ACS Publications. Most Trusted. Most Cited. Most Read
Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from Ab Initio Molecular Dynamics Simulations
My Activity

Figure 1Loading Img
    Surfaces, Interfaces, and Applications

    Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from Ab Initio Molecular Dynamics Simulations
    Click to copy article linkArticle link copied!

    • Garvit Agarwal*
      Garvit Agarwal
      Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
      *Email: [email protected]
    • Jason D. Howard
      Jason D. Howard
      Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Venkateshkumar Prabhakaran
      Venkateshkumar Prabhakaran
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
      Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    • Grant E. Johnson
      Grant E. Johnson
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
      Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    • Vijayakumar Murugesan
      Vijayakumar Murugesan
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
      Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    • Karl T. Mueller
      Karl T. Mueller
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
      Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    • Larry A. Curtiss
      Larry A. Curtiss
      Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Rajeev S. Assary*
      Rajeev S. Assary
      Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
      Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois 60439, United States
      *Email: [email protected]. Phone: 630-252-3536.
    Other Access OptionsSupporting Information (2)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 32, 38816–38825
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c07864
    Published August 6, 2021
    Copyright © 2021 UChicago Argonne LLC, Operator of Argonne National Laboratory. Published by American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Spontaneous chemical reactivity at multivalent (Mg, Ca, Zn, Al) electrode surfaces is critical to solid electrolyte interphase (SEI) formation, and hence, directly affects the longevity of batteries. Here, we report an investigation of the reactivity of 0.5 M Mg(TFSI)2 in 1,2-dimethoxyethane (DME) solvent at a Mg(0001) surface using ab initio molecular dynamics (AIMD) simulations and detailed Bader charge analysis. Based on the simulations, the initial degradation reactions of the electrolyte strongly depend on the structure of the Mg(TFSI)2 species near the anode surface. At the surface, the dissociation of Mg(TFSI)2 species occurs via cleavage of the N–S bond for the solvent separated ion pair (SSIP) and via cleavage of the C–S bond for the contact ion pair (CIP) configuration. In the case of the CIP, both TFSI anions undergo spontaneous bond dissociation reactions to form atomic O, C, S, F, and N species adsorbed on the surface of the Mg anode. These products indicate that the initial SEI layer formed on the surface of the pristine Mg anode consists of a complex mixture of multiple components such as oxides, carbides, sulfides, fluorides, and nitrides. We believe that the atomic-level insights gained from these simulations will lay the groundwork for the rational design of tailored and functional interphases that are critical for the success of multivalent battery technology.

    Copyright © 2021 UChicago Argonne LLC, Operator of Argonne National Laboratory. Published by American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c07864.

    • Additional AIMD snapshots for the reduction reaction of 0.5 M Mg(TFSI)2 salt species in DME solvent on the Mg(0001) surface at different temperatures (350, 650, and 750 K). AIMD snapshots and Bader charge analysis of the reduction reaction of the TFSI-2 anion of the Mg(TFSI)2 species in the SSIP, CIP-1, and CIP-2 configurations. Six AIMD simulation movies showing the reduction reaction of the TFSI-1 and TFSI-2 anions of the Mg(TFSI)2 species in the SSIP, CIP-1, and CIP-2 configurations on the Mg(0001) surface (PDF)

    • Entire AIMD simulation of the reductive reaction of the TFSI-1 and TFSI-2 anions of Mg(TFSI)2 in the SSIP configuration (Movies S1a,b); entire AIMD simulation of the reduction reactions of the TFSI-1 and TFSI-2 anions of Mg(TFSI)2 species in the CIP-1 configuration (Movies S2a,b); entire AIMD simulations of the reduction reactions of the TFSI-1 and TFSI-2 anions of Mg(TFSI)2 in the CIP-2 configuration (Movies S3a,b) (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 26 publications.

    1. Subhadeep Banerjee, Sharma S. R. K. C. Yamijala. Formation and Evolution of the Solid Electrolyte Interphase at Calcium Surfaces. ACS Applied Energy Materials 2025, 8 (9) , 5936-5947. https://doi.org/10.1021/acsaem.5c00346
    2. Sandeep Das, Biswarup Pathak. Suitable Salt for Solid Electrolyte Interphase Formation in Al Anode Dual-Ion Battery. ACS Applied Energy Materials 2023, 6 (11) , 6041-6050. https://doi.org/10.1021/acsaem.3c00508
    3. Evan Walter Clark Spotte-Smith, Samuel M. Blau, Daniel Barter, Noel J. Leon, Nathan T. Hahn, Nikita S. Redkar, Kevin R. Zavadil, Chen Liao, Kristin A. Persson. Chemical Reaction Networks Explain Gas Evolution Mechanisms in Mg-Ion Batteries. Journal of the American Chemical Society 2023, 145 (22) , 12181-12192. https://doi.org/10.1021/jacs.3c02222
    4. Venkateshkumar Prabhakaran, Garvit Agarwal, Jason D. Howard, Sungun Wi, Vaithiyalingam Shutthanandan, Dan-Thien Nguyen, Luke Soule, Grant E. Johnson, Yi-Sheng Liu, Feipeng Yang, Xuefei Feng, Jinghua Guo, Kie Hankins, Larry A. Curtiss, Karl T. Mueller, Rajeev S. Assary, Vijayakumar Murugesan. Coordination-Dependent Chemical Reactivity of TFSI Anions at a Mg Metal Interface. ACS Applied Materials & Interfaces 2023, 15 (5) , 7518-7528. https://doi.org/10.1021/acsami.2c18477
    5. Heonjae Jeong, Ethan P. Kamphaus, Paul C. Redfern, Nathan T. Hahn, Noel J. Leon, Chen Liao, Lei Cheng. Computational Predictions of the Stability of Fluorinated Calcium Aluminate and Borate Salts. ACS Applied Materials & Interfaces 2023, 15 (5) , 6933-6941. https://doi.org/10.1021/acsami.2c20661
    6. Ran Attias, Ben Dlugatch, Omer Blumen, Keren Shwartsman, Michal Salama, Netanel Shpigel, Daniel Sharon. Determination of Average Coulombic Efficiency for Rechargeable Magnesium Metal Anodes in Prospective Electrolyte Solutions. ACS Applied Materials & Interfaces 2022, 14 (27) , 30952-30961. https://doi.org/10.1021/acsami.2c08008
    7. Nan Yao, Xiang Chen, Zhong-Heng Fu, Qiang Zhang. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews 2022, 122 (12) , 10970-11021. https://doi.org/10.1021/acs.chemrev.1c00904
    8. Yunya Guo, Jiexun Zheng, Shuqi Wang, Zilong Wang, Lixia Ling, Riguang Zhang, Heqin Guo, Debao Li, Baojun Wang. A green strategy for CO2 cycloaddition: adjusting the charge distribution on MgO leads to mechanism reversal. Molecular Catalysis 2025, 580 , 115105. https://doi.org/10.1016/j.mcat.2025.115105
    9. Hyungjin Lee, Jangwook Pyun, Inkyoung Han, Haewon Kim, Seunghyeop Baek, Yeonu Lee, Jihun Roh, Doron Aurbach, Seung-Tae Hong, Munseok S. Chae. Physical and chemical interfacial engineering of mg anodes for rechargeable magnesium batteries. Journal of Magnesium and Alloys 2025, 451 https://doi.org/10.1016/j.jma.2025.03.025
    10. Muath Radi, Taniya Purkait, Deyana S. Tchitchekova, Alejandro R. Goñi, Robert Markowski, Charlotte Bodin, Cécile Courrèges, Rémi Dedryvère, Alexandre Ponrouch. A Comprehensive Study on the Parameters Affecting Magnesium Plating/Stripping Kinetics in Rechargeable Mg Batteries. Advanced Energy Materials 2024, 14 (46) https://doi.org/10.1002/aenm.202401587
    11. Zhenjie Liu, Xiaofeng Zhang, Zhiming Liu, Yue Jiang, Dianlun Wu, Yang Huang, Zhe Hu. Rescuing zinc anode–electrolyte interface: mechanisms, theoretical simulations and in situ characterizations. Chemical Science 2024, 15 (19) , 7010-7033. https://doi.org/10.1039/D4SC00711E
    12. Joshua Young, Manuel Smeu. Applications of Ab Initio Molecular Dynamics for Modeling Batteries. 2024, 329-365. https://doi.org/10.1007/978-3-031-47303-6_12
    13. Yuxuan Hu, Huiling Du, Jie Lu, Zhuo Li, Yitian Ma, Shijie Song. Achieving dendrite-free and long cyclic stability of zinc anode via CeO2 doped PEO interface modification. Fuel 2023, 354 , 129417. https://doi.org/10.1016/j.fuel.2023.129417
    14. Sambhaji S. Shinde, Nayantara K. Wagh, Sung‐Hae Kim, Jung‐Ho Lee. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid‐State Electrolytes. Advanced Science 2023, 10 (32) https://doi.org/10.1002/advs.202304235
    15. Chao Zhang, Jun Cheng, Yiming Chen, Maria K Y Chan, Qiong Cai, Rodrigo P Carvalho, Cleber F N Marchiori, Daniel Brandell, C Moyses Araujo, Ming Chen, Xiangyu Ji, Guang Feng, Kateryna Goloviznina, Alessandra Serva, Mathieu Salanne, Toshihiko Mandai, Tomooki Hosaka, Mirna Alhanash, Patrik Johansson, Yun-Ze Qiu, Hai Xiao, Michael Eikerling, Ryosuke Jinnouchi, Marko M Melander, Georg Kastlunger, Assil Bouzid, Alfredo Pasquarello, Seung-Jae Shin, Minho M Kim, Hyungjun Kim, Kathleen Schwarz, Ravishankar Sundararaman. 2023 Roadmap on molecular modelling of electrochemical energy materials. Journal of Physics: Energy 2023, 5 (4) , 041501. https://doi.org/10.1088/2515-7655/acfe9b
    16. Sandeep Das, Biswarup Pathak. Lithium Nitrate as Salt Additive for Solid Electrolyte Interphase Formation in Dual‐Ion Battery. Batteries & Supercaps 2023, 6 (9) https://doi.org/10.1002/batt.202300196
    17. Shiyang Wang, Kewei Wang, Yuchen Zhang, Yulin Jie, Xinpeng Li, Yuxue Pan, Xiaowen Gao, Qingshun Nian, Ruiguo Cao, Qi Li, Shuhong Jiao, Dongsheng Xu. High‐entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202304411
    18. Shiyang Wang, Kewei Wang, Yuchen Zhang, Yulin Jie, Xinpeng Li, Yuxue Pan, Xiaowen Gao, Qingshun Nian, Ruiguo Cao, Qi Li, Shuhong Jiao, Dongsheng Xu. High‐entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202304411
    19. Yuan Liu, Wanyu Zhao, Zhenghui Pan, Zhengqing Fan, Meng Zhang, Xiaoli Zhao, Jianping Chen, Xiaowei Yang. Interfacial Engineering of Magnesiophilic Coordination Layer Stabilizes Mg Metal Anode. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202302617
    20. Yuan Liu, Wanyu Zhao, Zhenghui Pan, Zhengqing Fan, Meng Zhang, Xiaoli Zhao, Jianping Chen, Xiaowei Yang. Interfacial Engineering of Magnesiophilic Coordination Layer Stabilizes Mg Metal Anode. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202302617
    21. Fabrice Roncoroni, Ana Sanz-Matias, Siddharth Sundararaman, David Prendergast. Unsupervised learning of representative local atomic arrangements in molecular dynamics data. Physical Chemistry Chemical Physics 2023, 25 (19) , 13741-13754. https://doi.org/10.1039/D3CP00525A
    22. Duo Zhang, Songzhao Duan, Xiaoshuo Liu, Yang Yang, Yang Zhang, Wen Ren, Shuxin Zhang, Mingxiang Cheng, Weijie Yang, Jiulin Wang, Yanna NuLi. Deeping insight of Mg(CF3SO3)2 and comprehensive modified electrolyte with ionic liquid enabling high-performance magnesium batteries. Nano Energy 2023, 109 , 108257. https://doi.org/10.1016/j.nanoen.2023.108257
    23. Mithun C. Madhusudhanan, Sreelakshmi Anil Kumar, Swetha Nair, Nikitha Srinivasan, Madhurja Buragohain, Sooraj Kunnikuruvan. Revisiting the Relation Between the Stability of the LUMO of the Electrolytes and the Kinetics of Solid Electrolyte Interface Formation in Lithium‐ and Post‐Lithium‐ion Batteries. Batteries & Supercaps 2023, 6 (3) https://doi.org/10.1002/batt.202200430
    24. Chuanliang Wei, Liwen Tan, Yuchan Zhang, Zhengran Wang, Jinkui Feng, Yitai Qian. Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Storage Materials 2022, 52 , 299-319. https://doi.org/10.1016/j.ensm.2022.08.014
    25. Shuxin Zhang, Mingxiang Cheng, Peng Zhang, Yaru Wang, Duo Zhang, Yang Yang, Jiulin Wang, Yanna NuLi. Insights into the stability of magnesium borate salts for rechargeable magnesium batteries from AIMD simulations. Chemical Communications 2022, 58 (85) , 11969-11972. https://doi.org/10.1039/D2CC04357B
    26. Liang‐Ting Wu, Santhanamoorthi Nachimuthu, Daniel Brandell, Jyh‐Chiang Jiang. Prediction of SEI Formation in All‐Solid‐State Batteries: Computational Insights from PCL‐based Polymer Electrolyte Decomposition on Lithium‐Metal. Batteries & Supercaps 2022, 5 (9) https://doi.org/10.1002/batt.202200088

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 32, 38816–38825
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c07864
    Published August 6, 2021
    Copyright © 2021 UChicago Argonne LLC, Operator of Argonne National Laboratory. Published by American Chemical Society

    Article Views

    2776

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.