ACS Publications. Most Trusted. Most Cited. Most Read
Boosted Solar Light Absorbance in PdS2/PtS2 Vertical Heterostructures for Ultrathin Photovoltaic Devices
My Activity

Figure 1Loading Img
  • Open Access
Surfaces, Interfaces, and Applications

Boosted Solar Light Absorbance in PdS2/PtS2 Vertical Heterostructures for Ultrathin Photovoltaic Devices
Click to copy article linkArticle link copied!

Open PDFSupporting Information (1)

ACS Applied Materials & Interfaces

Cite this: ACS Appl. Mater. Interfaces 2021, 13, 36, 43615–43621
Click to copy citationCitation copied!
https://doi.org/10.1021/acsami.1c11245
Published September 1, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Transition-metal dichalcogenides (TMDs) represent a class of materials whose archetypes, such as MoS2 and WS2, possess exceptional electronic and optical properties and have been massively exploited in optoelectronic applications. The layered structure allows for their exfoliation to two-dimensional samples with atomic thickness (≲ 1 nm), promising for ultrathin, ultralight devices. In this work, by means of state-of-the-art ab initio many-body perturbation theory techniques, we focus on single-layer PdS2 and PtS2 and propose a novel van der Waals heterostructure with outstanding light absorbance, reaching up to 50% in the visible spectrum and yielding a maximum short-circuit current of 7.2 mA/cm2 under solar irradiation. The computed excitonic landscape predicts a partial charge separation between the two layers and the momentum-forbidden lowest-energy state increases the carrier diffusion length. Our results show that the employment of vertical heterostructures with less conventional TMDs, such as PdS2/PtS2, can greatly boost light absorbance and favor the development of more efficient, atomic-thin photovoltaic devices.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2021 The Authors. Published by American Chemical Society

1. Introduction

Click to copy section linkSection link copied!

Two-dimensional (2D) materials have elicited great attention over the last few decades thanks to their unique electronic and optical properties induced by their atomic-scale thickness. (1−3) A plethora of materials are currently under investigation, and particular interest has been focused on transition-metal dichalcogenides (TMDs) in their monolayer form. TMDs can be easily exfoliated to single layers and allow for largely tunable optoelectronic properties, (4,5) thanks to the plentiful possible combinations of transition metal and chalcogen species. For instance, band gaps of monolayer TMDs range from 0.5 to 7.0 eV (6) and can be both direct and indirect. This wide range of electronic properties can be further enriched by devising vertical van der Waals heterostructures (vdWHs) (7,8) between a monolayer TMD and another 2D material, such as graphene, (9,10) black or blue phosphorene, (11,12) hexagonal boron nitride, (13,14) or a different TMD monolayer. (15,16) vdWHs make it possible to realize devices that allow for the separation of the optically excited electrons and holes thanks to the valence and conduction band discontinuities of the two composing layers. Together with nanometer thickness and suitable band gaps, this feature makes TMD vdWHs appealing for the design of ultrathin, ultralight photovoltaic devices. (17) In this respect, it is therefore necessary that the composing layers show significant light absorbance within the solar spectrum. For photon energies varying between 1.5 and 3 eV, widely studied TMDs show absorbance values that roughly range from 5 to 25% for MoS2 (18) to 20% for MoSe2 or 17% for WSe2 and WS2. (19) Their vdWHs exhibit similar behaviors, for instance, reaching peak values of 10% in MoS2/WS2 (20) and in MoSe2/WSe2 or 15% in MoS2/WSe2. (21) In combination with the incident AM1.5G solar flux Φs(ω), (22) the absorbance Abs(ω) determines the maximum short-circuit current that can be extracted from the solar cell as
(1)
assuming that all photogenerated charge carriers are collected. Common amorphous Si–H and GaAs solar cells in a single-pass configuration show Jscmax values which lie around 25 and 35 mA/cm2, for sample thicknesses above 1 μm, and quickly drop much below 1 mA/cm2 when their thickness is decreased to around 1 nm. (23) In contrast, it has been predicted that a 1 nm-thick MoS2/WS2 vdWH displays a Jscmax ≃ 3.5 mA/cm2, (20) the same value obtained in Si–H or GaAs cells about 1 order of magnitude thicker. The nanoscale thickness of the heterostructure allows for the design of ultralight devices with high power densities, (24) even though the Jscmax remains low on an absolute scale. Higher short-circuit currents can be obtained by suitable arrangements of multiple heterostructures, albeit at the expense of the overall device thinness. Increasing the absorbance of the heterostructure, while keeping its thickness within ∼1 nm, is then of key importance for the development of new nanoscale photovoltaic devices that can introduce a paradigm shift in solar energy harvesting.
In this work, we focus on two less-studied single-layer TMDs which hold great potential, both as distinct monolayers and as part of a vdWH: PdS2 and PtS2. Single-layer PtS2 has been experimentally obtained from bulk PtS2 (25,26)via exfoliation (27,28) and reported to be in the 1T phase, Figure 1b. Monolayer PdS2 has been investigated in its 1T phase, (29)Figure 1a, and its exfoliation process from bulk crystals has been suggested. (30) The lattice parameters and electronic properties of 1T-PtS2 and 1T-PdS2, as reported in the literature, (6) suggest the possibility of realizing a low-strain vdWH with type-II band alignment. We therefore propose and investigate a novel 1T-PdS2/1T-PtS2 vdWH by employing state-of-the-art ab initio simulations, based on density functional theory (DFT) for geometry optimization and the GW-Bethe Salpeter (31,32) approach for the study of optoelectronic properties.

Figure 1

Figure 1. Monolayer PdS2 (a) and PtS2 (b) in the 1T phase. (c) Perspective view of the PdS2/PtS2 heterostructure with marked unit cell and lattice parameter avdW and layer separation d.

2. Methods

Click to copy section linkSection link copied!

2.1. DFT Calculations

All the DFT calculations reported in this work were performed using the Quantum ESPRESSO suite. (33−35) For all systems, we employed the Perdew–Burke–Ernzerhof functional (36) and fully relativistic, norm-conserving pseudopotentials (37) on a uniform 4 × 4 × 1 Monkhorst–Pack k-point mesh. (38) A kinetic energy cutoff of 70 Ry was adopted. We introduced a 20 Å vacuum region along z, the direction perpendicular to the layer planes, to ensure the decoupling of the periodic replicas. In the studied systems, spin–orbit coupling effects can be sizeable and were accounted for in all calculations by means of a fully spinorial treatment. (39,40) Dispersion forces between the layers of the heterostructure were reproduced within the DFT-D3 semiempirical model. (41) Structure relaxation was assumed at convergence when the maximum component of the residual forces on the ions was smaller than 10–4 Ry/Bohr.

2.2. Many-Body Perturbation Theory Calculations

The optimized structures were studied by means of many-body perturbation theory methods as implemented in the YAMBO code. (42,43) The quasiparticle (QP) electronic structure was obtained within the non-self-consistent G0W0 approximation. A box cutoff along z was applied on the bare Coulomb potential. The inverse dielectric matrix, εGG′–1, was obtained within the Godby-Needs plasmon-pole approximation model. (44,45) As a convergence parameter, we adopted the QP band gap value at the Γ point and deemed satisfactory a convergence of this value within 50 meV. Convergence of the G0W0 calculations with respect to the simulation parameters is shown in Figure S1 in Supporting Information. Following the chosen convergence criterion, we chose a 20 × 20 × 1 k-point mesh for all structures.
For both PdS2 and PtS2, 2000 bands were included in the calculation of the dielectric function εGG′–1 and a 20 Ry cutoff was set on the G vectors in ε–1.
Following ref (6), we obtain the correction to the band gap due to the number of bands included in the correlation self-energy Σc by extrapolation to the limit of infinite bands, cf. Supporting Information, Figure S1c. For PdS2 and PtS2 monolayers, the calculations can then be performed with 1000 bands explicitly included in the sum and then corrected by the application of a rigid scissor operator of −0.12 eV. For the vdWH, we employ 4000 bands and 20 Ry in the calculation of the dielectric matrix and 1000 bands in Σc, thanks to the adoption of Bruneval–Gonze terminators. (46)
Convergence of the BSE calculations with respect to the simulation parameters is shown in Figure S2 in Supporting Information. For PdS2 and PtS2, convergence is reached on a 30 × 30 × 1 grid, with 200 bands and a 2 Ry cutoff on the static screening and 6 valence +6 conduction bands in the BSE kernel. In the case of the vdWH, the number of included bands is doubled.

3. Results and Discussion

Click to copy section linkSection link copied!

From our DFT calculations, we compute the equilibrium lattice parameters of the isolated monolayers to be aPdS2 = 3.53 Å for 1T-PdS2 and aPtS2 = 3.56 Å for 1T-PtS2, in excellent agreement with the literature. (47) By vertically stacking the two monolayers in the AA configuration, (48) we obtain the vdWH geometry represented in Figure 1c, whose equilibrium lattice parameter results in avdWH = 3.57 Å and interlayer distance in d = 2.4 Å. The increase in the lattice parameter in the heterostructure can be traced back to the interaction between the layers and the reduced screening, as happens for multilayers of both PdS2 and PtS2. (49,50) The resulting strain can be estimated as εi = (avdWHai)/ai with i = PtS2 and PdS2. The highest value of ε is obtained for the PdS2 layer, which is subject to about 1.1% tensile strain with respect to its equilibrium geometry. Hence, the monolayers undergo a very mild strain, which does not significantly affect the electronic properties of the system (c.f. Figure S3a in Supporting Information). The equilibrium geometries of the isolated monolayers and the vdWH are used to compute the electronic band structure at the G0W0 level, as reported in Figure 2. On top of the G0W0 quasiparticle energies, we solve the Bethe–Salpeter equation to obtain the light absorption spectrum and excitonic properties, Figure 3. 1T-PdS2, Figure 2a, presents a top valence band (tVB) with a flattened parabolic structure around the Γ point and a conduction band minimum (CBm) at a k-point intermediate between M and Γ, resulting in an indirect band gap and a direct gap in correspondence with the CBm. The optical absorbance Abs(ω) is shown in Figure 3a, together with the lowest-energy exciton (blue) and the two brightest states (red and green) contributing to the absorption peak. Their energies and binding energies are reported in Table 1. The shaded areas in Figure 2a mark the excitonic weights of excitons B (blue), G (green), and R (red), projected on the QP band structure. From the shaded regions in Figure 2a, it is possible to notice that the strongest transitions contributing to the excitons, rather than occurring at high symmetry points, take place at k-points at which the valence and conduction bands present a similar slope along the k-path, giving rise to the band-nesting phenomenon. (51) This feature is responsible for large divergencies in the joint density of states (jDOS) which, in turn, influences the material dielectric function, enhancing light absorption. We notice that the absorption peak of monolayer 1T-PdS2 falls around 2 eV and, remarkably, its absorbance reaches up to 55% in that range.

Figure 2

Figure 2. G0W0 band structures of (a) 1T-PdS2, (b) 1T-PtS2, and (c) PdS2/PtS2 vdWH aligned to the vacuum level. The shaded areas in red, green, and blue mark the excitonic weights of the R, G, and B states, respectively (see Figure 3). The violet ellipse in (c) indicates the indirect exciton D with finite momentum qD.

Figure 3

Figure 3. Absorbance Abs(ω) of (a) 1T-PdS2, (b) 1T-PtS2, and (c) PdS2/PtS2 vdWH. The vertical bars mark the position and relative intensities of the R, G, and B excitons, respectively. In (c), the AM1.5G solar spectrum Φs(ω) is reported in light yellow.

Table 1. Transition Energies Eλ [eV] and Exciton Binding Energies Eb [eV] of the Analyzed Excitons (B = Blue; R = Red; and G = Green)
 1T-PdS21T-PtS21T-PdS2/1T-PtS2
 BGRBGRBGR
Eλ1.911.952.042.202.482.491.491.532.11
Eb0.80.80.70.90.60.60.70.60.1
1T-PtS2, Figure 2b, shows a peculiar Mexican-hat-shaped tVB, with a valence band maximum (VBM) and CBm midway between M and Γ. Although VBM and CBm are closer in k-space, the resulting band gap is nonetheless indirect, , while the direct gap is . The absorbance spectrum, Figure 3b, is blue-shifted with respect to 1T-PdS2: the absorption peak is due to two excitons (green and red), at around 2.5 eV, and a dark exciton (blue) is the lowest-energy state, about 30 meV below. The peak in absorbance of PtS2 is lower than the one of PdS2 and reaches about 30%. Such a difference in absorbance can be traced back to the different orbital character of the electronic states in the tVB and bCB of the two monolayers. In PdS2, we observe a sizeable participation of sulfur p orbitals in the tVB states, in contrast to PtS2, where S p and Pt d orbitals are almost equally contributing to the topmost valence band (c.f. Supporting Information Figures S4 and S5). The difference in the orbital character results in a stronger band-nesting for PdS2 which, consequently, increases the jDOS, as shown in Figure S6a,b. Moreover, we determined that the independent-particle electric dipole matrix elements dcvk of the transitions v → c at k, contributing to the absorption peak, are larger in PdS2 than in PtS2, c.f. Figure S6c. The larger jDOS and the stronger dipole elements thus cooperate to enhance the optical absorption of PdS2 with respect to PtS2.
In Figure 3b, at around 2.8 eV, it is also possible to notice a broader peak in the absorbance spectrum, originating from states, close in energy, whose main dipole transitions involve the bCB and tVB-1.
Although less pronounced than in PdS2, the contribution from the p-orbitals of the outer S layers to the tVB of PtS2 is non-negligible, Figure S4. Therefore, in a vdWH, the tVB of each monolayer is significantly affected by the presence of the facing one, resulting in a vdWH tVB which shows sizeable contributions from both PdS2 and PtS2 valence band states. In Figure 4, we show the k-resolved density of states (DOS) of the 1T-PdS2/1T-PtS2 heterostructure, projected on the orbitals of the atoms composing the two layers. The bands along the k-path are colored according to the difference between the DOS contributions from the two layers, allowing us to identify on which layer the electronic states at various k-points are spatially localized. As mentioned, the vdWH tVB shows some degree of delocalization on both layers, while the bCB, being mostly composed of inner metal d-orbitals, is less affected by the interlayer interactions and clearly localized on 1T-PdS2. The G0W0-corrected band structure, aligned to the vacuum level, is reported in Figure 2c. In contrast to the isolated monolayers, in the vdWH case, the inversion symmetry is broken; hence, its band structure shows spin–orbit splitting. The band gap is indirect, EvdWHg = 1.72 eV, between k-points Qc and Qv, and notably smaller than each monolayer’s. The direct band gap is found to be EvdWHg,dir = 2.17 eV in correspondence with Qv. The electronic band gap reduction is an expected feature linked to the type-II alignment of the single TMD band structures, cf. Figure 2a,b, and the interaction between the two layers, which determines an upshift of the top valence band, and the increased electronic screening. This similarly entails a reduction in the optical band gap, as shown in Figure 3c. The absorption onset red-shifts to about 1.5 eV and stems from a bright exciton (labeled “green”, G) at 1.53 eV, c.f. Table 1. This exciton is almost degenerate in energy with the lowest-energy, dark state (blue, B), whose constituting transitions take place at the same k-points as the green exciton but connect states with the opposite spin.

Figure 4

Figure 4. 1T-PdS2/1T-PtS2 vdWH k-resolved projected density of states superimposed to the DFT band structure. Each state is colored according to the size of the contributions from PdS2 (red) and PtS2 (blue) orbitals.

By means of eq 1 and the absorbance spectra in Figure 3, we can compute the maximum short-circuit currents that can be extracted from the monolayers and from the vdWH, in the idealized situation of total carrier collection at the electrodes. 1T-PtS2 has a higher-energy absorption edge and a moderate absorption, resulting in Jscmax = 1.9 mA/cm2, while 1T-PdS2 shows a lower absorption onset and outstanding absorbance values so that its maximum short-circuit current reaches 5.4 mA/cm2. The vdWH shows less pronounced absorbance peaks than 1T-PdS2; however, the optical gap falls at lower energy, optimizing sunlight absorption in the visible range. Hence, the short-circuit current of the heterostructure reaches 7.2 mA/cm2, slightly lower than the sum of the Jscmax of the isolated monolayers. The predicted value of maximum short-circuit current is exceptionally high and can largely boost the efficiency of a device made with such a vdWH. As a comparison, the obtained maximum short-circuit current is twice the predicted value in MoS2/WS2 vdWH (20) and can be obtained with amorphous Si–H samples about 2 orders of magnitude thicker.
The brightest excitons, red and green, which induce the peaks in the absorption spectrum of the vdWH, vertically excite electrons and holes at k-points away from the CBm and VBM, respectively. In mono- and few-layer TMDs, intraband relaxation is very fast (≲500 fs); (52,53) therefore, we can expect a rapid relaxation of the optically active excitons to the dark, indirect exciton D, involving states at the CBm and VBM, violet ellipse in Figure 2c. The relaxation to this exciton, with finite momentum qD = QcQv, is energetically favorable, since ED = 1.15 eV, smaller than the dark direct exciton B. Being momentum-forbidden, the radiative recombination of state D is suppressed and, consequently, its lifetime is largely enhanced with respect to bright excitons. (54) Electron–hole recombination is therefore slowed down, and the carrier diffusion length increased. Hence, due to the indirect gap in the 1T-PdS2/1T-PdS2 heterostructure, we expect carrier diffusion lengths longer than 20 μm, as recently measured in the direct-gap WS2/WSe2 vdWH. (55) The expected sizeable diffusion length will then contribute to enhance the actual short-circuit current of the real device, by increasing the collection probability, thus positively impacting on the efficiency of the cell. These efficiency boosting factors, that is, very large absorbance and increased diffusion length, can then counterbalance the limited charge separation due to the mixed PdS2–PtS2 states in the tVB, c.f. Figure 4, that could also act as recombination centers. Indeed, the optically excited electrons will populate states which are well spatially localized on the PdS2 layer, while the holes will still present a sizeable delocalization on both monolayers. In Figure 5a, we show the square modulus of the D exciton wave function as a function of the hole position |ΨD(rh|re = r)|2, when the electron is fixed at r on the PdS2 layer, in a region with maximum probability density. The electron is marked by the green diamond on the PdS2 layer. The electron and hole show a peculiar in-plane spatial separation, due to the electronic orbitals involved in D. As a comparison, in Figure 5b, we report the square modulus of the bright, G exciton wave function, with fixed electron in the same position. It is evident that the G and D excitons are not spatially indirect between the two layers, and their wave functions involve both PdS2 and PtS2. From Figure 5a, it is possible to notice that the hole is fairly delocalized on both layers and it is possible to obtain the probability of finding the hole on the PtS2 layer as ∫zh<z0drhD(rh|re = r)|2 ≃ 50%, where z0 defines the intermediate plane between the two monolayers. This provides us with an estimate of the charge separation probability, given that the hole distribution varies little when the electron position is moved in the region of sizeable probability density, concentrated on PdS2. The estimated charge separation is not complete, however, its magnitude, combined with the encouraging properties previously highlighted, can be nonetheless adequate for viable applications of the proposed vdWH. Moreover, it has been proven that spatially indirect excitons inducing interlayer charge separation can be enhanced by applying strain (56,57) to the heterostructure or controlled through electric fields, (58) thus conceivably leaving room for further efficiency improvements.

Figure 5

Figure 5. Side (upper panels) and top (lower panels) views of the square modulus excitonic wave function |Ψλ(rh|re = r)|2 for states λ = D (a) and λ = G (b). In both (a,b), the electron is marked by the green diamond and kept fixed on PdS2.

4. Conclusions

Click to copy section linkSection link copied!

The field of nanoscale photovoltaic devices is still in open development and appears alluring for its potential to compete with conventional systems. The intrinsic advantages of ultrathin, ultralight devices urge the research activities toward improved efficiency and design. The employment of monolayer TMDs in heterostructures has been proposed and investigated, with most attention paid to group-VI TMDs, such as MoS2 and WS2, which have provided encouraging results. A key factor for choosing TMDs for this type of application resides in their large light-electron coupling, which results in sizeable light absorbance. Our work unveiled the remarkable properties of two, less common, TMDs, PdS2 and PtS2, which can be positively employed in the domain of photovoltaics. In particular, the uncommon absorbance of 1T-PdS2 is inherited by the low-strain vdWH with PtS2, which also shows a very favorable optical gap at around 1.5 eV. This translates into exceptionally high maximum short-circuit currents, Jscmax = 7.2 mA/cm2, about twice the values previously reported for MoS2/WS2 vdWH. Although the predicted charge separation is partial, the high absorbance, together with the extended carrier diffusion length, due to the indirect electronic band gap, can turn out very advantageous for improving the efficiency of nanometer-thick photovoltaic devices.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c11245.

  • G0W0 and BSE convergence tests, details on PdS2 and PtS2 monolayer optical absorbance, and selected wave functions (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Lorenzo Bastonero - U Bremen Excellence Chair “Materials Design and Discovery” and Hybrid Materials Interfaces Group, Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, GermanyDipartimento di Fisica, Università Degli Studi Torino, Via Giuria 1, 10125 Torino, ItalyOrcidhttps://orcid.org/0000-0001-9374-1876
    • Giancarlo Cicero - Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, ItalyOrcidhttps://orcid.org/0000-0002-2920-9882
    • Maurizia Palummo - Dipartimento di Fisica and INFN, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Roma, ItalyOrcidhttps://orcid.org/0000-0002-3097-8523
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

We acknowledge CINECA for the availability of high-performance computing resources under the Iscra-B initiative, and the computational facilities and support provided by HPC@POLITO.

References

Click to copy section linkSection link copied!

This article references 58 other publications.

  1. 1
    Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R.; Liang, L.; Louie, S. G.; Ringe, E.; Zhou, W.; Kim, S. S.; Naik, R. R.; Sumpter, B. G.; Terrones, H.; Xia, F.; Wang, Y.; Zhu, J.; Akinwande, D.; Alem, N.; Schuller, J. A.; Schaak, R. E.; Terrones, M.; Robinson, J. A. Recent Advances in Two-Dimensional Materials Beyond Graphene. ACS Nano 2015, 9, 1150911539,  DOI: 10.1021/acsnano.5b05556
  2. 2
    Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Adv. Sci. 2020, 7, 2000058,  DOI: 10.1002/advs.202000058
  3. 3
    Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H. S.; Park, J.-W.; Lee, C.-H.; Lee, G.-H. 2D Semiconducting Materials for Electronic and Optoelectronic Applications: Potential and Challenge. 2D Materials 2020, 7, 022003,  DOI: 10.1088/2053-1583/ab6267
  4. 4
    Huang, H. H.; Fan, X.; Singh, D. J.; Zheng, W. T. Recent Progress of TMD Nanomaterials: Phase Transitions and Applications. Nanoscale 2020, 12, 12471268,  DOI: 10.1039/c9nr08313h
  5. 5
    Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033,  DOI: 10.1038/natrevmats.2017.33
  6. 6
    Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 1316913183,  DOI: 10.1021/acs.jpcc.5b02950
  7. 7
    Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042,  DOI: 10.1038/natrevmats.2016.42
  8. 8
    Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499, 419425,  DOI: 10.1038/nature12385
  9. 9
    Li, C.; Cao, Q.; Wang, F.; Xiao, Y.; Li, Y.; Delaunay, J.-J.; Zhu, H. Engineering Graphene and TMDs Based Van Der Waals Heterostructures for Photovoltaic and Photoelectrochemical Solar Energy Conversion. Chem. Soc. Rev. 2018, 47, 49815037,  DOI: 10.1039/c8cs00067k
  10. 10
    Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Sofer, Z.; Min, J.; Gong, J. Graphene-Supported 2D Transition Metal Dichalcogenide Van Der Waals Heterostructures. Appl. Mater. Today 2020, 19, 100600,  DOI: 10.1016/j.apmt.2020.100600
  11. 11
    Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z. Electronic Structures and Enhanced Optical Properties of Blue Phosphorene/Transition Metal Dichalcogenides Van Der Waals Heterostructures. Sci. Rep. 2016, 6, 31994,  DOI: 10.1038/srep31994
  12. 12
    Maniyar, A.; Choudhary, S. Visible Region Absorption in TMDs/phosphorene Heterostructures for Use in Solar Energy Conversion Applications. RSC Adv. 2020, 10, 3173031739,  DOI: 10.1039/d0ra05810f
  13. 13
    Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 Van Der Waals Heterostructures. Nano Lett. 2017, 17, 938945,  DOI: 10.1021/acs.nanolett.6b04275
  14. 14
    Jadczak, J.; Kutrowska-Girzycka, J.; Bieniek, M.; Kazimierczuk, T.; Kossacki, P.; Schindler, J. J.; Debus, J.; Watanabe, K.; Taniguchi, T.; Ho, C. H.; Wójs, A.; Hawrylak, P.; Bryja, L. Probing Negatively Charged and Neutral Excitons in MoS2/hBN and hBN/MoS2/hBN Van Der Waals Heterostructures. Nanotechnology 2021, 32, 145717,  DOI: 10.1088/1361-6528/abd507
  15. 15
    Huo, N.; Yang, Y.; Li, J. Optoelectronics Based on 2D TMDs and Heterostructures. J. Semiconduct. 2017, 38, 031002,  DOI: 10.1088/1674-4926/38/3/031002
  16. 16
    Saha, D.; Varghese, A.; Lodha, S. Atomistic Modeling of Van Der Waals Heterostructures With Group-6 and Group-7 Monolayer Transition Metal Dichalcogenides for Near Infrared/Short-Wave Infrared Photodetection. ACS Appl. Nano Mater. 2020, 3, 820829,  DOI: 10.1021/acsanm.9b02342
  17. 17
    Furchi, M. M.; Höller, F.; Dobusch, L.; Polyushkin, D. K.; Schuler, S.; Mueller, T. Device Physics of Van Der Waals Heterojunction Solar Cells. npj 2D Mater. Appl. 2018, 2, 3,  DOI: 10.1038/s41699-018-0049-3
  18. 18
    Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H. M.; van der Zande, A. M.; Chenet, D. A.; Shih, E.-M.; Hone, J.; Heinz, T. F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides:MoS2,MoSe2,WS2, andWSe2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 205422,  DOI: 10.1103/physrevb.90.205422
  19. 19
    Wurstbauer, U.; Miller, B.; Parzinger, E.; Holleitner, A. W. Light-matter interaction in transition metal dichalcogenides and their heterostructures. J. Phys. D: Appl. Phys. 2017, 50, 173001,  DOI: 10.1088/1361-6463/aa5f81
  20. 20
    Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 36643670,  DOI: 10.1021/nl401544y
  21. 21
    Flöry, N.; Jain, A.; Bharadwaj, P.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. A WSe2/MoSe2 Heterostructure Photovoltaic Device. Appl. Phys. Lett. 2015, 107, 123106,  DOI: 10.1063/1.4931621
  22. 22
    National Renewable Energy Laboratory. Solar Spectra. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed 30 March 2021).
  23. 23
    Andreani, L. C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon Solar Cells: Toward the Efficiency Limits. Adv. Phys.: X 2019, 4, 1548305,  DOI: 10.1080/23746149.2018.1548305
  24. 24
    Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. Van Der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook. ACS Photonics 2017, 4, 29622970,  DOI: 10.1021/acsphotonics.7b01103
  25. 25
    Furuseth, S.; Selte, K.; Kjekshus, A.; Gronowitz, S.; Hoffman, R. A.; Westerdahl, A. Redetermined Crystal Structures of NiTe2, PdTe2, PtS2, PtSe2, and PtTe2. Acta Chem. Scand. 1965, 19, 257258,  DOI: 10.3891/acta.chem.scand.19-0257
  26. 26
    Hulliger, F. Electrical Properties of Some Nickel-Group Chalcogenides. J. Phys. Chem. Solids 1965, 26, 639645,  DOI: 10.1016/0022-3697(65)90140-x
  27. 27
    Zhao, Y.; Qiao, J.; Yu, P.; Hu, Z.; Lin, Z.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2. Adv. Mater. 2016, 28, 23992407,  DOI: 10.1002/adma.201504572
  28. 28
    Tang, C. Y.; Cheng, P. K.; Wang, X. Y.; Ma, S.; Long, H.; Tsang, Y. H. Size-Dependent Nonlinear Optical Properties of Atomically Thin PtS2 Nanosheet. Opt. Mater. 2020, 101, 109694,  DOI: 10.1016/j.optmat.2020.109694
  29. 29
    Miró, P.; Ghorbani-Asl, M.; Heine, T. Two Dimensional Materials Beyond MoS2: Noble-Transition-Metal Dichalcogenides. Angew. Chem., Int. Ed. 2014, 53, 30153018,  DOI: 10.1002/anie.201309280
  30. 30
    Wang, Y.; Li, Y.; Chen, Z. Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2monolayer. J. Mater. Chem. C 2015, 3, 9603,  DOI: 10.1039/c5tc01345c
  31. 31
    Onida, G.; Reining, L.; Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601659,  DOI: 10.1103/revmodphys.74.601
  32. 32
    Martin, R.; Reining, L.; Ceperley, D. Interacting Electrons: Theory and Computational Approaches; Cambridge University Press, 2016.
  33. 33
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502,  DOI: 10.1088/0953-8984/21/39/395502
  34. 34
    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S. Advanced Capabilities for Materials Modelling With Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648x/aa8f79
  35. 35
    Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; Ferretti, A.; Marzari, N.; Timrov, I.; Urru, A.; Baroni, S. QuantumESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105,  DOI: 10.1063/5.0005082
  36. 36
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 38653868,  DOI: 10.1103/physrevlett.77.3865
  37. 37
    Hamann, D. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 085117,  DOI: 10.1103/physrevb.88.085117
  38. 38
    Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 1976, 13, 51885192,  DOI: 10.1103/physrevb.13.5188
  39. 39
    Corso, A. D.; Conte, A. M. Spin-Orbit Coupling With Ultrasoft Pseudopotentials: Application to Au and Pt. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 115106,  DOI: 10.1103/physrevb.71.115106
  40. 40
    Marsili, M.; Molina-Sánchez, A.; Palummo, M.; Sangalli, D.; Marini, A. Spinorial formulation of the GW -BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 2021, 103, 155152,  DOI: 10.1103/physrevb.103.155152
  41. 41
    Grimme, S. Semiempirical GGA-type Density Functional Constructed With a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 17871799,  DOI: 10.1002/jcc.20495
  42. 42
    Marini, A.; Hogan, C.; Grüning, M.; Varsano, D. Yambo: An Ab Initio Tool for Excited State Calculations. Comput. Phys. Commun. 2009, 180, 1392,  DOI: 10.1016/j.cpc.2009.02.003
  43. 43
    Sangalli, D.; Ferretti, A.; Miranda, H.; Attaccalite, C.; Marri, I.; Cannuccia, E.; Melo, P.; Marsili, M.; Paleari, F.; Marrazzo, A.; Prandini, G.; Bonfà, P.; Atambo, M. O.; Affinito, F.; Palummo, M.; Molina-Sánchez, A.; Hogan, C.; Grüning, M.; Varsano, D.; Marini, A. Many-Body Perturbation Theory Calculations Using the Yambo Code. J. Phys.: Condens. Matter 2019, 31, 325902,  DOI: 10.1088/1361-648x/ab15d0
  44. 44
    Godby, R. W.; Needs, R. J. Metal-Insulator Transition in Kohn-Sham Theory and Quasiparticle Theory. Phys. Rev. Lett. 1989, 62, 11691172,  DOI: 10.1103/physrevlett.62.1169
  45. 45
    Rojas, H. N.; Godby, R. W.; Needs, R. J. Space-Time Method forAb InitioCalculations of Self-Energies and Dielectric Response Functions of Solids. Phys. Rev. Lett. 1995, 74, 18271830,  DOI: 10.1103/physrevlett.74.1827
  46. 46
    Bruneval, F.; Gonze, X. Accurate GW Self-Energies in a Plane-Wave Basis Using Only a Few Empty States: Towards Large Systems. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 085125,  DOI: 10.1103/physrevb.78.085125
  47. 47
    Sajjad, M.; Singh, N.; Schwingenschlögl, U. Strongly Bound Excitons in Monolayer PtS2 and PtSe2. Appl. Phys. Lett. 2018, 112, 043101,  DOI: 10.1063/1.5010881
  48. 48

    By directly checking the stability of different stacking patterns, we identified the AA structure to be the most stable.

  49. 49
    Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z.-Q.; Huang, S.-M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F.-C. Thickness Dependent Electronic Properties of Pt Dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2,  DOI: 10.1038/s41699-018-0085-z
  50. 50
    Ahmad, S. Strain and Electric Field Dependent Variation in Electronic and Thermoelectric Properties of PtS2. Results Phys. 2020, 17, 103088,  DOI: 10.1016/j.rinp.2020.103088
  51. 51
    Carvalho, A.; Ribeiro, R. M.; Castro Neto, A. H. Band Nesting and the Optical Response of Two-Dimensional Semiconducting Transition Metal Dichalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 115205,  DOI: 10.1103/physrevb.88.115205
  52. 52
    Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton Dynamics in Suspended Monolayer and Few-Layer MoS22D Crystals. ACS Nano 2013, 7, 10721080,  DOI: 10.1021/nn303973r
  53. 53
    Sohier, T.; Campi, D.; Marzari, N.; Gibertini, M. Mobility of Two-Dimensional Materials From First Principles in an Accurate and Automated Framework. Phys. Rev. Mater. 2018, 2, 114010,  DOI: 10.1103/physrevmaterials.2.114010
  54. 54
    Kuroda, T.; Hoshi, Y.; Masubuchi, S.; Okada, M.; Kitaura, R.; Watanabe, K.; Taniguchi, T.; Machida, T. Dark-state impact on the exciton recombination of WS2 monolayers as revealed by multi-timescale pump-probe spectroscopy. Phys. Rev. B 2020, 102, 195407,  DOI: 10.1103/physrevb.102.195407
  55. 55
    Jin, C.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y.; Shinner, M. J.; Sengupta, A.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Wang, F. Imaging of pure spin-valley diffusion current in WS2-WSe2heterostructures. Science 2018, 360, 893896,  DOI: 10.1126/science.aao3503
  56. 56
    Mueller, T.; Malic, E. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. npj 2D Mater. Appl. 2018, 2, 29,  DOI: 10.1038/s41699-018-0074-2
  57. 57
    Re Fiorentin, M.; Cicero, G.; Palummo, M. Spatially Indirect Excitons in Black and Blue Phosphorene Double Layers. Phys. Rev. Mater. 2020, 4, 074009,  DOI: 10.1103/physrevmaterials.4.074009
  58. 58
    Jauregui, L. A.; Joe, A. Y.; Pistunova, K.; Wild, D. S.; High, A. A.; Zhou, Y.; Scuri, G.; De Greve, K.; Sushko, A.; Yu, C.-H.; Taniguchi, T.; Watanabe, K.; Needleman, D. J.; Lukin, M. D.; Park, H.; Kim, P. Electrical Control of Interlayer Exciton Dynamics in Atomically Thin Heterostructures. Science 2019, 366, 870875,  DOI: 10.1126/science.aaw4194

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 21 publications.

  1. Rafael Besse, Han Wang, Damien West, Juarez L. F. Da Silva, Shengbai Zhang. Prediction of Effective Photoelectron and Hole Separation in Type-I MoS2/PtSe2 van der Waals Junction. The Journal of Physical Chemistry Letters 2022, 13 (28) , 6407-6411. https://doi.org/10.1021/acs.jpclett.2c01526
  2. Cesar E. P. Villegas, Alexandre R. Rocha. Near-Infrared Optical Response and Carrier Dynamics for High Photoconversion in Tellurene. The Journal of Physical Chemistry C 2022, 126 (14) , 6129-6134. https://doi.org/10.1021/acs.jpcc.1c10526
  3. Yanyan Qian, Yadong Wei, Weiqi Li, Weiquan Tian, Jianqun Yang, XingJi Li, Jinluo Cheng. Second harmonic generation and electronic properties in the septuple-atomic-layer MA2Z4 family. Physica E: Low-dimensional Systems and Nanostructures 2025, 169 , 116202. https://doi.org/10.1016/j.physe.2025.116202
  4. Abhay Kumar Singh. Applications of TMDs Materials. 2025, 523-633. https://doi.org/10.1007/978-981-96-0247-6_8
  5. Fang-guang Kuang, Heng Yang, Wei Huang, Shu-ying Kang, Chuan-zhao Zhang. Ab inito investigation on structural, electronic, and optical characteristics of HfClI Janus monolayer. Materials Today Communications 2024, 41 , 110265. https://doi.org/10.1016/j.mtcomm.2024.110265
  6. Wen Qiao, Xinzhuo Zhang, Shiming Yan, Ru Bai, Tiejun Zhou. A direct Z-scheme photocatalyst PtS 2 /HfGe 2 N 4 van der Waals heterostructure for highly efficient water splitting: first-principles study. CrystEngComm 2024, 26 (44) , 6336-6345. https://doi.org/10.1039/D4CE00956H
  7. Simone Grillo, Sara Postorino, Maurizia Palummo, Olivia Pulci. Tellurene Polymorphs: A New Frontier for Solar Harvesting with Strong Exciton Anisotropy and High Optical Absorbance. Advanced Energy Materials 2024, 14 (44) https://doi.org/10.1002/aenm.202400674
  8. M. I. Yasin, Ghulam M. Mustafa, M. I. Khan, Badriah S. Almutairi, Shamsa Kanwal, A. Dahshan. Optimization of current density of dye-sensitized solar cells by Cd substitution in the electron transport layer. Journal of the Korean Ceramic Society 2024, 61 (6) , 1058-1069. https://doi.org/10.1007/s43207-024-00405-w
  9. V. W. Elloh, D. E. Anderson, D. Abbeyquaye, D. F. Ofosuhene, I. Arhin, Edwin Okoampa Boadu, A. Yaya, Eric K. K. Abavare. Novel 2D structural material design: carbon–aluminium–boron nitrides (CC–(Al–B)N) and carbon–aluminium–gallium nitrides (CC–(Al–Ga)N) for optical and optoelectronic system applications. Energy Advances 2024, 3 (9) , 2358-2366. https://doi.org/10.1039/D4YA00308J
  10. Shi-Jia Huang, Tian Zhang, Zhao-Yi Zeng, Hua-Yun Geng, Xiang-Rong Chen. Density functional theory prediction of thermoelectric properties of two-dimensional Janus HfXY (X≠Y, X/Y=Cl, Br, I) monolayers with high carrier mobilities. Vacuum 2024, 224 , 113143. https://doi.org/10.1016/j.vacuum.2024.113143
  11. Jassim M. Al-ıssawe, Idrees Oreibi. DFT Calculations of Trilayer Heterostructures from MoSe2, PtS2 Monolayers in Different Orders with Promising Optoelectronic Properties. Journal of the Turkish Chemical Society Section A: Chemistry 2024, 11 (2) , 405-414. https://doi.org/10.18596/jotcsa.1295960
  12. Yaping Qi, Mohammad A. Sadi, Dan Hu, Ming Zheng, Zhenping Wu, Yucheng Jiang, Yong P. Chen. Recent Progress in Strain Engineering on Van der Waals 2D Materials: Tunable Electrical, Electrochemical, Magnetic, and Optical Properties. Advanced Materials 2023, 35 (12) https://doi.org/10.1002/adma.202205714
  13. L.G. Du, S.D. Wang. Pressure-tuning the interlayer excitons in the GaS/HfS2 heterobilayer: A many-body perturbation simulation. Applied Surface Science 2023, 614 , 156272. https://doi.org/10.1016/j.apsusc.2022.156272
  14. Hazem Abdelsalam, Omar H. Abd-Elkader, Nouf S. Zaghloul, Qinfang Zhang. Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots. Crystals 2023, 13 (2) , 251. https://doi.org/10.3390/cryst13020251
  15. Qiu Yang, Tian Zhang, Cui-E Hu, Xiang-Rong Chen, Hua-Yun Geng. A first-principles study on the electronic, piezoelectric, and optical properties and strain-dependent carrier mobility of Janus TiXY (X ≠ Y, X/Y = Cl, Br, I) monolayers. Physical Chemistry Chemical Physics 2022, 25 (1) , 274-285. https://doi.org/10.1039/D2CP03973G
  16. Minglei Sun, Michele Re Fiorentin, Udo Schwingenschlögl, Maurizia Palummo. Excitons and light-emission in semiconducting MoSi2X4 two-dimensional materials. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00355-z
  17. Claudio Attaccalite, Maria Stella Prete, Maurizia Palummo, Olivia Pulci. Interlayer and Intralayer Excitons in AlN/WS2 Heterostructure. Materials 2022, 15 (23) , 8318. https://doi.org/10.3390/ma15238318
  18. Biao Wang, Hongkuan Yuan, Tie Yang, Peng Wang, Xiaohui Xu, Junli Chang, Minquan Kuang, Hong Chen. A two-dimensional PtS 2 /BN heterostructure as an S-scheme photocatalyst with enhanced activity for overall water splitting. Physical Chemistry Chemical Physics 2022, 24 (43) , 26908-26914. https://doi.org/10.1039/D2CP03595B
  19. Rui-Xue Li, Xing-Ling Tian, Si-Cong Zhu, Qian-Hui Mao, Jun Ding, Hai-Dong Li. MoSi2N4/CrS2 van der Waals heterostructure with high solar-to-hydrogen efficiency. Physica E: Low-dimensional Systems and Nanostructures 2022, 144 , 115443. https://doi.org/10.1016/j.physe.2022.115443
  20. Xiangna Cong, Yue Zheng, Fu Huang, Qi You, Jian Tang, Feier Fang, Ke Jiang, Cheng Han, Yumeng Shi. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Research 2022, 15 (9) , 8442-8450. https://doi.org/10.1007/s12274-022-4463-7
  21. Biao Wang, Hongkuan Yuan, Tie Yang, Peng Wang, Anlong Kuang, Xiaohui Xu, Yuwen Jiang, Hong Chen, Fan Dong. Two Dimensional Pts2/Bn Heterostructure as an S-Scheme Photocatalyst with Enhanced Activity for Overall Water Decomposition. SSRN Electronic Journal 2022, 6 https://doi.org/10.2139/ssrn.4098270

ACS Applied Materials & Interfaces

Cite this: ACS Appl. Mater. Interfaces 2021, 13, 36, 43615–43621
Click to copy citationCitation copied!
https://doi.org/10.1021/acsami.1c11245
Published September 1, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

2022

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Monolayer PdS2 (a) and PtS2 (b) in the 1T phase. (c) Perspective view of the PdS2/PtS2 heterostructure with marked unit cell and lattice parameter avdW and layer separation d.

    Figure 2

    Figure 2. G0W0 band structures of (a) 1T-PdS2, (b) 1T-PtS2, and (c) PdS2/PtS2 vdWH aligned to the vacuum level. The shaded areas in red, green, and blue mark the excitonic weights of the R, G, and B states, respectively (see Figure 3). The violet ellipse in (c) indicates the indirect exciton D with finite momentum qD.

    Figure 3

    Figure 3. Absorbance Abs(ω) of (a) 1T-PdS2, (b) 1T-PtS2, and (c) PdS2/PtS2 vdWH. The vertical bars mark the position and relative intensities of the R, G, and B excitons, respectively. In (c), the AM1.5G solar spectrum Φs(ω) is reported in light yellow.

    Figure 4

    Figure 4. 1T-PdS2/1T-PtS2 vdWH k-resolved projected density of states superimposed to the DFT band structure. Each state is colored according to the size of the contributions from PdS2 (red) and PtS2 (blue) orbitals.

    Figure 5

    Figure 5. Side (upper panels) and top (lower panels) views of the square modulus excitonic wave function |Ψλ(rh|re = r)|2 for states λ = D (a) and λ = G (b). In both (a,b), the electron is marked by the green diamond and kept fixed on PdS2.

  • References


    This article references 58 other publications.

    1. 1
      Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R.; Liang, L.; Louie, S. G.; Ringe, E.; Zhou, W.; Kim, S. S.; Naik, R. R.; Sumpter, B. G.; Terrones, H.; Xia, F.; Wang, Y.; Zhu, J.; Akinwande, D.; Alem, N.; Schuller, J. A.; Schaak, R. E.; Terrones, M.; Robinson, J. A. Recent Advances in Two-Dimensional Materials Beyond Graphene. ACS Nano 2015, 9, 1150911539,  DOI: 10.1021/acsnano.5b05556
    2. 2
      Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Adv. Sci. 2020, 7, 2000058,  DOI: 10.1002/advs.202000058
    3. 3
      Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H. S.; Park, J.-W.; Lee, C.-H.; Lee, G.-H. 2D Semiconducting Materials for Electronic and Optoelectronic Applications: Potential and Challenge. 2D Materials 2020, 7, 022003,  DOI: 10.1088/2053-1583/ab6267
    4. 4
      Huang, H. H.; Fan, X.; Singh, D. J.; Zheng, W. T. Recent Progress of TMD Nanomaterials: Phase Transitions and Applications. Nanoscale 2020, 12, 12471268,  DOI: 10.1039/c9nr08313h
    5. 5
      Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033,  DOI: 10.1038/natrevmats.2017.33
    6. 6
      Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 1316913183,  DOI: 10.1021/acs.jpcc.5b02950
    7. 7
      Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042,  DOI: 10.1038/natrevmats.2016.42
    8. 8
      Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499, 419425,  DOI: 10.1038/nature12385
    9. 9
      Li, C.; Cao, Q.; Wang, F.; Xiao, Y.; Li, Y.; Delaunay, J.-J.; Zhu, H. Engineering Graphene and TMDs Based Van Der Waals Heterostructures for Photovoltaic and Photoelectrochemical Solar Energy Conversion. Chem. Soc. Rev. 2018, 47, 49815037,  DOI: 10.1039/c8cs00067k
    10. 10
      Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Sofer, Z.; Min, J.; Gong, J. Graphene-Supported 2D Transition Metal Dichalcogenide Van Der Waals Heterostructures. Appl. Mater. Today 2020, 19, 100600,  DOI: 10.1016/j.apmt.2020.100600
    11. 11
      Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z. Electronic Structures and Enhanced Optical Properties of Blue Phosphorene/Transition Metal Dichalcogenides Van Der Waals Heterostructures. Sci. Rep. 2016, 6, 31994,  DOI: 10.1038/srep31994
    12. 12
      Maniyar, A.; Choudhary, S. Visible Region Absorption in TMDs/phosphorene Heterostructures for Use in Solar Energy Conversion Applications. RSC Adv. 2020, 10, 3173031739,  DOI: 10.1039/d0ra05810f
    13. 13
      Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 Van Der Waals Heterostructures. Nano Lett. 2017, 17, 938945,  DOI: 10.1021/acs.nanolett.6b04275
    14. 14
      Jadczak, J.; Kutrowska-Girzycka, J.; Bieniek, M.; Kazimierczuk, T.; Kossacki, P.; Schindler, J. J.; Debus, J.; Watanabe, K.; Taniguchi, T.; Ho, C. H.; Wójs, A.; Hawrylak, P.; Bryja, L. Probing Negatively Charged and Neutral Excitons in MoS2/hBN and hBN/MoS2/hBN Van Der Waals Heterostructures. Nanotechnology 2021, 32, 145717,  DOI: 10.1088/1361-6528/abd507
    15. 15
      Huo, N.; Yang, Y.; Li, J. Optoelectronics Based on 2D TMDs and Heterostructures. J. Semiconduct. 2017, 38, 031002,  DOI: 10.1088/1674-4926/38/3/031002
    16. 16
      Saha, D.; Varghese, A.; Lodha, S. Atomistic Modeling of Van Der Waals Heterostructures With Group-6 and Group-7 Monolayer Transition Metal Dichalcogenides for Near Infrared/Short-Wave Infrared Photodetection. ACS Appl. Nano Mater. 2020, 3, 820829,  DOI: 10.1021/acsanm.9b02342
    17. 17
      Furchi, M. M.; Höller, F.; Dobusch, L.; Polyushkin, D. K.; Schuler, S.; Mueller, T. Device Physics of Van Der Waals Heterojunction Solar Cells. npj 2D Mater. Appl. 2018, 2, 3,  DOI: 10.1038/s41699-018-0049-3
    18. 18
      Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H. M.; van der Zande, A. M.; Chenet, D. A.; Shih, E.-M.; Hone, J.; Heinz, T. F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides:MoS2,MoSe2,WS2, andWSe2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 205422,  DOI: 10.1103/physrevb.90.205422
    19. 19
      Wurstbauer, U.; Miller, B.; Parzinger, E.; Holleitner, A. W. Light-matter interaction in transition metal dichalcogenides and their heterostructures. J. Phys. D: Appl. Phys. 2017, 50, 173001,  DOI: 10.1088/1361-6463/aa5f81
    20. 20
      Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 36643670,  DOI: 10.1021/nl401544y
    21. 21
      Flöry, N.; Jain, A.; Bharadwaj, P.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. A WSe2/MoSe2 Heterostructure Photovoltaic Device. Appl. Phys. Lett. 2015, 107, 123106,  DOI: 10.1063/1.4931621
    22. 22
      National Renewable Energy Laboratory. Solar Spectra. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed 30 March 2021).
    23. 23
      Andreani, L. C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon Solar Cells: Toward the Efficiency Limits. Adv. Phys.: X 2019, 4, 1548305,  DOI: 10.1080/23746149.2018.1548305
    24. 24
      Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. Van Der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook. ACS Photonics 2017, 4, 29622970,  DOI: 10.1021/acsphotonics.7b01103
    25. 25
      Furuseth, S.; Selte, K.; Kjekshus, A.; Gronowitz, S.; Hoffman, R. A.; Westerdahl, A. Redetermined Crystal Structures of NiTe2, PdTe2, PtS2, PtSe2, and PtTe2. Acta Chem. Scand. 1965, 19, 257258,  DOI: 10.3891/acta.chem.scand.19-0257
    26. 26
      Hulliger, F. Electrical Properties of Some Nickel-Group Chalcogenides. J. Phys. Chem. Solids 1965, 26, 639645,  DOI: 10.1016/0022-3697(65)90140-x
    27. 27
      Zhao, Y.; Qiao, J.; Yu, P.; Hu, Z.; Lin, Z.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2. Adv. Mater. 2016, 28, 23992407,  DOI: 10.1002/adma.201504572
    28. 28
      Tang, C. Y.; Cheng, P. K.; Wang, X. Y.; Ma, S.; Long, H.; Tsang, Y. H. Size-Dependent Nonlinear Optical Properties of Atomically Thin PtS2 Nanosheet. Opt. Mater. 2020, 101, 109694,  DOI: 10.1016/j.optmat.2020.109694
    29. 29
      Miró, P.; Ghorbani-Asl, M.; Heine, T. Two Dimensional Materials Beyond MoS2: Noble-Transition-Metal Dichalcogenides. Angew. Chem., Int. Ed. 2014, 53, 30153018,  DOI: 10.1002/anie.201309280
    30. 30
      Wang, Y.; Li, Y.; Chen, Z. Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2monolayer. J. Mater. Chem. C 2015, 3, 9603,  DOI: 10.1039/c5tc01345c
    31. 31
      Onida, G.; Reining, L.; Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601659,  DOI: 10.1103/revmodphys.74.601
    32. 32
      Martin, R.; Reining, L.; Ceperley, D. Interacting Electrons: Theory and Computational Approaches; Cambridge University Press, 2016.
    33. 33
      Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502,  DOI: 10.1088/0953-8984/21/39/395502
    34. 34
      Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S. Advanced Capabilities for Materials Modelling With Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648x/aa8f79
    35. 35
      Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; Ferretti, A.; Marzari, N.; Timrov, I.; Urru, A.; Baroni, S. QuantumESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105,  DOI: 10.1063/5.0005082
    36. 36
      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 38653868,  DOI: 10.1103/physrevlett.77.3865
    37. 37
      Hamann, D. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 085117,  DOI: 10.1103/physrevb.88.085117
    38. 38
      Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 1976, 13, 51885192,  DOI: 10.1103/physrevb.13.5188
    39. 39
      Corso, A. D.; Conte, A. M. Spin-Orbit Coupling With Ultrasoft Pseudopotentials: Application to Au and Pt. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 115106,  DOI: 10.1103/physrevb.71.115106
    40. 40
      Marsili, M.; Molina-Sánchez, A.; Palummo, M.; Sangalli, D.; Marini, A. Spinorial formulation of the GW -BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 2021, 103, 155152,  DOI: 10.1103/physrevb.103.155152
    41. 41
      Grimme, S. Semiempirical GGA-type Density Functional Constructed With a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 17871799,  DOI: 10.1002/jcc.20495
    42. 42
      Marini, A.; Hogan, C.; Grüning, M.; Varsano, D. Yambo: An Ab Initio Tool for Excited State Calculations. Comput. Phys. Commun. 2009, 180, 1392,  DOI: 10.1016/j.cpc.2009.02.003
    43. 43
      Sangalli, D.; Ferretti, A.; Miranda, H.; Attaccalite, C.; Marri, I.; Cannuccia, E.; Melo, P.; Marsili, M.; Paleari, F.; Marrazzo, A.; Prandini, G.; Bonfà, P.; Atambo, M. O.; Affinito, F.; Palummo, M.; Molina-Sánchez, A.; Hogan, C.; Grüning, M.; Varsano, D.; Marini, A. Many-Body Perturbation Theory Calculations Using the Yambo Code. J. Phys.: Condens. Matter 2019, 31, 325902,  DOI: 10.1088/1361-648x/ab15d0
    44. 44
      Godby, R. W.; Needs, R. J. Metal-Insulator Transition in Kohn-Sham Theory and Quasiparticle Theory. Phys. Rev. Lett. 1989, 62, 11691172,  DOI: 10.1103/physrevlett.62.1169
    45. 45
      Rojas, H. N.; Godby, R. W.; Needs, R. J. Space-Time Method forAb InitioCalculations of Self-Energies and Dielectric Response Functions of Solids. Phys. Rev. Lett. 1995, 74, 18271830,  DOI: 10.1103/physrevlett.74.1827
    46. 46
      Bruneval, F.; Gonze, X. Accurate GW Self-Energies in a Plane-Wave Basis Using Only a Few Empty States: Towards Large Systems. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 085125,  DOI: 10.1103/physrevb.78.085125
    47. 47
      Sajjad, M.; Singh, N.; Schwingenschlögl, U. Strongly Bound Excitons in Monolayer PtS2 and PtSe2. Appl. Phys. Lett. 2018, 112, 043101,  DOI: 10.1063/1.5010881
    48. 48

      By directly checking the stability of different stacking patterns, we identified the AA structure to be the most stable.

    49. 49
      Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z.-Q.; Huang, S.-M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F.-C. Thickness Dependent Electronic Properties of Pt Dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2,  DOI: 10.1038/s41699-018-0085-z
    50. 50
      Ahmad, S. Strain and Electric Field Dependent Variation in Electronic and Thermoelectric Properties of PtS2. Results Phys. 2020, 17, 103088,  DOI: 10.1016/j.rinp.2020.103088
    51. 51
      Carvalho, A.; Ribeiro, R. M.; Castro Neto, A. H. Band Nesting and the Optical Response of Two-Dimensional Semiconducting Transition Metal Dichalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 115205,  DOI: 10.1103/physrevb.88.115205
    52. 52
      Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton Dynamics in Suspended Monolayer and Few-Layer MoS22D Crystals. ACS Nano 2013, 7, 10721080,  DOI: 10.1021/nn303973r
    53. 53
      Sohier, T.; Campi, D.; Marzari, N.; Gibertini, M. Mobility of Two-Dimensional Materials From First Principles in an Accurate and Automated Framework. Phys. Rev. Mater. 2018, 2, 114010,  DOI: 10.1103/physrevmaterials.2.114010
    54. 54
      Kuroda, T.; Hoshi, Y.; Masubuchi, S.; Okada, M.; Kitaura, R.; Watanabe, K.; Taniguchi, T.; Machida, T. Dark-state impact on the exciton recombination of WS2 monolayers as revealed by multi-timescale pump-probe spectroscopy. Phys. Rev. B 2020, 102, 195407,  DOI: 10.1103/physrevb.102.195407
    55. 55
      Jin, C.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y.; Shinner, M. J.; Sengupta, A.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Wang, F. Imaging of pure spin-valley diffusion current in WS2-WSe2heterostructures. Science 2018, 360, 893896,  DOI: 10.1126/science.aao3503
    56. 56
      Mueller, T.; Malic, E. Exciton Physics and Device Application of Two-Dimensional Transition Metal Dichalcogenide Semiconductors. npj 2D Mater. Appl. 2018, 2, 29,  DOI: 10.1038/s41699-018-0074-2
    57. 57
      Re Fiorentin, M.; Cicero, G.; Palummo, M. Spatially Indirect Excitons in Black and Blue Phosphorene Double Layers. Phys. Rev. Mater. 2020, 4, 074009,  DOI: 10.1103/physrevmaterials.4.074009
    58. 58
      Jauregui, L. A.; Joe, A. Y.; Pistunova, K.; Wild, D. S.; High, A. A.; Zhou, Y.; Scuri, G.; De Greve, K.; Sushko, A.; Yu, C.-H.; Taniguchi, T.; Watanabe, K.; Needleman, D. J.; Lukin, M. D.; Park, H.; Kim, P. Electrical Control of Interlayer Exciton Dynamics in Atomically Thin Heterostructures. Science 2019, 366, 870875,  DOI: 10.1126/science.aaw4194
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c11245.

    • G0W0 and BSE convergence tests, details on PdS2 and PtS2 monolayer optical absorbance, and selected wave functions (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.