. Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance. Energy Storage Materials 2022, 45 , 1062-1073. https://doi.org/10.1016/j.ensm.2021.10.047
    67. Beatriz Arouca Maia, Natália Magalhães, Eunice Cunha, Maria Helena Braga, Raquel M. Santos, Nuno Correia. Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers 2022, 14 (3) , 403. https://doi.org/10.3390/polym14030403
    68. Zhiheng Ren, Jixiao Li, Yangyang Gong, Chuan Shi, Jianneng Liang, Yongliang Li, Chuanxin He, Qianling Zhang, Xiangzhong Ren. Insight into the Integration Way of Ceramic Solid-State Electrolyte Fillers in the Composite Electrolyte for High Performance Solid-State Lithium Metal Battery. SSRN Electronic Journal 2022, 51 https://doi.org/10.2139/ssrn.4109067
    69. Shuyang Bian, Guoji Huang, Yufeng Xuan, Boying He, Jincheng Liu, Bingqing Xu, Gen zhang. Pore Surface Engineering of Covalent Organic Framework Membrane by Alkyl Chains for Lithium Batteries. SSRN Electronic Journal 2022, 329 https://doi.org/10.2139/ssrn.4189256
    70. Poramane Chiochan, Chonticha Jangsan, Nichakarn Anansuksawat, Kan Homlamai, Nutthaphon Phattharasupakun, Montree Sawangphruk. Reducing Intrinsic Property Issues of Ni-Rich NMC811 with Novel Coating Concept of Quasi-Solid Materials Towards High-Safety Li-Ion Batteries. SSRN Electronic Journal 2021, 6 https://doi.org/10.2139/ssrn.3983712

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 26, 30703–30711
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c07547
    Published June 28, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    6482

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.