ACS Publications. Most Trusted. Most Cited. Most Read
Enhanced Room-Temperature Ionic Conductivity of NaCB11H12 via High-Energy Mechanical Milling
My Activity

Figure 1Loading Img
    Energy, Environmental, and Catalysis Applications

    Enhanced Room-Temperature Ionic Conductivity of NaCB11H12 via High-Energy Mechanical Milling
    Click to copy article linkArticle link copied!

    • Fabrizio Murgia
      Fabrizio Murgia
      Laboratory of Crystallography, Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
    • Matteo Brighi
      Matteo Brighi
      Laboratory of Crystallography, Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
    • Laura Piveteau
      Laura Piveteau
      Institute of Chemical Sciences and Engineering, NMR Platform, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
    • Claudia E. Avalos
      Claudia E. Avalos
      Institute of Chemical Sciences and Engineering, NMR Platform, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
    • Valerio Gulino
      Valerio Gulino
      Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
    • Marc C. Nierstenhöfer
      Marc C. Nierstenhöfer
      Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
    • Peter Ngene
      Peter Ngene
      Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
      More by Peter Ngene
    • Petra de Jongh
      Petra de Jongh
      Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
    • Radovan Černý*
      Radovan Černý
      Laboratory of Crystallography, Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 51, 61346–61356
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c21113
    Published December 20, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The body-centered cubic (bcc) polymorph of NaCB11H12 has been stabilized at room temperature by high-energy mechanical milling. Temperature-dependent electrochemical impedance spectroscopy shows an optimum at 45-min milling time, leading to an rt conductivity of 4 mS cm–1. Mechanical milling suppresses an order–disorder phase transition in the investigated temperature range. Nevertheless, two main regimes can be identified, with two clearly distinct activation energies. Powder X-ray diffraction and 23Na solid-state NMR reveal two different Na+ environments, which are partially occupied, in the bcc polymorph. The increased number of available sodium sites w.r.t. ccp polymorph raises the configurational entropy of the bcc phase, contributing to a higher ionic conductivity. Mechanical treatment does not alter the oxidative stability of NaCB11H12. Electrochemical test on a symmetric cell (Na|NaCB11H12|Na) without control of the stack pressure provides a critical current density of 0.12 mA cm–2, able to fully charge/discharge a 120 mA h g–1 specific capacity positive electrode at the rate of C/2.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c21113.

    • Comparison of X-ray powder patterns, SEM images, and T-dependent ionic conductivities as a function of milling time for pristine and ball-milled samples; DSC scans for 45 min ball-milled sample; structural drawing of bcc polymorph; analysis of anion packing in bcc and ccp polymorphs; and modeling of configurational entropy and dielectric modulus for bcc polymorph (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 23 publications.

    1. Mengyuan Jin, Zhuo Yang, Sheng Cheng, Yanhui Guo. Fast Sodium-Ion Conduction in a Novel Conjuncto-Hydroborate of Na4B20H18. ACS Applied Energy Materials 2022, 5 (12) , 15578-15585. https://doi.org/10.1021/acsaem.2c03166
    2. Therese S. S. Kjær, Jakob B. Grinderslev, Lasse N. Skov, Torben R. Jensen. Sodium decahydrido- closo -1-carbadecaborate as a solid electrolyte: new insight into polymorphism and electrochemical performance. Journal of Materials Chemistry A 2024, 12 (30) , 19485-19496. https://doi.org/10.1039/D4TA02293A
    3. Xin‐Wei Chen, Jia‐Xin Kang, Zi‐Heng Fan, Na Zhang, Wan‐Yu Zhang, Guo‐Guo Zhang, An‐Qi Zhu, Zhi‐Wei Lu, Pengtao Qiu, Yiying Wu, Xuenian Chen. Sodium Octahydridotriborate as a Solid Electrolyte with Excellent Stability Against Sodium‐Metal Anode. Small 2024, 47 https://doi.org/10.1002/smll.202401439
    4. Pengtao Qiu, Xinwei Chen, Wanyu Zhang, Guoguo Zhang, Yichun Zhang, Zhiwei Lu, Yiying Wu, Xuenian Chen. A High‐Rate and Long‐Life Sodium Metal Battery Based on a NaB 3 H 8  ⋅ xNH 3 @NaB 3 H 8 Composite Solid‐State Electrolyte. Angewandte Chemie 2024, 136 (17) https://doi.org/10.1002/ange.202401480
    5. Pengtao Qiu, Xinwei Chen, Wanyu Zhang, Guoguo Zhang, Yichun Zhang, Zhiwei Lu, Yiying Wu, Xuenian Chen. A High‐Rate and Long‐Life Sodium Metal Battery Based on a NaB 3 H 8  ⋅ xNH 3 @NaB 3 H 8 Composite Solid‐State Electrolyte. Angewandte Chemie International Edition 2024, 63 (17) https://doi.org/10.1002/anie.202401480
    6. Sanja Burazer, Jasminka Popović. Mechanochemical Synthesis of Solid-State Electrolytes. Inorganics 2024, 12 (2) , 54. https://doi.org/10.3390/inorganics12020054
    7. Valerio Gulino, Alessandro Longo, Laura M. de Kort, Hendrik P. Rodenburg, Fabrizio Murgia, Matteo Brighi, Radovan Černý, Christoph J. Sahle, Martin Sundermann, Hlynur Gretarsson, Frank de Groot, Peter Ngene. Anomalous Impact of Mechanochemical Treatment on the Na‐ion Conductivity of Sodium Closo‐Carbadodecaborate Probed by X‐Ray Raman Scattering Spectroscopy. Small Methods 2024, 8 (1) https://doi.org/10.1002/smtd.202300833
    8. Huixiang Liu, Xian Zhou, Mingxin Ye, Jianfeng Shen. Ion Migration Mechanism Study of Hydroborate/Carborate Electrolytes for All-Solid-State Batteries. Electrochemical Energy Reviews 2023, 6 (1) https://doi.org/10.1007/s41918-023-00191-9
    9. Aikai Yang, Kai Yao, Mareen Schaller, Enkhtsetseg Dashjav, Hang Li, Shuo Zhao, Qiu Zhang, Martin Etter, Xingchen Shen, Huimin Song, Qiongqiong Lu, Ruijie Ye, Igor Moudrakovski, Quanquan Pang, Sylvio Indris, Xingchao Wang, Qianli Ma, Frank Tietz, Jun Chen, Olivier Guillon. Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12. eScience 2023, 3 (6) , 100175. https://doi.org/10.1016/j.esci.2023.100175
    10. Hong Fang, Puru Jena. Kinetic Effects of Anion Clusters on the Interfacial Stability between Solid-State Electrolyte and Metal Anode. PRX Energy 2023, 2 (4) https://doi.org/10.1103/PRXEnergy.2.043013
    11. Yike Huang, Yun Zheng, Jianding Li, Xiaozhi Bao, Junpo Guo, Jingjun Shen, Yan Guo, Qi Zhang, Jing Li, Wen Lei, Huaiyu Shao. Li- and Mg-based borohydrides for hydrogen storage and ionic conductor. Journal of Materials Science & Technology 2023, 153 , 181-204. https://doi.org/10.1016/j.jmst.2022.12.058
    12. Yuanye Huang, Radovan Černý, Corsin Battaglia, Arndt Remhof. Elucidating the pressure-induced enhancement of ionic conductivity in sodium closo-hydroborate electrolytes for all-solid-state batteries. Journal of Materials Science 2023, 58 (17) , 7398-7406. https://doi.org/10.1007/s10853-022-08121-8
    13. Yang Li, Zheng Sun, Haibo Jin, Yongjie Zhao. Engineered Grain Boundary Enables the Room Temperature Solid-State Sodium Metal Batteries. Batteries 2023, 9 (5) , 252. https://doi.org/10.3390/batteries9050252
    14. Oscar Tutusaus, Hiroko Kuwata, Michael J. Counihan, Rana Mohtadi. Improved synthesis enables assessment of the electrochemical window of monocarborate solid state electrolytes. Chemical Communications 2023, 59 (32) , 4746-4749. https://doi.org/10.1039/D2CC06938E
    15. Laura M. de Kort, Oscar E. Brandt Corstius, Valerio Gulino, Andrei Gurinov, Marc Baldus, Peter Ngene. Designing Highly Conductive Sodium‐Based Metal Hydride Nanocomposites: Interplay between Hydride and Oxide Properties. Advanced Functional Materials 2023, 33 (13) https://doi.org/10.1002/adfm.202209122
    16. Radovan Černý, Matteo Brighi, Hui Wu, Wei Zhou, Mirjana Dimitrievska, Fabrizio Murgia, Valerio Gulino, Petra E. de Jongh, Benjamin A. Trump, Terrence J. Udovic. Thermal Polymorphism in CsCB11H12. Molecules 2023, 28 (5) , 2296. https://doi.org/10.3390/molecules28052296
    17. Amanda Berger, Ainee Ibrahim, Craig E. Buckley, Mark Paskevicius. Divalent closo -monocarborane solvates for solid-state ionic conductors. Physical Chemistry Chemical Physics 2023, 25 (7) , 5758-5775. https://doi.org/10.1039/D2CP05583J
    18. O. A. Babanova, R. V. Skoryunov, A. V. Soloninin, A. V. Skripov. Anion reorientations and the phase transition in nido-KB11H14: 1H and 11B NMR studies. Ionics 2022, 28 (12) , 5505-5512. https://doi.org/10.1007/s11581-022-04767-1
    19. Jakob B. Grinderslev, Lasse N. Skov, Daniel R. Sørensen, Innokenty Kantor, Mads R. V. Jørgensen, Torben R. Jensen. Polymorphism and solid solutions of trimethylammonium monocarboranes. Dalton Transactions 2022, 51 (41) , 15806-15815. https://doi.org/10.1039/D2DT02513B
    20. Hui Han, Ying-Ying Wang, Xing-Chao Yu, Yan-Na Ma, Xuenian Chen. A Simple and Efficient Way to Directly Synthesize Unsolvated Alkali Metal (M = Na, K) Salts of [CB11H12]−. Crystals 2022, 12 (10) , 1339. https://doi.org/10.3390/cryst12101339
    21. Diego H. P. Souza, Anita M. D'Angelo, Terry D. Humphries, Craig E. Buckley, Mark Paskevicius. Na 2 B 11 H 13 and Na 11 (B 11 H 14 ) 3 (B 11 H 13 ) 4 as potential solid-state electrolytes for Na-ion batteries. Dalton Transactions 2022, 51 (36) , 13848-13857. https://doi.org/10.1039/D2DT01943D
    22. Xiao Li, Tao Yang, Jian Zhou. Synergetic ligand and size effects of boron cage based electrolytes in Li-ion batteries. Physical Chemistry Chemical Physics 2022, 24 (18) , 11345-11352. https://doi.org/10.1039/D1CP05230F
    23. Olga Babanova, Roman Skoryunov, Alexei Soloninin, Alexander Skripov. Anion Reorientations and the Phase Transition in Nido-Kb11h14: 1h and 11b Nmr Studies. SSRN Electronic Journal 2022, 116 https://doi.org/10.2139/ssrn.4120260

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2021, 13, 51, 61346–61356
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.1c21113
    Published December 20, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    1384

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.