ACS Publications. Most Trusted. Most Cited. Most Read
3D Impedance Modeling of Metal Anodes in Solid-State Batteries–Incompatibility of Pore Formation and Constriction Effect in Physical-Based 1D Circuit Models
My Activity

Figure 1Loading Img
    Surfaces, Interfaces, and Applications

    3D Impedance Modeling of Metal Anodes in Solid-State Batteries–Incompatibility of Pore Formation and Constriction Effect in Physical-Based 1D Circuit Models
    Click to copy article linkArticle link copied!

    • Janis K. Eckhardt*
      Janis K. Eckhardt
      Institute for Theoretical Physics, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      *Email: [email protected]
    • Till Fuchs
      Till Fuchs
      Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
      More by Till Fuchs
    • Simon Burkhardt
      Simon Burkhardt
      Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
    • Peter J. Klar
      Peter J. Klar
      Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      Institute of Experimental Physics I, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
    • Jürgen Janek
      Jürgen Janek
      Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen D-35392, Germany
    • Christian Heiliger
      Christian Heiliger
      Institute for Theoretical Physics, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
      Center for Materials Research (ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, Giessen D-35392, Germany
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2022, 14, 37, 42757–42769
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.2c12991
    Published September 8, 2022
    Copyright © 2022 The Authors. Published by American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A non-ideal contact at the electrode/solid electrolyte interface of a solid-state battery arising due to pores (voids) or inclusions results in a geometric constriction effect that severely deteriorates the electric transport properties of the battery cell. The lack of understanding of this phenomenon hinders the optimization process of novel components, such as reversible and high-rate metal anodes. Deeper insight into the constriction phenomenon is necessary to correctly monitor interface degradation and to accelerate the successful use of metal anodes in solid-state batteries. Here, we use a 3D electric network model to study the fundamentals of the constriction effect. Our findings suggest that dynamic constriction as a non-local effect cannot be captured by conventional 1D equivalent circuit models and that its electric behavior is not ad hoc predictable. It strongly depends on the interplay of the geometry of the interface causing the constriction and the microscopic transport processes in the adjacent phases. In the presence of constriction, the contribution from the non-ideal electrode/solid electrolyte interface to the impedance spectrum may exhibit two signals that cannot be explained when the porous interface is described by a physical-based (effective medium theory) 1D equivalent circuit model. In consequence, the widespread assumption of a single interface contribution to the experimental impedance spectrum may be entirely misleading and can cause serious misinterpretation.

    Copyright © 2022 The Authors. Published by American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.2c12991.

    • Analytical considerations on the transformability of individual electric circuits (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 35 publications.

    1. Md Salman Rabbi Limon, Curtis Wesley Duffee, Zeeshan Ahmad. Constriction and Contact Impedance of Ceramic Solid Electrolytes. ACS Energy Letters 2025, 10 (4) , 1999-2006. https://doi.org/10.1021/acsenergylett.5c00032
    2. Elif Pınar Alsaç, Douglas Lars Nelson, Sun Geun Yoon, Kelsey Anne Cavallaro, Congcheng Wang, Stephanie Elizabeth Sandoval, Udochukwu D. Eze, Won Joon Jeong, Matthew T. McDowell. Characterizing Electrode Materials and Interfaces in Solid-State Batteries. Chemical Reviews 2025, 125 (4) , 2009-2119. https://doi.org/10.1021/acs.chemrev.4c00584
    3. Douglas Lars Nelson, Stephanie E. Sandoval, Jaechan Pyo, Donald Bistri, Talia A. Thomas, Kelsey Anne Cavallaro, John A. Lewis, Abhinav S. Iyer, Pavel Shevchenko, Claudio V. Di Leo, Matthew T. McDowell. Fracture Dynamics in Silicon Anode Solid-State Batteries. ACS Energy Letters 2024, 9 (12) , 6085-6095. https://doi.org/10.1021/acsenergylett.4c02800
    4. Leonardo Merola, Vipin K. Singh, Max Palmer, Janis K. Eckhardt, Sebastian L. Benz, Till Fuchs, Linda F. Nazar, Jeff Sakamoto, Felix H. Richter, Jürgen Janek. Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li6PS5Cl and LLZO|Li7P3S11. ACS Applied Materials & Interfaces 2024, 16 (40) , 54847-54863. https://doi.org/10.1021/acsami.4c11597
    5. Sun Geun Yoon, Bairav S. Vishnugopi, Elif Pınar Alsaç, Won Joon Jeong, Stephanie Elizabeth Sandoval, Douglas Lars Nelson, Abhinand Ayyaswamy, Partha P. Mukherjee, Matthew T. McDowell. Synergistic Evolution of Alloy Nanoparticles and Carbon in Solid-State Lithium Metal Anode Composites at Low Stack Pressure. ACS Nano 2024, 18 (31) , 20792-20805. https://doi.org/10.1021/acsnano.4c07687
    6. Lin Lin, Abhinand Ayyaswamy, Yanjie Zheng, Austin Fan, Bairav S. Vishnugopi, Partha P. Mukherjee, Kelsey B. Hatzell. Nonintuitive Role of Solid Electrolyte Porosity on Failure. ACS Energy Letters 2024, 9 (5) , 2387-2393. https://doi.org/10.1021/acsenergylett.4c00744
    7. Janis K. Eckhardt, Sascha Kremer, Leonardo Merola, Jürgen Janek. Heteroionic Interfaces in Hybrid Solid-State Batteries─Current Constriction at the Interface between Different Solid Electrolytes. ACS Applied Materials & Interfaces 2024, 16 (14) , 18222-18235. https://doi.org/10.1021/acsami.4c01808
    8. Pallab Barai, Till Fuchs, Enrico Trevisanello, Felix H. Richter, Jürgen Janek, Venkat Srinivasan. Study of Void Formation at the Lithium|Solid Electrolyte Interface. Chemistry of Materials 2024, 36 (5) , 2245-2258. https://doi.org/10.1021/acs.chemmater.3c01708
    9. Ander Orue Mendizabal, Manar Cheddadi, Artur Tron, Alexander Beutl, Pedro López-Aranguren. Understanding Interfaces at the Positive and Negative Electrodes on Sulfide-Based Solid-State Batteries. ACS Applied Energy Materials 2023, 6 (21) , 11030-11042. https://doi.org/10.1021/acsaem.3c01894
    10. Janis K. Eckhardt, Sascha Kremer, Till Fuchs, Philip Minnmann, Johannes Schubert, Simon Burkhardt, Matthias T. Elm, Peter J. Klar, Christian Heiliger, Jürgen Janek. Influence of Microstructure on the Material Properties of LLZO Ceramics Derived by Impedance Spectroscopy and Brick Layer Model Analysis. ACS Applied Materials & Interfaces 2023, 15 (40) , 47260-47277. https://doi.org/10.1021/acsami.3c10060
    11. Janis K. Eckhardt, Christian Heiliger, Matthias T. Elm. Understanding the Impedance of Mesoporous Oxides: Reliable Determination of the Material-Specific Conductivity. ACS Applied Materials & Interfaces 2023, 15 (29) , 35332-35341. https://doi.org/10.1021/acsami.3c05561
    12. Luise M. Riegger, Sophie Mittelsdorf, Till Fuchs, Raffael Rueß, Felix H. Richter, Jürgen Janek. Evolution of the Interphase between Argyrodite-Based Solid Electrolytes and the Lithium Metal Anode─The Kinetics of Solid Electrolyte Interphase Growth. Chemistry of Materials 2023, 35 (13) , 5091-5099. https://doi.org/10.1021/acs.chemmater.3c00676
    13. Butian Chen, Jicheng Zhang, Tianran Zhang, Ruoyu Wang, Jian Zheng, Chong Liu, Xiangfeng Liu. Directly Using Li2CO3 as a Lithiophobic Interlayer to Inhibit Li Dendrites for High-Performance Solid-State Batteries. ACS Energy Letters 2023, 8 (5) , 2221-2231. https://doi.org/10.1021/acsenergylett.3c00546
    14. Xinxin Zhang, Hailong Yu, Liubin Ben, Guanjun Cen, Yang Sun, Liping Wang, Junfeng Hao, Jing Zhu, Qiangfu Sun, Ronghan Qiao, Xiayin Yao, Heng Zhang, Xuejie Huang. Topology Fortified Anodes Powered High‐Energy All‐Solid‐State Lithium Batteries. Advanced Materials 2025, 6 https://doi.org/10.1002/adma.202506298
    15. Michael J. Counihan, Zachary D. Hood, Hong Zheng, Till Fuchs, Leonardo Merola, Matilde Pavan, Sebastian L. Benz, Tianyi Li, Artem Baskin, Junsoo Park, Joakim Halldin Stenlid, Xinglong Chen, Daniel P. Phelan, John W. Lawson, Justin G. Connell, Jürgen Janek, Felix H. Richter, Sanja Tepavcevic. Effect of Propagating Dopant Reactivity on Lattice Oxygen Loss in LLZO Solid Electrolyte Contacted with Lithium Metal. Advanced Energy Materials 2025, 2016 https://doi.org/10.1002/aenm.202406020
    16. Christoph D. Alt, Sören Keuntje, Inga L. Schneider, Johannes Westphal, Philip Minnmann, Janis K. Eckhardt, Klaus Peppler, Jürgen Janek. In–Li Counter Electrodes in Solid‐State Batteries – A Comparative Approach on Kinetics, Microstructure, and Chemomechanics. Advanced Energy Materials 2025, 15 (12) https://doi.org/10.1002/aenm.202404055
    17. Catherine G. Haslam, Janis K. Eckhardt, Abhinand Ayyaswamy, Bairav S. Vishnugopi, Till Fuchs, Daniel W. Liao, Neil P. Dasgupta, Partha P. Mukherjee, Jürgen Janek, Jeff Sakamoto. Evaluating Pressure‐dependent Discharge Behavior of Foil Versus In situ Plated Lithium Metal Anodes in Solid‐State Batteries. Advanced Energy Materials 2025, 15 (12) https://doi.org/10.1002/aenm.202403614
    18. Slater Twain Bakenhaster, Howard D. Dewald. Electrochemical impedance spectroscopy and battery systems: past work, current research, and future opportunities. Journal of Applied Electrochemistry 2025, 4 https://doi.org/10.1007/s10800-025-02273-6
    19. Eric Jianfeng Cheng, Huanan Duan, Michael J. Wang, Eric Kazyak, Hirokazu Munakata, Regina Garcia-Mendez, Bo Gao, Hanyu Huo, Tao Zhang, Fei Chen, Ryoji Inada, Kohei Miyazaki, Saneyuki Ohno, Hidemi Kato, Shin-ichi Orimo, Venkataraman Thangadurai, Takeshi Abe, Kiyoshi Kanamura. Li-stuffed garnet solid electrolytes: Current status, challenges, and perspectives for practical Li-metal batteries. Energy Storage Materials 2025, 75 , 103970. https://doi.org/10.1016/j.ensm.2024.103970
    20. Michael J. Counihan, Jungkuk Lee, Priyadarshini Mirmira, Pallab Barai, Meghan E. Burns, Chibueze V. Amanchukwu, Venkat Srinivasan, Yuepeng Zhang, Sanja Tepavcevic. Improved interfacial li-ion transport in composite polymer electrolytes via surface modification of LLZO. Energy Materials 2025, 5 (3) https://doi.org/10.20517/energymater.2024.195
    21. Till Fuchs, Burak Aktekin, Felix Hartmann, Felix H. Richter, Jürgen Janek. Lithium Batteries – Lithium Secondary Batteries – Lithium All-Solid State Battery | Overview. 2025, 503-512. https://doi.org/10.1016/B978-0-323-96022-9.00281-4
    22. Kotaro Yoshida, Atsunori Ikezawa, Takeyoshi Okajima, Hajime Arai. An all-solid-state electrochemical four-electrode cell–Application to Li-ion transport between two sulfide solid electrolytes. Electrochimica Acta 2024, 497 , 144523. https://doi.org/10.1016/j.electacta.2024.144523
    23. Till Ortmann, Till Fuchs, Janis K. Eckhardt, Ziming Ding, Qianli Ma, Frank Tietz, Christian Kübel, Marcus Rohnke, Jürgen Janek. Deposition of Sodium Metal at the Copper‐NaSICON Interface for Reservoir‐Free Solid‐State Sodium Batteries. Advanced Energy Materials 2024, 14 (15) https://doi.org/10.1002/aenm.202302729
    24. Ziming Ding, Yushu Tang, Till Ortmann, Janis Kevin Eckhardt, Yuting Dai, Marcus Rohnke, Georgian Melinte, Christian Heiliger, Jürgen Janek, Christian Kübel. The Impact of Microstructure on Filament Growth at the Sodium Metal Anode in All‐Solid‐State Sodium Batteries. Advanced Energy Materials 2023, 13 (48) https://doi.org/10.1002/aenm.202302322
    25. Till Fuchs, Catherine G. Haslam, Felix H. Richter, Jeff Sakamoto, Jürgen Janek. Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytes. Advanced Energy Materials 2023, 13 (45) https://doi.org/10.1002/aenm.202302383
    26. Moritz Clausnitzer, Robert Mücke, Fadi Al‐Jaljouli, Simon Hein, Martin Finsterbusch, Timo Danner, Dina Fattakhova‐Rohlfing, Olivier Guillon, Arnulf Latz. Optimizing the Composite Cathode Microstructure in All‐Solid‐State Batteries by Structure‐Resolved Simulations. Batteries & Supercaps 2023, 6 (11) https://doi.org/10.1002/batt.202300167
    27. Jian Duan, Till Fuchs, Boris Mogwitz, Philip Minnmann, Tong-Tong Zuo, Anja Henss, Jürgen Janek. Solid electrolyte cracking due to lithium filament growth and concept of mechanical reinforcement – An operando study. Materials Today 2023, 70 , 33-43. https://doi.org/10.1016/j.mattod.2023.10.003
    28. Stephanie Elizabeth Sandoval, John A. Lewis, Bairav S. Vishnugopi, Douglas Lars Nelson, Matthew M. Schneider, Francisco Javier Quintero Cortes, Christopher M. Matthews, John Watt, Mengkun Tian, Pavel Shevchenko, Partha P. Mukherjee, Matthew T. McDowell. Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries. Joule 2023, 7 (9) , 2054-2073. https://doi.org/10.1016/j.joule.2023.07.022
    29. Stephanie Elizabeth Sandoval, Matthew T. McDowell. Lithium metal anodes in solid-state batteries: Metal microstructure matters. Matter 2023, 6 (7) , 2101-2102. https://doi.org/10.1016/j.matt.2023.05.017
    30. Dheeraj Kumar Singh, Till Fuchs, Christian Krempaszky, Pascal Schweitzer, Christian Lerch, Felix H. Richter, Jürgen Janek. Origin of the lithium metal anode instability in solid-state batteries during discharge. Matter 2023, 6 (5) , 1463-1483. https://doi.org/10.1016/j.matt.2023.02.008
    31. Catherine Haslam, Jeff Sakamoto. Stable Lithium Plating in “Lithium Metal-Free” Solid-State Batteries Enabled by Seeded Lithium Nucleation. Journal of The Electrochemical Society 2023, 170 (4) , 040524. https://doi.org/10.1149/1945-7111/accab4
    32. Janis K. Eckhardt, Till Fuchs, Simon Burkhardt, Peter J. Klar, Jürgen Janek, Christian Heiliger. Guidelines for Impedance Analysis of Parent Metal Anodes in Solid‐State Batteries and the Role of Current Constriction at Interface Voids, Heterogeneities, and SEI. Advanced Materials Interfaces 2023, 10 (8) https://doi.org/10.1002/admi.202202354
    33. Till Ortmann, Simon Burkhardt, Janis Kevin Eckhardt, Till Fuchs, Ziming Ding, Joachim Sann, Marcus Rohnke, Qianli Ma, Frank Tietz, Dina Fattakhova‐Rohlfing, Christian Kübel, Olivier Guillon, Christian Heiliger, Jürgen Janek. Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na 3.4 Zr 2 Si 2.4 P 0.6 O 12 for Sodium Solid‐State Batteries. Advanced Energy Materials 2023, 13 (5) https://doi.org/10.1002/aenm.202202712
    34. Carolin Rosenbach, Felix Walther, Justine Ruhl, Matthias Hartmann, Theodoor Anton Hendriks, Saneyuki Ohno, Jürgen Janek, Wolfgang G. Zeier. Visualizing the Chemical Incompatibility of Halide and Sulfide‐Based Electrolytes in Solid‐State Batteries. Advanced Energy Materials 2023, 13 (6) https://doi.org/10.1002/aenm.202203673
    35. Till Fuchs, Juri Becker, Catherine G. Haslam, Christian Lerch, Jeff Sakamoto, Felix H. Richter, Jürgen Janek. Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface. Advanced Energy Materials 2023, 13 (1) https://doi.org/10.1002/aenm.202203174

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2022, 14, 37, 42757–42769
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.2c12991
    Published September 8, 2022
    Copyright © 2022 The Authors. Published by American Chemical Society

    Article Views

    2166

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.