ACS Publications. Most Trusted. Most Cited. Most Read
Chemical Sensing of 2D Graphene/MoS2 Heterostructure device
My Activity

Figure 1Loading Img
    Research Article

    Chemical Sensing of 2D Graphene/MoS2 Heterostructure device
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Advanced Functional Thin Films, Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-Gu, Changwon, Gyeongnam 642-831, Republic of Korea
    School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712, Republic of Korea
    § Electrochemistry Department, Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-Gu, Changwon, Gyeongnam 642-831, Republic of Korea
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2015, 7, 30, 16775–16780
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.5b04541
    Published July 10, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report the production of a two-dimensional (2D) heterostructured gas sensor. The gas-sensing characteristics of exfoliated molybdenum disulfide (MoS2) connected to interdigitated metal electrodes were investigated. The MoS2 flake-based sensor detected a NO2 concentration as low as 1.2 ppm and exhibited excellent gas-sensing stability. Instead of metal electrodes, patterned graphene was used for charge collection in the MoS2-based sensing devices. An equation based on variable resistance terms was used to describe the sensing mechanism of the graphene/MoS2 device. Furthermore, the gas response characteristics of the heterostructured device on a flexible substrate were retained without serious performance degradation, even under mechanical deformation. This novel sensing structure based on a 2D heterostructure promises to provide a simple route to an essential sensing platform for wearable electronics.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Fabrication process of Au/Ti/MoS2 device, VdId output characteristics of Au/Ti/MoS2 FET device, operating temperature dependence of transient gas response characteristics in a graphene/MoS2 gas-sensing device, device-to-device variation of transient resistance response characteristics, comparison of sensing properties on each different device structure (Au/Ti/MoS2 vs graphene/MoS2), fabrication process of a graphene/MoS2 gas-sensing device, AFM measurement of graphene/MoS2 contact, bending performance of a graphene/MoS2 device, and long-term stability of a flexible graphene/MoS2 device. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b04541.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 409 publications.

    1. Doyoon Kim, Dong Hyeon Kim, Hyeran Cho, Yeonsu Kim, Chan Sol Mun, Gyu-Tae Kim. Gate-Modulated Temperature-Dependent NO2 Gas Responsivity of h-BN Bottom-Gated MoS2 Field-Effect Transistor. ACS Applied Electronic Materials 2025, 7 (1) , 442-449. https://doi.org/10.1021/acsaelm.4c01901
    2. Ningfeng Ke, Fangcheng Si, Hongliang Ma, Qiang Gao, Gengwu Ge, Wei Liu, Jie Ding, Wendong Zhang, Xuge Fan. Fully Flexible Humidity Sensor with Fast Response and High Responsivity Based on rGO/MoS2 for Human Respiration Monitoring and Nontouch Switches. ACS Applied Materials & Interfaces 2025, 17 (1) , 2317-2326. https://doi.org/10.1021/acsami.4c18757
    3. Jéssica E. S. Fonsaca, Carlos Eduardo Lima, Kevin Stefan Boszko Martins, Sergio H. Domingues, Christiano J. S. de Matos. Covalently Linked 2D-Co3O4/GO Heterostructures: Catalytic and Electrochemical Properties. Langmuir 2024, 40 (41) , 21442-21452. https://doi.org/10.1021/acs.langmuir.4c02235
    4. Ruixia Wu, Hongmei Zhang, Huifang Ma, Bei Zhao, Wei Li, Yang Chen, Jianteng Liu, Jingyi Liang, Qiuyin Qin, Weixu Qi, Liang Chen, Jia Li, Bo Li, Xidong Duan. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chemical Reviews 2024, 124 (17) , 10112-10191. https://doi.org/10.1021/acs.chemrev.4c00174
    5. Shaoguang Zhao, Yue Cheng, Li Tao. Modulation and Optoelectronic Applications of van der Waals Interlayer Excitons. ACS Photonics 2024, 11 (7) , 2529-2545. https://doi.org/10.1021/acsphotonics.3c01839
    6. Ly Tan Nhiem, Do Thuy Khanh Linh, Hang Nguyen, Nguyen Huu Hieu. Defect-Driven MoS2 Nanosheets toward Enhanced Sensing Sensitivity. ACS Omega 2024, 9 (25) , 27065-27070. https://doi.org/10.1021/acsomega.4c00379
    7. Zhenyu Zhao, Binjian Du, Zihan Ren, Qianhou Liu, Fei Xing, Fang Zhang. Two-Dimensional Nb4AlC3 (MAX) and Nb4C3 (MXene): Excellent Optical Limiting Materials with Oppositely Applicated Waveband. ACS Applied Nano Materials 2024, 7 (3) , 2775-2785. https://doi.org/10.1021/acsanm.3c04990
    8. Huimin Yang, Zhenming Du, Yazhou Yang, Qirui Wu, Chaofan Ma, Huiyu Su, Xiaoxia Wang, Dawen Zeng. Ce–Ag Active Bimetallic Pairs in Two-Dimensional SnS2 for Enhancing NO2 Sensing. ACS Sensors 2024, 9 (1) , 283-291. https://doi.org/10.1021/acssensors.3c01924
    9. Ajit Kumar Katiyar, Anh Tuan Hoang, Duo Xu, Juyeong Hong, Beom Jin Kim, Seunghyeon Ji, Jong-Hyun Ahn. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chemical Reviews 2024, 124 (2) , 318-419. https://doi.org/10.1021/acs.chemrev.3c00302
    10. Shiu-Ming Huang, Wei-Chueh Cheng, Pin-Cing Wang, Fu-En Cheng, Chiu-Hsien Wu. Significant Enhancement of NO2 Detection Response in MoTe2 Nanostructures with a 1T′-2H Structure Mixture. ACS Applied Nano Materials 2024, 7 (1) , 306-312. https://doi.org/10.1021/acsanm.3c04506
    11. Seulgi Kim, Hamin Shin, Jaewoong Lee, Chungseong Park, Yunhee Ahn, Hee-Jin Cho, Seoyeon Yuk, Jihan Kim, Dongju Lee, Il-Doo Kim. Three-Dimensional MoS2/MXene Heterostructure Aerogel for Chemical Gas Sensors with Superior Sensitivity and Stability. ACS Nano 2023, 17 (19) , 19387-19397. https://doi.org/10.1021/acsnano.3c07074
    12. Zhehan Wang, Xu Jing, Shengshun Duan, Chang Liu, Dingxuan Kang, Xiao Xu, Jiayi Chen, Yier Xia, Bo Chang, Chengdong Zhao, Beibei Zhu, Tao Xu, Huiwen Lin, Weibing Lu, Yuan Ren, Litao Sun, Jun Wu, Li Tao. 2D PtSe2 Enabled Wireless Wearable Gas Monitoring Circuits with Distinctive Strain-Enhanced Performance. ACS Nano 2023, 17 (12) , 11557-11566. https://doi.org/10.1021/acsnano.3c01582
    13. Aanchal Alagh, Fatima Ezahra Annanouch, Ayrton Sierra-Castillo, Emile Haye, Jean-François Colomer, Eduard Llobet. Three-Dimensional Assemblies of Edge-Enriched WSe2 Nanoflowers for Selectively Detecting Ammonia or Nitrogen Dioxide. ACS Applied Materials & Interfaces 2022, 14 (49) , 54946-54960. https://doi.org/10.1021/acsami.2c16299
    14. Xueyang Hou, Wei Zhang, Jiaxin Peng, Lijiao Zhou, Jianchun Wu, Keyu Xie, Zhao Fang. Phase Transformation of 1T′-MoS2 Induced by Electrochemical Prelithiation for Lithium-Ion Storage. ACS Applied Energy Materials 2022, 5 (9) , 11292-11303. https://doi.org/10.1021/acsaem.2c01835
    15. Boran Wang, Hongbin Li, Haotian Tan, Yi Gu, Lin Chen, Li Ji, Zhengzong Sun, Qingqing Sun, Shijin Ding, David Wei Zhang, Hao Zhu. Gate-Modulated High-Response Field-Effect Transistor-Type Gas Sensor Based on the MoS2/Metal–Organic Framework Heterostructure. ACS Applied Materials & Interfaces 2022, 14 (37) , 42356-42364. https://doi.org/10.1021/acsami.2c11359
    16. Neha Sakhuja, Ravindra Kumar Jha, Ranajit Sai, Navakanta Bhat. ZnO Nanorods Grown on WS2 Nanosheets for Chemiresistive H2S Sensing. ACS Applied Nano Materials 2022, 5 (7) , 9241-9251. https://doi.org/10.1021/acsanm.2c01580
    17. Utkarsh Kumar, Han-Wei Hsieh, Yi-Chen Liu, Zu-Yin Deng, Kuen-Lin Chen, Wen-Min Huang, Chiu-Hsien Wu. Revealing a Highly Sensitive Sub-ppb-Level NO2 Gas-Sensing Capability of Novel Architecture 2D/0D MoS2/SnS Heterostructures with DFT Interpretation. ACS Applied Materials & Interfaces 2022, 14 (28) , 32279-32288. https://doi.org/10.1021/acsami.2c03173
    18. Bhobnibhit Chatmaneerungcharoen, Mathias Fraccaroli, François Martin, Cyril Guedj, Emmanuel Nolot, Denis Rouchon, Nicolas Vaxelaire, Roselyne Templier, Adeline Grenier, Anne-Marie Papon, Hervé Roussel, Laetitia Rapenne, Hubert Renevier, Stéphane Cadot. Synthesis of In-Plane Oriented Tin Sulfides by Organosulfur-Mediated Sulfurization of Ultrathin SnO2 Films. Chemistry of Materials 2022, 34 (13) , 5842-5851. https://doi.org/10.1021/acs.chemmater.2c00567
    19. Xin Chen, Mhamed Assebban, Malte Kohring, Lipiao Bao, Heiko B. Weber, Kathrin C. Knirsch, Andreas Hirsch. Laser-Triggered Bottom-Up Transcription of Chemical Information: Toward Patterned Graphene/MoS2 Heterostructures. Journal of the American Chemical Society 2022, 144 (22) , 9645-9650. https://doi.org/10.1021/jacs.2c00642
    20. Sankar Ganesh Ramaraj, Srijita Nundy, Pin Zhao, Durgadevi Elamaran, Asif Ali Tahir, Yasuhiro Hayakawa, Manoharan Muruganathan, Hiroshi Mizuta, Sang-Woo Kim. RF Sputtered Nb-Doped MoS2 Thin Film for Effective Detection of NO2 Gas Molecules: Theoretical and Experimental Studies. ACS Omega 2022, 7 (12) , 10492-10501. https://doi.org/10.1021/acsomega.1c07274
    21. Phuong V. Pham, Srikrishna Chanakya Bodepudi, Khurram Shehzad, Yuan Liu, Yang Xu, Bin Yu, Xiangfeng Duan. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews 2022, 122 (6) , 6514-6613. https://doi.org/10.1021/acs.chemrev.1c00735
    22. Saba Baraghani, Jehad Abourahma, Zahra Barani, Amirmahdi Mohammadzadeh, Sriharsha Sudhindra, Alexey Lipatov, Alexander Sinitskii, Fariborz Kargar, Alexander A. Balandin. Printed Electronic Devices with Inks of TiS3 Quasi-One-Dimensional van der Waals Material. ACS Applied Materials & Interfaces 2021, 13 (39) , 47033-47042. https://doi.org/10.1021/acsami.1c12948
    23. Akshay A. Murthy, Stephanie M. Ribet, Teodor K. Stanev, Pufan Liu, Kenji Watanabe, Takashi Taniguchi, Nathaniel P. Stern, Roberto dos Reis, Vinayak P. Dravid. Spatial Mapping of Electrostatic Fields in 2D Heterostructures. Nano Letters 2021, 21 (17) , 7131-7137. https://doi.org/10.1021/acs.nanolett.1c01636
    24. Qinan Zhou, Luyi Zhu, Chengyu Zheng, Jun Wang. Nanoporous Functionalized WS2/MWCNTs Nanocomposite for Trimethylamine Detection Based on Quartz Crystal Microbalance Gas Sensor. ACS Applied Materials & Interfaces 2021, 13 (34) , 41339-41350. https://doi.org/10.1021/acsami.1c12213
    25. Sushovan Dhara, Himani Jawa, Sayantan Ghosh, Abin Varghese, Debjani Karmakar, Saurabh Lodha. All-Electrical High-Sensitivity, Low-Power Dual-Mode Gas Sensing and Recovery with a WSe2/MoS2 pn Heterodiode. ACS Applied Materials & Interfaces 2021, 13 (26) , 30785-30796. https://doi.org/10.1021/acsami.1c01806
    26. Alhadi Ishag, Yubing Sun. Recent Advances in Two-Dimensional MoS2 Nanosheets for Environmental Application. Industrial & Engineering Chemistry Research 2021, 60 (22) , 8007-8026. https://doi.org/10.1021/acs.iecr.1c01311
    27. Zengyuan Pang, Erol Yildirim, Melissa A. Pasquinelli, Qufu Wei. Ammonia Sensing Performance of Polyaniline-Coated Polyamide 6 Nanofibers. ACS Omega 2021, 6 (13) , 8950-8957. https://doi.org/10.1021/acsomega.0c06272
    28. Md Ashraful Islam, Hao Li, Seokjin Moon, Sang Sub Han, Hee-Suk Chung, Jinwoo Ma, Changhyeon Yoo, Tae-Jun Ko, Kyu Hwan Oh, YounJoon Jung, Yeonwoong Jung. Vertically Aligned 2D MoS2 Layers with Strain-Engineered Serpentine Patterns for High-Performance Stretchable Gas Sensors: Experimental and Theoretical Demonstration. ACS Applied Materials & Interfaces 2020, 12 (47) , 53174-53183. https://doi.org/10.1021/acsami.0c17540
    29. Hao Jing, Ruwen Peng, Ren-Min Ma, Jie He, Yi Zhou, Zhenqian Yang, Cheng-Yao Li, Yu Liu, Xiaojiao Guo, Yingying Zhu, Di Wang, Jing Su, Cheng Sun, Wenzhong Bao, Mu Wang. Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters 2020, 20 (10) , 7144-7151. https://doi.org/10.1021/acs.nanolett.0c02468
    30. Qichao Li, Di Chen, Jianmin Miao, Shujing Lin, Zixian Yu, Yutong Han, Zhi Yang, Xiao Zhi, Daxiang Cui, Zhenghua An. Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO2. ACS Applied Materials & Interfaces 2020, 12 (22) , 25243-25252. https://doi.org/10.1021/acsami.9b22098
    31. Sang Sub Han, Tae-Jun Ko, Changhyeon Yoo, Mashiyat Sumaiya Shawkat, Hao Li, Bo Kyung Kim, Woong-Ki Hong, Tae-Sung Bae, Hee-Suk Chung, Kyu Hwan Oh, Yeonwoong Jung. Automated Assembly of Wafer-Scale 2D TMD Heterostructures of Arbitrary Layer Orientation and Stacking Sequence Using Water Dissoluble Salt Substrates. Nano Letters 2020, 20 (5) , 3925-3934. https://doi.org/10.1021/acs.nanolett.0c01089
    32. Wenhao Yan, Wenrong Yan, Tianding Chen, Jiangang Xu, Qiong Tian, Derek Ho. Size-Tunable Flowerlike MoS2 Nanospheres Combined with Laser-Induced Graphene Electrodes for NO2 Sensing. ACS Applied Nano Materials 2020, 3 (3) , 2545-2553. https://doi.org/10.1021/acsanm.9b02614
    33. Rajat Kumar, Ramesh Naidu Jenjeti, S. Sampath. Two-Dimensional, Few-Layer MnPS3 for Selective NO2 Gas Sensing under Ambient Conditions. ACS Sensors 2020, 5 (2) , 404-411. https://doi.org/10.1021/acssensors.9b02064
    34. Erik Pollmann, Juliana M. Morbec, Lukas Madauß, Lara Bröckers, Peter Kratzer, Marika Schleberger. Molybdenum Disulfide Nanoflakes Grown by Chemical Vapor Deposition on Graphite: Nucleation, Orientation, and Charge Transfer. The Journal of Physical Chemistry C 2020, 124 (4) , 2689-2697. https://doi.org/10.1021/acs.jpcc.9b10120
    35. Lizhai Zhang, Jinniu Zhang, Yuhong Huang, Huiyan Xu, Xiaolin Zhang, Hongbing Lu, Kewei Xu, Paul K. Chu, Fei Ma. Stability and Sensing Enhancement by Nanocubic CeO2 with {100} Polar Facets on Graphene for NO2 at Room Temperature. ACS Applied Materials & Interfaces 2020, 12 (4) , 4722-4731. https://doi.org/10.1021/acsami.9b18155
    36. Youngjun Kim, Sang-Koo Kang, Nan-Cho Oh, Hi-Deok Lee, Soo-Min Lee, Jusang Park, Hyungjun Kim. Improved Sensitivity in Schottky Contacted Two-Dimensional MoS2 Gas Sensor. ACS Applied Materials & Interfaces 2019, 11 (42) , 38902-38909. https://doi.org/10.1021/acsami.9b10861
    37. Óscar Leonardo Camargo Moreira, Wei-Ying Cheng, Huei-Ru Fuh, Wei-Chen Chien, Wenjie Yan, Haifeng Fei, Hongjun Xu, Duan Zhang, Yanhui Chen, Yanfeng Zhao, Yanhui Lv, Gang Wu, Chengzhai Lv, Sunil K. Arora, Cormac Ó Coileáin, Chenglin Heng, Ching-Ray Chang, Han-Chun Wu. High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sensors 2019, 4 (9) , 2546-2552. https://doi.org/10.1021/acssensors.9b01461
    38. Amit Dalui, Mrityunjay Pandey, Piyush Kanti Sarkar, Bapi Pradhan, Aastha Vasdev, Nabin Baran Manik, Goutam Sheet, Somobrata Acharya. Realization of Diverse Waveform Converters from a Single Nanoscale Lateral p–n Junction Cu2S–CdS Heterostructure. ACS Applied Materials & Interfaces 2019, 11 (12) , 11749-11754. https://doi.org/10.1021/acsami.8b22131
    39. Tung Pham, Guanghui Li, Elena Bekyarova, Mikhail E. Itkis, Ashok Mulchandani. MoS2-Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO2 Gas Detection. ACS Nano 2019, 13 (3) , 3196-3205. https://doi.org/10.1021/acsnano.8b08778
    40. Yingang Gui, Yao Wang, Shukai Duan, Chao Tang, Qu Zhou, Lingna Xu, Xiaoxing Zhang. Ab Initio Study of SOF2 and SO2F2 Adsorption on Co-MoS2. ACS Omega 2019, 4 (2) , 2517-2522. https://doi.org/10.1021/acsomega.8b02727
    41. Zheng Meng, Robert M. Stolz, Lukasz Mendecki, Katherine A. Mirica. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews 2019, 119 (1) , 478-598. https://doi.org/10.1021/acs.chemrev.8b00311
    42. Hiroshi Tabata, Yuta Sato, Kouhei Oi, Osamu Kubo, Mitsuhiro Katayama. Bias- and Gate-Tunable Gas Sensor Response Originating from Modulation in the Schottky Barrier Height of a Graphene/MoS2 van der Waals Heterojunction. ACS Applied Materials & Interfaces 2018, 10 (44) , 38387-38393. https://doi.org/10.1021/acsami.8b14667
    43. Enxiu Wu, Yuan Xie, Bo Yuan, Hao Zhang, Xiaodong Hu, Jing Liu, Daihua Zhang. Ultrasensitive and Fully Reversible NO2 Gas Sensing Based on p-Type MoTe2 under Ultraviolet Illumination. ACS Sensors 2018, 3 (9) , 1719-1726. https://doi.org/10.1021/acssensors.8b00461
    44. Yutong Han, Da Huang, Yujie Ma, Guili He, Jun Hu, Jing Zhang, Nantao Hu, Yanjie Su, Zhihua Zhou, Yafei Zhang, Zhi Yang. Design of Hetero-Nanostructures on MoS2 Nanosheets To Boost NO2 Room-Temperature Sensing. ACS Applied Materials & Interfaces 2018, 10 (26) , 22640-22649. https://doi.org/10.1021/acsami.8b05811
    45. Abhay. V. Agrawal, Rahul Kumar, Swaminathan Venkatesan, Alex Zakhidov, Guang Yang, Jiming Bao, Mahesh Kumar, Mukesh Kumar. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature. ACS Sensors 2018, 3 (5) , 998-1004. https://doi.org/10.1021/acssensors.8b00146
    46. Feng Gong, Zhiwei Ding, Yin Fang, Chuan-Jia Tong, Dawei Xia, Yingying Lv, Bin Wang, Dimitrios V. Papavassiliou, Jiaxuan Liao, Mengqiang Wu. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling. ACS Applied Materials & Interfaces 2018, 10 (17) , 14614-14621. https://doi.org/10.1021/acsami.7b19582
    47. Zhuo Chen, Jinrong Wang, Douxing Pan, Yao Wang, Richard Noetzel, Hao Li, Peng Xie, Wenle Pei, Ahmad Umar, Lei Jiang, Nan Li, Nicolaas Frans de Rooij, Guofu Zhou. Mimicking a Dog’s Nose: Scrolling Graphene Nanosheets. ACS Nano 2018, 12 (3) , 2521-2530. https://doi.org/10.1021/acsnano.7b08294
    48. Xiumei Zhang, Haiyan Nan, Shaoqing Xiao, Xi Wan, Zhenhua Ni, Xiaofeng Gu, and Kostya Ostrikov . Shape-Uniform, High-Quality Monolayered MoS2 Crystals for Gate-Tunable Photoluminescence. ACS Applied Materials & Interfaces 2017, 9 (48) , 42121-42130. https://doi.org/10.1021/acsami.7b14189
    49. Eric Singh, M. Meyyappan, and Hari Singh Nalwa . Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Applied Materials & Interfaces 2017, 9 (40) , 34544-34586. https://doi.org/10.1021/acsami.7b07063
    50. Zhuo Chen, Jinrong Wang, Ahmad Umar, Yao Wang, Hao Li, and Guofu Zhou . Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO2 Gas Sensibility. ACS Applied Materials & Interfaces 2017, 9 (13) , 11819-11827. https://doi.org/10.1021/acsami.7b01229
    51. Sun Young Choi, Yonghun Kim, Hee-Suk Chung, Ah Ra Kim, Jung-Dae Kwon, Jucheol Park, Young Lae Kim, Se-Hun Kwon, Myung Gwan Hahm, and Byungjin Cho . Effect of Nb Doping on Chemical Sensing Performance of Two-Dimensional Layered MoSe2. ACS Applied Materials & Interfaces 2017, 9 (4) , 3817-3823. https://doi.org/10.1021/acsami.6b14551
    52. Guozhu Zhang, Jingwei Wang, Zefei Wu, Run Shi, Wenkai Ouyang, Abbas Amini, Bananakere Nanjegowda Chandrashekar, Ning Wang, and Chun Cheng . Shape-Dependent Defect Structures of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2017, 9 (1) , 763-770. https://doi.org/10.1021/acsami.6b13777
    53. Girija Thesma Chandran, Xiaowei Li, Alana Ogata, and Reginald M. Penner . Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry 2017, 89 (1) , 249-275. https://doi.org/10.1021/acs.analchem.6b04687
    54. Chong-Rong Wu, Xiang-Rui Chang, Tung-Wei Chu, Hsuan-An Chen, Chao-Hsin Wu, and Shih-Yen Lin . Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth. Nano Letters 2016, 16 (11) , 7093-7097. https://doi.org/10.1021/acs.nanolett.6b03353
    55. Min Su Kim, Shrawan Roy, Jubok Lee, Byung Gu Kim, Hyun Kim, Ji-Hoon Park, Seok Joon Yun, Gang Hee Han, Jae-Young Leem, and Jeongyong Kim . Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films. ACS Applied Materials & Interfaces 2016, 8 (42) , 28809-28815. https://doi.org/10.1021/acsami.6b08003
    56. Byungjin Cho, Ah Ra Kim, Dong Jae Kim, Hee-Suk Chung, Sun Young Choi, Jung-Dae Kwon, Sang Won Park, Yonghun Kim, Byoung Hun Lee, Kyu Hwan Lee, Dong-Ho Kim, Jaewook Nam, and Myung Gwan Hahm . Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor. ACS Applied Materials & Interfaces 2016, 8 (30) , 19635-19642. https://doi.org/10.1021/acsami.6b05943
    57. Chuanmeng Chen, Zhihong Feng, Yiyu Feng, Yuchen Yue, Chengqun Qin, Daihua Zhang, and Wei Feng . Large-Scale Synthesis of a Uniform Film of Bilayer MoS2 on Graphene for 2D Heterostructure Phototransistors. ACS Applied Materials & Interfaces 2016, 8 (29) , 19004-19011. https://doi.org/10.1021/acsami.6b00751
    58. Hyuk-Jun Kwon, Jaewon Jang, and Costas P. Grigoropoulos . Laser Direct Writing Process for Making Electrodes and High-k Sol–Gel ZrO2 for Boosting Performances of MoS2 Transistors. ACS Applied Materials & Interfaces 2016, 8 (14) , 9314-9318. https://doi.org/10.1021/acsami.5b11357
    59. Rousan Debbarma, Sanjay Behura, Phong Nguyen, T. S. Sreeprasad, and Vikas Berry . Electrical Transport and Network Percolation in Graphene and Boron Nitride Mixed-Platelet Structures. ACS Applied Materials & Interfaces 2016, 8 (13) , 8721-8727. https://doi.org/10.1021/acsami.6b01976
    60. Yingzhi Sun, Weiyi He, Can Jiang, Jing Li, Jianli Liu, Mingjie Liu. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. Nano-Micro Letters 2025, 17 (1) https://doi.org/10.1007/s40820-024-01597-w
    61. Khalid Mujasam Batoo, Iman Samir Alalaq, Rekha MM, Anurag Mishra, Shilpa Sharma, G.V. Siva Prasad, Muhammad Farzik Ijaz, Salima B. Alsaadi, Ahmed Ali Mtasher, Fadeel F. Seed. A novel MoS2/Pd5 nanocluster heterojunction system with improved surface reactivity for efficient gas sensing: A DFT study. Surface Science 2025, 752 , 122648. https://doi.org/10.1016/j.susc.2024.122648
    62. Deepraj Pandit, Dinesh Jagadeesan. Nanoengineering of materials for the chemiresistive sensing of volatile organic compounds. 2025, 339-369. https://doi.org/10.1016/B978-0-443-21691-6.00015-9
    63. Atul Kumar, Ravindra Kumar Rawat, Shubham Tripathi, Surya Prakash Singh, Divya Tripathi, Satyam Tripathi, Pratima Chauhan. Captivating 2H-MoS2 nanoflowers for efficient NH3 detection and photocatalytic dye degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 704 , 135414. https://doi.org/10.1016/j.colsurfa.2024.135414
    64. Huabing Shu, Feifan Wang, Kai Ren, Jiyuan Guo. Strain-tunable optoelectronic and photocatalytic properties of 2D GaN/MoSi2P4 heterobilayers: Potential optoelectronic/photocatalytic materials. Nanoscale 2025, https://doi.org/10.1039/D4NR04545A
    65. ebrahim Nemati-Kande, Salar Sadeghi, Fatemeh Aghababaei. Exploring the Sensitivity of Pristine, Cl-, and Al-Doped Mos2 Nanosheets Toward Formaldehyde: A Dft-Qtaim Study. 2025https://doi.org/10.2139/ssrn.5082407
    66. Hajeesh Kumar Vikraman, Jeena George, Rahul Suresh Ghuge, Rence Painappallil Reji, Surya Velappa Jayaraman, Yoshiyuki Kawazoe, Yuvaraj Sivalingam, S.R.N. Kiran Mangalampalli. Highly Selective, Room‐Temperature Triethylamine Sensor Using Humidity‐Resistant Novel TiZn Alloy Nanoparticles‐Decorated MoS₂ Nanosheets. Small 2025, 21 (1) https://doi.org/10.1002/smll.202408500
    67. Jiyun Kim, Mengyao Li, Chun‐Ho Lin, Long Hu, Tao Wan, Ayad Saeed, Peiyuan Guan, Zijian Feng, Tushar Kumeria, Jianbo Tang, Dawei Su, Tom Wu, Dewei Chu. Synergetic Phase Modulation and N‐Doping of MoS 2 for Highly Sensitive Flexible NO 2 Sensors. Advanced Science 2024, 12 https://doi.org/10.1002/advs.202410825
    68. By Eduardo Rangel, Gerardo Jorge Vázquez Fonseca, Saul Montes de Oca, José Andrés García-González, José Manuel Nieto Jalil, Alan Miralrio. Enhanced water molecule sensitivity on defective WS2 monolayers through (ZnO)12 spherical nanocages decoration: A theoretical study. Journal of Molecular Liquids 2024, 415 , 126376. https://doi.org/10.1016/j.molliq.2024.126376
    69. Wei Yin Lim, Choon-Hian Goh, Keenan Zhihong Yap, Narayanan Ramakrishnan. Electrophoretically deposited graphene oxide/molybdenum disulfide composite on quartz crystal microbalance for ethyl acetate VOC detection. Journal of Materials Science 2024, 59 (46) , 21277-21293. https://doi.org/10.1007/s10853-024-10465-2
    70. Abdul Hakeem Anwer, Maroua Saadaoui, Assem T. Mohamed, Nafees Ahmad, Abdelbaki Benamor. State-of-the-Art advances and challenges in wearable gas sensors for emerging applications: Innovations and future prospects. Chemical Engineering Journal 2024, 502 , 157899. https://doi.org/10.1016/j.cej.2024.157899
    71. Ruozhen Wu, Juanyuan Hao, You Wang. Recent Advances in Engineering of 2D Layered Metal Chalcogenides for Resistive‐Type Gas Sensor. Small 2024, 20 (49) https://doi.org/10.1002/smll.202404821
    72. Forough Ghayyem, Ali Kiakojouri, Irmgard Frank, Ebrahim Nadimi. Gas Sensing Properties of Graphene/MoS₂/Graphene Lateral Heterostructure: A First Principles Investigation. IEEE Sensors Journal 2024, 24 (22) , 36334-36341. https://doi.org/10.1109/JSEN.2024.3468168
    73. Vidushi Gautam, Sandeep Kumar Verma, Roshani Singh, Zaid Ashraf, Kavindra Kandpal, Pramod Kumar. Quasi-2D material based heterostructure devices and its applications. Journal of Physics D: Applied Physics 2024, 57 (44) , 443002. https://doi.org/10.1088/1361-6463/ad6a20
    74. Arslan Shahid, Shahid Hussain, Muhammad Javed Liaqat, Sufaid Shah, Kareem Yusuf, Rajesh Kumar Manavalan, Xiangzhao Zhang, Guiwu Liu, Guanjun Qiao. Architectures of MoS2/SnO2 nanoflowers for NO2 gas detection. Ceramics International 2024, 50 (22) , 45075-45082. https://doi.org/10.1016/j.ceramint.2024.08.346
    75. Yidan Chen, Junzhou Xu, Yanjun Pan, Qi Cao, Kaiping Yuan. Trace detection of benzene, toluene and xylene (BTX) by chemiresistive metal oxide-based gas sensors: Recent advances in heterojunction materials design. Chinese Chemical Letters 2024, 573 , 110606. https://doi.org/10.1016/j.cclet.2024.110606
    76. Chenyu Tao, Tong Chen, Wenhao Yang, Danfeng Qin, Peng Tang, Zejiang Peng, Lin Huang, Xianbo Xiao. Theoretically design of 2D penta-BN2/penta-Graphene wdW heterostructure for NO gas sensing implications: a first-principles study. Surfaces and Interfaces 2024, 54 , 105244. https://doi.org/10.1016/j.surfin.2024.105244
    77. M.T.M. Kekana, T.E. Mosuang, B. Ntsendwana, L.M. Sikhwivhilu, M.A. Mahladisa. Notable synthesis, properties and chemical gas sensing trends on molybdenum disulphides and diselenides two-dimensional nanostructures: A critical review. Chemosphere 2024, 366 , 143497. https://doi.org/10.1016/j.chemosphere.2024.143497
    78. Weiwei Guo, Kewei Chen, Hejing Zhang. Synthesis and characterization of ZnO hexagonal sheets wrapped MoS2 sphere for triethylamine gas sensing application. Ceramics International 2024, 367 https://doi.org/10.1016/j.ceramint.2024.10.002
    79. Prianka Mondal, Mst. Shamima Khanom, Farid Ahmed. Nanoscale Synergy: Unveiling Gas Sensing Paradigms Through First Principles Exploration of Vertical Hexagonal Boron Nitride/Graphene Heterostructures. physica status solidi (b) 2024, 3 https://doi.org/10.1002/pssb.202400246
    80. Manoj Kumar, Purnendu Shekhar Pandey, Vivek Kumar Srivastava, M. Sudhakara Reddy, Anita Gehlot, Yadvendra Singh, Gyanendra Kumar Singh, Balkeshwar Singh, . Two-dimensional Graphene/MoS2 vertical heterostructure for detection of hemoglobin concentration in blood samples. PLOS ONE 2024, 19 (9) , e0310166. https://doi.org/10.1371/journal.pone.0310166
    81. Sahar Zeinaly Boojani, Ali Zarnegaryan, Zahra Dehbanipour. Hexatungstate -supported functionalized graphene oxide efficient protocol for the synthesis of benzothiazoles. 2024https://doi.org/10.21203/rs.3.rs-4804160/v1
    82. Jae-Kwon Ko, In-Hyeok Park, Kootak Hong, Ki Chang Kwon. Recent Advances in Chemoresistive Gas Sensors Using Two-Dimensional Materials. Nanomaterials 2024, 14 (17) , 1397. https://doi.org/10.3390/nano14171397
    83. Ruchika Thayil, Saidi Reddy Parne. Recent advances and prospects on MoX2 (X=S, Se, Te) nanostructure-based sensors for room temperature gas detection: A review. Surfaces and Interfaces 2024, 52 , 104966. https://doi.org/10.1016/j.surfin.2024.104966
    84. Shrouq H. Aleithan, Umer Younis, Zakia Alhashem, Waqas Ahmad. Graphene Electrode-Enhanced InSe/WSe2 van der Waals Heterostructure for High-Performance Broadband Photodetector with Imaging Capabilities. Journal of Alloys and Compounds 2024, 73 , 176356. https://doi.org/10.1016/j.jallcom.2024.176356
    85. Sumit Kumar, Rahul Mitra, Suraj Barala, Ashok Kumar, Monika Kwoka, Krishnau Biswas, Mahesh Kumar. Resistance-driven low power H2S sensors based on MWCNT@CuO heterojunction. Journal of Applied Physics 2024, 136 (7) https://doi.org/10.1063/5.0218549
    86. Yajie Kou, Li Hua, Wei-Jing Chen, Xiaoxu Xu, Lizhi Song, Shangjie Yu, Zhaoqing Lu. Material design and application progress of flexible chemiresistive gas sensors. Journal of Materials Chemistry A 2024, 12 (33) , 21583-21604. https://doi.org/10.1039/D4TA02855D
    87. Asad Javaid, Shumaila Karamat, Uzma Khalique, Hisham Naseer, Parisa Sharif, Ahmet Oral, Rizwan Akram. Photovoltaic Response of Liquid Phase Exfoliated Graphene - MoS 2 Heterostructures. Journal of the Physical Society of Japan 2024, 93 (8) https://doi.org/10.7566/JPSJ.93.084801
    88. Zheng Huang, Shuoheng Xu, Zequn Zhang, Zifeng Wang, Mengwei Si, Yaowu Hu. Strain and defect engineering of high-performance monolayer two-dimensional material/Ag nanoparticles optoelectronic FET sensor through multiple laser shock. Sensors and Actuators B: Chemical 2024, 413 , 135856. https://doi.org/10.1016/j.snb.2024.135856
    89. Xhensiana Ndreka, Nensi Isak, Kledi Xhaxhiu, Jiri Kudr, Ondrej Zitka, Muhamed Farruku, Besnik Baraj. Electrochemical determination of wine polyphenols using carbon electrodes: A review. Electroanalysis 2024, 36 (8) https://doi.org/10.1002/elan.202400084
    90. L.G. Bulusheva, Yu.V. Fedoseeva, S.A. Lavrukhina, V.I. Sysoev, E.A. Maksimovskii, A.A. Makarova, A.V. Okotrub. Role of graphene substrate in the formation of MoS2-based nanoparticles with improved sensitivity to NO2 gas. Applied Surface Science 2024, 13 , 161104. https://doi.org/10.1016/j.apsusc.2024.161104
    91. M. Tripathi, G. Deokar, J. Casanova-Chafer, J. Jin, A. Sierra-Castillo, S. P. Ogilvie, F. Lee, S. A. Iyengar, A. Biswas, E. Haye, A. Genovese, E. Llobet, J.-F. Colomer, I. Jurewicz, V. Gadhamshetty, P. M. Ajayan, Udo Schwingenschlögl, Pedro M. F. J. Costa, A. B. Dalton. Vertical heterostructure of graphite–MoS 2 for gas sensing. Nanoscale Horizons 2024, 9 (8) , 1330-1340. https://doi.org/10.1039/D4NH00049H
    92. Bingqian Shao, Xiaotong Chen, Xingwei Chen, Shuzhe Peng, Mingxin Song. Advancements in MXene Composite Materials for Wearable Sensors: A Review. Sensors 2024, 24 (13) , 4092. https://doi.org/10.3390/s24134092
    93. George Gorgolis, Maria Kotsidi, Elena Messina, Valentina Mazzurco Miritana, Gabriella Di Carlo, Elsa Lesaria Nhuch, Clarissa Martins Leal Schrekker, Jeniffer Alves Cuty, Henri Stephan Schrekker, George Paterakis, Charalampos Androulidakis, Nikos Koutroumanis, Costas Galiotis. Antifungal Hybrid Graphene–Transition-Metal Dichalcogenides Aerogels with an Ionic Liquid Additive as Innovative Absorbers for Preventive Conservation of Cultural Heritage. Materials 2024, 17 (13) , 3174. https://doi.org/10.3390/ma17133174
    94. Vien Trinh, Kai Xu, Hao Yu, Nam Ha, Yihong Hu, Muhammad Waqas Khan, Rui Ou, Yange Luan, Jiaru Zhang, Qijie Ma, Guanghui Ren, Jian Zhen Ou. Upcycled Graphene Oxide Nanosheets for Reversible Room Temperature NO2 Gas Sensor. Chemosensors 2024, 12 (6) , 108. https://doi.org/10.3390/chemosensors12060108
    95. Xixi Li, Xiao Wang, Zhaokun Sun, Feifei Li, Yao Fu, Keyang Zhao, Gang Zhao, Cunguang Zhu, Xijin Xu. Surface free radicals activated CoP/MoS2 sensors through electrocatalytic water splitting for enhanced NO2 sensing at room temperatures. Chemical Engineering Journal 2024, 33 , 153381. https://doi.org/10.1016/j.cej.2024.153381
    96. Manyu Luo, Xingpeng Huang, Deshou Xiong, Sijin Cai, Shuang Li, Zhenhong Jia, Zhixian Gao. Fast response/recovery and sub-ppm ammonia gas sensors based on a novel V 2 CT x @MoS 2 composite. Journal of Materials Chemistry A 2024, 12 (20) , 12225-12236. https://doi.org/10.1039/D4TA00842A
    97. Gajanan M. Hingangavkar, Sujit A. Kadam, Yuan-Ron Ma, Manickam Selvaraj, Khalid Ali Khan, Ramesh N. Mulik, Vikas B. Patil. Exploiting the capabilities of MoS2-WO3 heterojunction sensors for harmful NO2 gas detection at low temperature. Ceramics International 2024, 50 (9) , 16051-16063. https://doi.org/10.1016/j.ceramint.2024.02.084
    98. Namita, Ariba Khan, Arti, Naushad Alam, Kishor K. Sadasivuni, Jamilur R. Ansari. MoS2 quantum dots and their diverse sensing applications. Emergent Materials 2024, 6 https://doi.org/10.1007/s42247-024-00656-7
    99. Ying Wen, Donglin Li, Dingfeng Jin, Hongxiao Jin. Comparative study on gas-sensing properties of amorphous MoS2 nanoparticles and crystalline MoS2 nanoflowers. Materials Science in Semiconductor Processing 2024, 172 , 108077. https://doi.org/10.1016/j.mssp.2023.108077
    100. Jeonhyeong Park, Hyeoncheol Lim, Junwoo Yea, Chaehyun Ryu, Soon In Jung, Runia Jana, Kyung-In Jang, Hohyun Keum, Hoe Joon Kim. Kirigami-inspired gas sensors for strain-insensitive operation. Results in Engineering 2024, 21 , 101805. https://doi.org/10.1016/j.rineng.2024.101805
    Load more citations

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2015, 7, 30, 16775–16780
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.5b04541
    Published July 10, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.