ACS Publications. Most Trusted. Most Cited. Most Read
Nonradiative Energy Transfer and Selective Charge Transfer in a WS2/(PEA)2PbI4 Heterostructure
My Activity

Figure 1Loading Img
    Surfaces, Interfaces, and Applications

    Nonradiative Energy Transfer and Selective Charge Transfer in a WS2/(PEA)2PbI4 Heterostructure
    Click to copy article linkArticle link copied!

    • Miriam Karpińska
      Miriam Karpińska
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
      Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
    • Minpeng Liang
      Minpeng Liang
      Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    • Roman Kempt
      Roman Kempt
      Technische Universität Dresden, Bergstr. 66c, 01062 Dresden, Germany
      More by Roman Kempt
    • Kati Finzel
      Kati Finzel
      Technische Universität Dresden, Bergstr. 66c, 01062 Dresden, Germany
      More by Kati Finzel
    • Machteld Kamminga
      Machteld Kamminga
      Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    • Mateusz Dyksik
      Mateusz Dyksik
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
      Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
    • Nan Zhang
      Nan Zhang
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
      More by Nan Zhang
    • Catherine Knodlseder
      Catherine Knodlseder
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
    • Duncan K. Maude
      Duncan K. Maude
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
    • Michał Baranowski
      Michał Baranowski
      Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
    • Łukasz Kłopotowski
      Łukasz Kłopotowski
      Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
    • Jianting Ye
      Jianting Ye
      Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
      More by Jianting Ye
    • Agnieszka Kuc*
      Agnieszka Kuc
      Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
      *Email: [email protected]
    • Paulina Plochocka*
      Paulina Plochocka
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, 38042 Grenoble and 31400 Toulouse, France
      Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 28, 33677–33684
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c08377
    Published July 6, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    van der Waals heterostructures are currently the focus of intense investigation; this is essentially due to the unprecedented flexibility offered by the total relaxation of lattice matching requirements and their new and exotic properties compared to the individual layers. Here, we investigate the hybrid transition-metal dichalcogenide/2D perovskite heterostructure WS2/(PEA)2PbI4 (where PEA stands for phenylethylammonium). We present the first density functional theory (DFT) calculations of a heterostructure ensemble, which reveal a novel band alignment, where direct electron transfer is blocked by the organic spacer of the 2D perovskite. In contrast, the valence band forms a cascade from WS2 through the PEA to the PbI4 layer allowing hole transfer. These predictions are supported by optical spectroscopy studies, which provide compelling evidence for both charge transfer and nonradiative transfer of the excitation (energy transfer) between the layers. Our results show that TMD/2D perovskite (where TMD stands for transition-metal dichalcogenides) heterostructures provide a flexible and convenient way to engineer the band alignment.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c08377.

    • PL spectra taken of bare WS2 flake and the PEPI/WS2 heterostructure with excitation 488 nm, spatial PL intensity map of bound exciton peak of PEPI, trion-to-exciton PL intensity ratio, and optical images of heterostructure just after stacking procedure (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 15 publications.

    1. Himanshu Bhatt, Ramchandra Saha, Tanmay Goswami, Sangeetha C. K., Kaliyamoorthy Justice Babu, Gurpreet Kaur, Ayushi Shukla, Mahammed Suleman Patel, Sachin R. Rondiya, Nelson Y. Dzade, Hirendra N. Ghosh. Charge Transfer Modulation in the α-CsPbI3/WS2 Heterojunction via Band-Tailoring with Elemental Ni Doping. ACS Photonics 2024, 11 (12) , 5367-5379. https://doi.org/10.1021/acsphotonics.4c01774
    2. Congsheng Xu, Xiaomei Deng, Peiyuan Yu. High-Throughput Computational Study and Machine Learning Prediction of Electronic Properties in Transition Metal Dichalcogenide/Two-Dimensional Layered Halide Perovskite Heterostructures. ACS Applied Materials & Interfaces 2024, 16 (41) , 55970-55980. https://doi.org/10.1021/acsami.4c11973
    3. Ashish Soni, Supriya Ghosal, Milon Kundar, Swapan K. Pati, Suman Kalyan Pal. Long-Lived Interlayer Excitons in WS2/Ruddlesden–Popper Perovskite van der Waals Heterostructures. ACS Applied Materials & Interfaces 2024, 16 (27) , 35841-35851. https://doi.org/10.1021/acsami.4c07346
    4. Shreetu Shrestha, Mircea Cotlet. Interfacial Charge Transfer in Atomically Thin 2D Transition-Metal Dichalcogenide Heterostructures. ACS Applied Optical Materials 2023, 1 (7) , 1192-1207. https://doi.org/10.1021/acsaom.3c00122
    5. Sumaiya Parveen, Pratap Kumar Pal, Suchetana Mukhopadhyay, Sudipta Majumder, Swapneswar Bisoi, Atikur Rahman, Anjan Barman. Hot carrier dynamics in the BA 2 PbBr 4 /MoS 2 heterostructure. Nanoscale 2025, 9 https://doi.org/10.1039/D4NR03866E
    6. Haojie Lai, Zhengli Lu, Xin Xu, Yujia Gao, Zhuxia Wu, Tengcheng Huang, Lin Peng, Hai Ye, Tingting Shi, Weiguang Xie. Tailoring the optoelectronic properties of monolayer BA2PbI4/MoS2 heterojunction through terminal variations and defect engineering. Applied Materials Today 2024, 38 , 102187. https://doi.org/10.1016/j.apmt.2024.102187
    7. Lara Greten, Robert Salzwedel, Manuel Katzer, Henry Mittenzwey, Dominik Christiansen, Andreas Knorr, Malte Selig. Dipolar Coupling at Interfaces of Ultrathin Semiconductors, Semimetals, Plasmonic Nanoparticles, and Molecules. physica status solidi (a) 2024, 221 (1) https://doi.org/10.1002/pssa.202300102
    8. Chaochao Qin, Wenjing Wang, Jian Song, Zhaoyong Jiao, Shuhong Ma, Shuwen Zheng, Jicai Zhang, Guangrui Jia, Yuhai Jiang, Zhongpo Zhou. Carrier transfer in quasi-2D perovskite/MoS 2 monolayer heterostructure. Nanophotonics 2023, 12 (24) , 4495-4505. https://doi.org/10.1515/nanoph-2023-0570
    9. Jhen-Dong Lin, Ping-Yuan Lo, Guan-Hao Peng, Wei-Hua Li, Shiang-Yu Huang, Guang-Yin Chen, Shun-Jen Cheng. Essential role of momentum-forbidden dark excitons in the energy transfer responses of monolayer transition-metal dichalcogenides. npj 2D Materials and Applications 2023, 7 (1) https://doi.org/10.1038/s41699-023-00414-z
    10. Sikandar Aftab, Muhammad Zahir Iqbal, Hosameldin Helmy Hegazy, Sikander Azam, Fahmid Kabir. Trends in energy and charge transfer in 2D and integrated perovskite heterostructures. Nanoscale 2023, 15 (8) , 3610-3629. https://doi.org/10.1039/D2NR07141J
    11. Manuel Katzer, Sviatoslav Kovalchuk, Kyrylo Greben, Kirill I. Bolotin, Malte Selig, Andreas Knorr. Impact of dark excitons on Förster-type resonant energy transfer between dye molecules and atomically thin semiconductors. Physical Review B 2023, 107 (3) https://doi.org/10.1103/PhysRevB.107.035304
    12. Chi Zhang, Guochao Lu, Yao Zhang, Zhishan Fang, Haiping He, Haiming Zhu. Long-range transport and ultrafast interfacial charge transfer in perovskite/monolayer semiconductor heterostructure for enhanced light absorption and photocarrier lifetime. The Journal of Chemical Physics 2022, 156 (24) https://doi.org/10.1063/5.0097617
    13. M. Karpińska, J. Jasiński, R. Kempt, J. D. Ziegler, H. Sansom, T. Taniguchi, K. Watanabe, H. J. Snaith, A. Surrente, M. Dyksik, D. K. Maude, Ł. Kłopotowski, A. Chernikov, A. Kuc, M. Baranowski, P. Plochocka. Interlayer excitons in MoSe 2 /2D perovskite hybrid heterostructures – the interplay between charge and energy transfer. Nanoscale 2022, 14 (22) , 8085-8095. https://doi.org/10.1039/D2NR00877G
    14. Michal Baranowski, Alessandro Surrente, Paulina Plochocka. Two Dimensional Perovskites/Transition Metal Dichalcogenides Heterostructures: Puzzles and Challenges. Israel Journal of Chemistry 2022, 62 (3-4) https://doi.org/10.1002/ijch.202100120
    15. Ahmed Elbanna, Ksenia Chaykun, Yulia Lekina, Yuanda Liu, Benny Febriansyah, Shuzhou Li, Jisheng Pan, Ze Xiang Shen, Jinghua Teng, , , , , , . Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electronic Science 2022, 1 (8) , 220006-220006. https://doi.org/10.29026/oes.2022.220006

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 28, 33677–33684
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c08377
    Published July 6, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2803

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.