Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Phoxonic Hybrid Superlattice

View Author Information
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
§ Department of Inorganic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
LDOM, Département de Physique, Faculté des Sciences, Université Mohamed I, 60000 Oujda, Morocco
# Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN), UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d’Ascq, France
|| Department of Materials Science, University of Crete and IESL/FORTH, 71110 Heraklion, Greece
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 23, 12488–12495
Publication Date (Web):April 9, 2015
https://doi.org/10.1021/acsami.5b01247
Copyright © 2015 American Chemical Society

    Article Views

    576

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft–hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 16 publications.

    1. Eugen Schechtel, Yaping Yan, Xiangfan Xu, Yu Cang, Wolfgang Tremel, Zuyuan Wang, Baowen Li, George Fytas. Elastic Modulus and Thermal Conductivity of Thiolene/TiO2 Nanocomposites. The Journal of Physical Chemistry C 2017, 121 (45) , 25568-25575. https://doi.org/10.1021/acs.jpcc.7b08425
    2. E.R. Cardozo de Oliveira, C. Xiang, M. Esmann, N. Lopez Abdala, M.C. Fuertes, A. Bruchhausen, H. Pastoriza, B. Perrin, G.J.A.A. Soler-Illia, N.D. Lanzillotti-Kimura. Probing gigahertz coherent acoustic phonons in TiO2 mesoporous thin films. Photoacoustics 2023, 30 , 100472. https://doi.org/10.1016/j.pacs.2023.100472
    3. Shuyi Zhao, Linlin Lei, Qin Tang, Feng Xin, Tianbao Yu. Dual Optical and Acoustic Negative Refraction in Phoxonic Crystals. Photonics 2022, 9 (12) , 908. https://doi.org/10.3390/photonics9120908
    4. Ossama El Abouti, John Cuffe, El Houssaine El Boudouti, Clivia M. Sotomayor Torres, Emigdio Chavez-Angel, Bahram Djafari-Rouhani, Francesc Alzina. Comparison of Brillouin Light Scattering and Density of States in a Supported Layer: Analytical and Experimental Study. Crystals 2022, 12 (9) , 1212. https://doi.org/10.3390/cryst12091212
    5. Yu Cang, Yabin Jin, Bahram Djafari-Rouhani, George Fytas. Fundamentals, progress and perspectives on high-frequency phononic crystals. Journal of Physics D: Applied Physics 2022, 55 (19) , 193002. https://doi.org/10.1088/1361-6463/ac4941
    6. Fariborz Kargar, Alexander A. Balandin. Advances in Brillouin–Mandelstam light-scattering spectroscopy. Nature Photonics 2021, 15 (10) , 720-731. https://doi.org/10.1038/s41566-021-00836-5
    7. Chun Yu Tammy Huang, Fariborz Kargar, Topojit Debnath, Bishwajit Debnath, Michael D Valentin, Ron Synowicki, Stefan Schoeche, Roger K Lake, Alexander A Balandin. Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays. Nanotechnology 2020, 31 (30) , 30LT01. https://doi.org/10.1088/1361-6528/ab85ee
    8. Hannah Huesmann, Eugen Schechtel, Ingo Lieberwirth, Martin Panthöfer, Wolfgang Tremel. Surface Chemistry Directs the Tunable Assembly of TiO 2 Anatase Nanocubes into Three‐Dimensional Mesocrystals. European Journal of Inorganic Chemistry 2019, 2019 (27) , 3165-3170. https://doi.org/10.1002/ejic.201900376
    9. Yuemin Wang, Shuliang Dou, Lei Shang, Panpan Zhang, Xiangqiao Yan, Ke Zhang, Jiupeng Zhao, Yao Li. Effects of Microsphere Size on the Mechanical Properties of Photonic Crystals. Crystals 2018, 8 (12) , 453. https://doi.org/10.3390/cryst8120453
    10. El Houssaine El Boudouti, Abdellatif Akjouj, Leonard Dobrzynski, Bahram Djafari-Rouhani, Yan Pennec, Housni Al-Wahsh, Gaëtan Lévêque. One-Dimensional Phononic Crystals. 2018, 139-270. https://doi.org/10.1016/B978-0-12-809948-3.00004-1
    11. Claude Meffan, Emilio Calius, Volker Nock. Thermal conductivity of PMMA-SiO<inf>2</inf> phononic crystals measured by AC resistance thermometry. 2017, 1-3. https://doi.org/10.1109/ICSENS.2017.8234076
    12. E. Alonso-Redondo, A. Gueddida, H. Huesmann, O. El Abouti, W. Tremel, E. H. El Boudouti, B. Djafari-Rouhani, G. Fytas. Direction-dependent elastic properties and phononic behavior of PMMA/BaTiO3 nanocomposite thin films. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4978675
    13. E Alonso-Redondo, G Fytas. High elastic impedance terasonic hybrid superlattices. New Journal of Physics 2016, 18 (11) , 111001. https://doi.org/10.1088/1367-2630/18/11/111001
    14. Florian Döring, Henning Ulrichs, Sinja Pagel, Markus Müller, Maria Mansurova, Matthias Müller, Christian Eberl, Torben Erichsen, Dennis Huebner, Philipp Vana, Klaus Mann, Markus Münzenberg, Hans-Ulrich Krebs. Confinement of phonon propagation in laser deposited tungsten/polycarbonate multilayers. New Journal of Physics 2016, 18 (9) , 092002. https://doi.org/10.1088/1367-2630/18/9/092002
    15. Yu. S. Dadoenkova, N. N. Dadoenkova, I. L. Lyubchanskii, J. W. Kłos, M. Krawczyk. Confined states in photonic-magnonic crystals with complex unit cell. Journal of Applied Physics 2016, 120 (7) https://doi.org/10.1063/1.4961326
    16. K. R. Mangipudi, Ch. Jooss, C. A. Volkert. Achieving large acoustic and phonon band gaps in multilayered structures. physica status solidi (a) 2016, 213 (3) , 824-830. https://doi.org/10.1002/pssa.201532473