Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features

View Author Information
Biomedical Diagnostics Institute, §School of Biotechnology, and National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 24, 14966–14974
Publication Date (Web):November 9, 2015
https://doi.org/10.1021/acsami.5b08309
Copyright © 2015 American Chemical Society

    Article Views

    4747

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Recently, the surface of the wings of the Psaltoda claripennis cicada species has been shown to possess bactericidal properties and it has been suggested that the nanostructure present on the wings was responsible for the bacterial death. We have studied the surface-based nanostructure and bactericidal activity of the wings of three different cicadas (Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila) in order to correlate the relationship between the observed surface topographical features and their bactericidal properties. Atomic force microscopy and scanning electron microscopy performed in this study revealed that the tested wing species contained a highly uniform, nanopillar structure on the surface. The bactericidal properties of the cicada wings were investigated by assessing the viability of autofluorescent Pseudomonas fluorescens cells following static adhesion assays and targeted dead/live fluorescence staining through direct microscopic counting methods. These experiments revealed a 20–25% bacterial surface coverage on all tested wing species; however, significant bactericidal properties were observed in the M. intermedia and C. aguila species as revealed by the high dead:live cell ratio on their surfaces. The combined results suggest a strong correlation between the bactericidal properties of the wings and the scale of the nanotopography present on the different wing surfaces.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b08309.

    • Figure S1, SEM images of ME before and after sonication; Figure S2, variance in nanotopography across ME; Figure S3, SEM images of ME, CA, and AY; Figure S4, tTilted SEM images of ME, CA, and AY; Figure S5, 3D AFM images of AY, CA, and ME; Table S1, dData used to calculate the average number of pillars per bacterial cell (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 265 publications.

    1. Haonian Shu, Pengyu Chen, Rong Yang. Advances in Antibacterial Polymer Coatings Synthesized via Chemical Vapor Deposition. Chem & Bio Engineering 2024, Article ASAP.
    2. William DeFlorio, Abdulla Zaza, Yashwanth Arcot, Younjin Min, Alejandro Castillo, Matthew Taylor, Luis Cisneros-Zevallos, Mustafa E. S. Akbulut. Bioinspired Superhydrophobic Nanocoating Based on Polydopamine and Nanodiamonds to Mitigate Bacterial Attachment to Polyvinyl Chloride Surfaces in Food Industry Environments. Industrial & Engineering Chemistry Research 2024, 63 (14) , 6235-6248. https://doi.org/10.1021/acs.iecr.3c04230
    3. Chuntian Liu, Meirong Zhao, Jinwei Guo, Shiyu Zhang, Le Song, Yelong Zheng. Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet. Langmuir 2024, 40 (4) , 2278-2287. https://doi.org/10.1021/acs.langmuir.3c03364
    4. Louisa Z. Y. Huang, Z. L. Shaw, Rowan Penman, Samuel Cheeseman, Vi Khanh Truong, Michael J. Higgins, Rachel A. Caruso, Aaron Elbourne. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS Applied Bio Materials 2024, 7 (1) , 344-361. https://doi.org/10.1021/acsabm.3c00943
    5. Thomas E. Catley, Rebecca M. Corrigan, Andrew J. Parnell. Designing Effective Antimicrobial Nanostructured Surfaces: Highlighting the Lack of Consensus in the Literature. ACS Omega 2023, 8 (17) , 14873-14883. https://doi.org/10.1021/acsomega.2c08068
    6. Keisuke Shigetoh, Rie Hirao, Nobuhiro Ishida. Durability and Surface Oxidation States of Antiviral Nano-Columnar Copper Thin Films. ACS Applied Materials & Interfaces 2023, 15 (16) , 20398-20409. https://doi.org/10.1021/acsami.3c01400
    7. Masato Daimon, Yushi Yanagisawa, Kenta Ishibashi, Yukihiro Tominari, Shukichi Tanaka, Hiroaki Kojima, Tomohiro Shimizu, Shoso Shingubara, Takeshi Ito. Fluorescence Intensity of Liposomes and E. coli Attached to Nanopillar Arrays: Implications for Bacterial Death on Nanostructures. ACS Applied Nano Materials 2023, 6 (3) , 1610-1619. https://doi.org/10.1021/acsanm.2c04489
    8. Luca Stendardo, Athanasios Milionis, George Kokkoris, Christos Stamatopoulos, Chander Shekhar Sharma, Raushan Kumar, Matteo Donati, Dimos Poulikakos. Out-of-Plane Biphilic Surface Structuring for Enhanced Capillary-Driven Dropwise Condensation. Langmuir 2023, 39 (4) , 1585-1592. https://doi.org/10.1021/acs.langmuir.2c03029
    9. Pragyan Ray, Ruchira Chakraborty, Oindrila Banik, Earu Banoth, Prasoon Kumar. Surface Engineering of a Bioartificial Membrane for Its Application in Bioengineering Devices. ACS Omega 2023, 8 (4) , 3606-3629. https://doi.org/10.1021/acsomega.2c05983
    10. Ziting Liu, Yaozhen Yi, Shujin Wang, Haixu Dou, Yong Fan, Limei Tian, Jie Zhao, Luquan Ren. Bio-Inspired Self-Adaptive Nanocomposite Array: From Non-antibiotic Antibacterial Actions to Cell Proliferation. ACS Nano 2022, 16 (10) , 16549-16562. https://doi.org/10.1021/acsnano.2c05980
    11. Yunlong Ma, Lan Jiang, Jie Hu, Enjun Zhu, Nan Zhang. Developing a Versatile Multiscale Therapeutic Platform for Osteosarcoma Synergistic Photothermo-Chemotherapy with Effective Osteogenicity and Antibacterial Capability. ACS Applied Materials & Interfaces 2022, 14 (39) , 44065-44083. https://doi.org/10.1021/acsami.2c10772
    12. Sunaina Kaul, Poonam Sagar, Ritika Gupta, Priyanka Garg, Nitesh Priyadarshi, Nitin Kumar Singhal. Mechanobactericidal, Gold Nanostar Hydrogel-Based Bandage for Bacteria-Infected Skin Wound Healing. ACS Applied Materials & Interfaces 2022, 14 (39) , 44084-44097. https://doi.org/10.1021/acsami.2c10844
    13. Jiachun Shen, Danielle Guercio, Ilana L. Heckler, Ting Jiang, Scott T. Laughlin, Elizabeth M. Boon, Surita R. Bhatia. Self-Patterned Nanoscale Topography of Thin Copolymer Films Prepared by Evaporative Assembly-Resist Early-Stage Bacterial Adhesion. ACS Applied Bio Materials 2022, 5 (8) , 3870-3882. https://doi.org/10.1021/acsabm.2c00416
    14. Jinglin Zhang, Huakai Chen, Tongyao Lin, Fengjuan Yang, Jingxian Zhang, Xiang Cai, Yunhua Yang, Peng Zhang, Shaozao Tan. Fabrication of a TiO2@Cu Core–Shell Nanorod Array as Coating for Titanium Substrate with Mechanical and Chemical Dual Antibacterial Property. ACS Applied Bio Materials 2022, 5 (7) , 3349-3359. https://doi.org/10.1021/acsabm.2c00344
    15. Kazuma Fujimoto, Akihiro Saito, Yohei Kotsuchibashi. Cicada-Wing-Inspired Nanopillar Hydrogels Consisting of Poly(vinyl alcohol) and Poly(methacrylic acid) for Capturing Bacteria through Their Flexibility and Wide Range of Motion. ACS Macro Letters 2022, 11 (6) , 727-732. https://doi.org/10.1021/acsmacrolett.2c00126
    16. Francis J. Dent, David Harbottle, Nicholas J. Warren, Sepideh Khodaparast. Temporally Arrested Breath Figure. ACS Applied Materials & Interfaces 2022, 14 (23) , 27435-27443. https://doi.org/10.1021/acsami.2c05635
    17. Chuntian Liu, Meirong Zhao, Dunqiang Lu, Yukai Sun, Le Song, Yelong Zheng. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures. Langmuir 2022, 38 (22) , 6923-6933. https://doi.org/10.1021/acs.langmuir.2c00412
    18. Yahua Liu, Xiaojie Li, Chenguang Lu, Zichao Yuan, Cong Liu, Junqiu Zhang, Lei Zhao. High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove. Langmuir 2022, 38 (13) , 4028-4035. https://doi.org/10.1021/acs.langmuir.2c00023
    19. Henry Agbe, Dilip Kumar Sarkar, X.-Grant Chen. Anodized Aluminum Surface with Topography-Mediated Antibacterial Properties. ACS Biomaterials Science & Engineering 2022, 8 (3) , 1087-1095. https://doi.org/10.1021/acsbiomaterials.1c01485
    20. Denver P. Linklater, Soichiro Saita, Takaaki Murata, Takashi Yanagishita, Chaitali Dekiwadia, Russell J. Crawford, Hideki Masuda, Haruhiko Kusaka, Elena P. Ivanova. Nanopillar Polymer Films as Antibacterial Packaging Materials. ACS Applied Nano Materials 2022, 5 (2) , 2578-2591. https://doi.org/10.1021/acsanm.1c04251
    21. Sara Hawi, Saurav Goel, Vinod Kumar, Oliver Pearce, Wayne Nishio Ayre, Elena P. Ivanova. Critical Review of Nanopillar-Based Mechanobactericidal Systems. ACS Applied Nano Materials 2022, 5 (1) , 1-17. https://doi.org/10.1021/acsanm.1c03045
    22. Rujian Jiang, Yaozhen Yi, Lingwan Hao, Yuxiang Chen, Limei Tian, Haixu Dou, Jie Zhao, Weihua Ming, Luquan Ren. Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. ACS Applied Materials & Interfaces 2021, 13 (51) , 60865-60877. https://doi.org/10.1021/acsami.1c16487
    23. Chuntian Liu, Meirong Zhao, Yelong Zheng, Dunqiang Lu, Le Song. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. ACS Applied Materials & Interfaces 2021, 13 (27) , 32542-32554. https://doi.org/10.1021/acsami.1c08142
    24. Ananta Ghimire, Jie Song. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS Applied Materials & Interfaces 2021, 13 (18) , 20921-20937. https://doi.org/10.1021/acsami.1c01389
    25. Nofar Yehuda, Yury Turkulets, Ilan Shalish, Ariel Kushmaro, Shoshana (Malis) Arad. Red Microalgal Sulfated Polysaccharide–Cu2O Complexes: Characterization and Bioactivity. ACS Applied Materials & Interfaces 2021, 13 (6) , 7070-7079. https://doi.org/10.1021/acsami.0c17919
    26. Chuntian Liu, Meirong Zhao, Yelong Zheng, Luya Cheng, Jiale Zhang, Clarence Augustine T. H. Tee. Coalescence-Induced Droplet Jumping. Langmuir 2021, 37 (3) , 983-1000. https://doi.org/10.1021/acs.langmuir.0c02758
    27. Reza Zandi Shafagh, Joanne X. Shen, Sonia Youhanna, Weijin Guo, Volker M. Lauschke, Wouter van der Wijngaart, Tommy Haraldsson. Facile Nanoimprinting of Robust High-Aspect-Ratio Nanostructures for Human Cell Biomechanics. ACS Applied Bio Materials 2020, 3 (12) , 8757-8767. https://doi.org/10.1021/acsabm.0c01087
    28. Ruwen Tan, Nicolas Marzolini, Peng Jiang, Yeongseon Jang. Bio-Inspired Polymer Thin Films with Non-Close-Packed Nanopillars for Enhanced Bactericidal and Antireflective Properties. ACS Applied Polymer Materials 2020, 2 (12) , 5808-5816. https://doi.org/10.1021/acsapm.0c01054
    29. Sandra L. Arias, Joshua Devorkin, Jessica C. Spear, Ana Civantos, Jean Paul Allain. Bacterial Envelope Damage Inflicted by Bioinspired Nanostructures Grown in a Hydrogel. ACS Applied Bio Materials 2020, 3 (11) , 7974-7988. https://doi.org/10.1021/acsabm.0c01076
    30. Sara Heedy, Michaela E. Marshall, Juviarelli J. Pineda, Eric Pearlman, Albert F. Yee. Synergistic Antimicrobial Activity of a Nanopillar Surface on a Chitosan Hydrogel. ACS Applied Bio Materials 2020, 3 (11) , 8040-8048. https://doi.org/10.1021/acsabm.0c01110
    31. Junho Oh, Jacob B. Hoffman, Sungmin Hong, Kyoo D. Jo, Jessica Román-Kustas, Julian H. Reed, Catherine E. Dana, Donald M. Cropek, Marianne Alleyne, Nenad Miljkovic. Dissolvable Template Nanoimprint Lithography: A Facile and Versatile Nanoscale Replication Technique. Nano Letters 2020, 20 (10) , 6989-6997. https://doi.org/10.1021/acs.nanolett.0c01547
    32. Ze Tian, Zhenglong Lei, Yanbin Chen, Chuan Chen, Ruochen Zhang, Xi Chen, Jiang Bi, Haoran Sun. Inhibition Effectiveness of Laser-Cleaned Nanostructured Aluminum Alloys to Sulfate-reducing Bacteria Based on Superwetting and Ultraslippery Surfaces. ACS Applied Bio Materials 2020, 3 (9) , 6131-6144. https://doi.org/10.1021/acsabm.0c00714
    33. Colm Delaney, Niamh Geoghegan, Hossam Ibrahim, Mark O’Loughlin, Brian J. Rodriguez, Larisa Florea, Susan M. Kelleher. Direct Laser Writing to Generate Molds for Polymer Nanopillar Replication. ACS Applied Polymer Materials 2020, 2 (8) , 3632-3641. https://doi.org/10.1021/acsapm.0c00626
    34. Qianqian Cui, Tianqing Liu, Xiangqin Li, Kedong Song, Dan Ge. Nanopillared Polycarbonate Surfaces Having Variable Feature Parameters as Bactericidal Coatings. ACS Applied Nano Materials 2020, 3 (5) , 4599-4609. https://doi.org/10.1021/acsanm.0c00645
    35. Reshma Y Siddiquie, Anvesh Gaddam, Amit Agrawal, Stefan S. Dimov, Suhas S. Joshi. Anti-Biofouling Properties of Femtosecond Laser-Induced Submicron Topographies on Elastomeric Surfaces. Langmuir 2020, 36 (19) , 5349-5358. https://doi.org/10.1021/acs.langmuir.0c00753
    36. Ji-Hyeon Kim, Junfei Ma, Sungjin Jo, Seunghun Lee, Chang Su Kim. Enhancement of Antibacterial Properties of a Silver Nanowire Film via Electron Beam Irradiation. ACS Applied Bio Materials 2020, 3 (4) , 2117-2124. https://doi.org/10.1021/acsabm.0c00003
    37. Xiaoyuan Wang, Chao Lyu, Songmei Wu, Yuchen Ben, Xiaowei Li, Zhiyuan Ge, Haihan Zou, Dongyan Tian, Yu Yu, Kejian Ding. Electrophoresis-Deposited Mesoporous Graphitic Carbon Nitride Surfaces with Efficient Bactericidal Properties. ACS Applied Bio Materials 2020, 3 (4) , 2255-2262. https://doi.org/10.1021/acsabm.0c00061
    38. Mihaela Mateescu, Stephan Knopf, Frédéric Mermet, Philippe Lavalle, Laurent Vonna. Role of Trapped Air in the Attachment of Staphylococcus aureus on Superhydrophobic Silicone Elastomer Surfaces Textured by a Femtosecond Laser. Langmuir 2020, 36 (5) , 1103-1112. https://doi.org/10.1021/acs.langmuir.9b03170
    39. Jing Ren, Yu Wang, Yuan Yao, Yang Wang, Xiang Fei, Ping Qi, Shihui Lin, David L. Kaplan, Markus J. Buehler, Shengjie Ling. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews 2019, 119 (24) , 12279-12336. https://doi.org/10.1021/acs.chemrev.9b00416
    40. Tianqing Liu, Qianqian Cui, Qiqi Wu, Xiangqin Li, Kedong Song, Dan Ge, Shui Guan. Mechanism Study of Bacteria Killed on Nanostructures. The Journal of Physical Chemistry B 2019, 123 (41) , 8686-8696. https://doi.org/10.1021/acs.jpcb.9b07732
    41. Julian H. Reed, Andrew E. Gonsalves, Jessica K. Román, Junho Oh, Hyeongyun Cha, Catherine E. Dana, Marco Toc, Sungmin Hong, Jacob B. Hoffman, Juan E. Andrade, Kyoo D. Jo, Marianne Alleyne, Nenad Miljkovic, Donald M. Cropek. Ultrascalable Multifunctional Nanoengineered Copper and Aluminum for Antiadhesion and Bactericidal Applications. ACS Applied Bio Materials 2019, 2 (7) , 2726-2737. https://doi.org/10.1021/acsabm.8b00765
    42. Jafar Hasan, Anindo Roy, Kaushik Chatterjee, Prasad K. D. V. Yarlagadda. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomaterials Science & Engineering 2019, 5 (7) , 3139-3160. https://doi.org/10.1021/acsbiomaterials.9b00217
    43. Han-Xiong Huang, Yue An. Fabrication and Condensate Microdrop Self-Propelling of Biomimetic Nanostructured Polymer Surfaces without Chemical Modification. ACS Applied Polymer Materials 2019, 1 (5) , 939-943. https://doi.org/10.1021/acsapm.9b00200
    44. Xiao Yan, Leicheng Zhang, Soumyadip Sett, Lezhou Feng, Chongyan Zhao, Zhiyong Huang, Hamed Vahabi, Arun K. Kota, Feng Chen, Nenad Miljkovic. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. ACS Nano 2019, 13 (2) , 1309-1323. https://doi.org/10.1021/acsnano.8b06677
    45. Kazuki Nakade, Keisuke Jindai, Takashi Sagawa, Hiroaki Kojima, Tomohiro Shimizu, Shoso Shingubara, Takeshi Ito. Adhesion and Bactericidal Properties of a Wettability-Controlled Artificial Nanostructure. ACS Applied Nano Materials 2018, 1 (10) , 5736-5741. https://doi.org/10.1021/acsanm.8b01340
    46. Abinash Tripathy, Suman Pahal, Rajeev J. Mudakavi, Ashok M. Raichur, Manoj M. Varma, Prosenjit Sen. Impact of Bioinspired Nanotopography on the Antibacterial and Antibiofilm Efficacy of Chitosan. Biomacromolecules 2018, 19 (4) , 1340-1346. https://doi.org/10.1021/acs.biomac.8b00200
    47. Abinash Tripathy, Syama Sreedharan, Chetana Bhaskarla, Shamik Majumdar, Sudheer Kumar Peneti, Dipankar Nandi, and Prosenjit Sen . Enhancing the Bactericidal Efficacy of Nanostructured Multifunctional Surface Using an Ultrathin Metal Coating. Langmuir 2017, 33 (44) , 12569-12579. https://doi.org/10.1021/acs.langmuir.7b02291
    48. Junho Oh, Catherine E. Dana, Sungmin Hong, Jessica K. Román, Kyoo Dong Jo, Je Won Hong, Jonah Nguyen, Donald M. Cropek, Marianne Alleyne, and Nenad Miljkovic . Exploring the Role of Habitat on the Wettability of Cicada Wings. ACS Applied Materials & Interfaces 2017, 9 (32) , 27173-27184. https://doi.org/10.1021/acsami.7b07060
    49. Chaturanga D. Bandara, Sanjleena Singh, Isaac O. Afara, Annalena Wolff, Tuquabo Tesfamichael, Kostya Ostrikov, and Adekunle Oloyede . Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli. ACS Applied Materials & Interfaces 2017, 9 (8) , 6746-6760. https://doi.org/10.1021/acsami.6b13666
    50. Chuang Qu, Jesse Rozsa, Mark Running, Shamus McNamara, Kevin Walsh. I-GLAD: a new strategy for fabricating antibacterial surfaces. Discover Nano 2024, 19 (1) https://doi.org/10.1186/s11671-024-03959-0
    51. Chuntian Liu, Hengrui Cui, Jinwei Guo, Shiyu Zhang, Meirong Zhao, Le Song, Yelong Zheng. Non-frontal coalescence jumping of a rolling and a static droplet. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 690 , 133788. https://doi.org/10.1016/j.colsurfa.2024.133788
    52. Jing Zhu, Chongyi Wei, Yuan Zhang, Ji Yang, Jun Qiao, Xiaolei Zhu, Gianfranco Palumbo. Corrosion and Biofouling Behaviors of Self‐Organized Structures on Steel Surface Fabricated by Femtosecond Laser. steel research international 2024, 102 https://doi.org/10.1002/srin.202400156
    53. Sol Youn, Mi-Ran Ki, Mohamed A. A. Abdelhamid, Seung-Pil Pack. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics 2024, 9 (5) , 278. https://doi.org/10.3390/biomimetics9050278
    54. Yu Jiang, Zhou Wan, Qi Liu, Xinxin Li, Bo Jiang, Mudan Guo, Pengjue Fan, Siyi Du, Doudou Xu, Chen Liu. Enhancing antibacterial properties of titanium implants through a novel Ag-TiO 2 -OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach. Journal of Biomaterials Science, Polymer Edition 2024, , 1-22. https://doi.org/10.1080/09205063.2024.2344332
    55. Kaikai Xu, Pengfei Zhang, Yan Zhang, Yanfang Zhang, Limin Li, Yanfeng Shi, Xueyun Wen, Yuanhong Xu. MoOxNWs with mechanical damage – oriented synergistic photothermal / photodynamic therapy for highly effective treating wound infections. Journal of Colloid and Interface Science 2024, 660 , 235-245. https://doi.org/10.1016/j.jcis.2024.01.025
    56. Yunjie Xu, Linlin Tian, Chunling Zhu, Ning Zhao. Enhanced cascaded lattice Boltzmann model for multiphase flow simulations at large density ratio. Computers & Mathematics with Applications 2024, 159 , 92-101. https://doi.org/10.1016/j.camwa.2024.01.020
    57. Rahul Kumar, Mansoureh Rezapourian, Ramin Rahmani, Himanshu S. Maurya, Nikhil Kamboj, Irina Hussainova. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics 2024, 9 (4) , 209. https://doi.org/10.3390/biomimetics9040209
    58. Ayodeji T. Bode-Oke, Alec Menzer, Haibo Dong. Postural Change of the Annual Cicada (Tibicen linnei) Helps Facilitate Backward Flight. Biomimetics 2024, 9 (4) , 233. https://doi.org/10.3390/biomimetics9040233
    59. Fangbin Wang, Jing Qi, Liang Zhu. Ag/MoS2 nanozyme-modified ZnO nanopillar surface for enhanced synergistic mechanical and chemical antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 687 , 133494. https://doi.org/10.1016/j.colsurfa.2024.133494
    60. Jessica McFadden, Graham Reid, Lucia Podhorska, Brian J. Rodriguez, Eoin Casey, Susan M. Kelleher. The Antibacterial Activity of Hierarchical Patterns of Nanostructured Silicon Fabricated Using Block Copolymer Micelle Lithography. Advanced Engineering Materials 2024, 26 (8) https://doi.org/10.1002/adem.202301663
    61. Abid Ali, David Culliton, Shah Fahad, Zafar Ali, En-Tang Kang, Liqun Xu. Nature-inspired anti-fouling strategies for combating marine biofouling. Progress in Organic Coatings 2024, 189 , 108349. https://doi.org/10.1016/j.porgcoat.2024.108349
    62. Yuzheng Wu, Pei Liu, Babak Mehrjou, Paul K. Chu. Interdisciplinary‐Inspired Smart Antibacterial Materials and Their Biomedical Applications. Advanced Materials 2024, 36 (17) https://doi.org/10.1002/adma.202305940
    63. Qiudi Shen, Jing Kang, Xuewen Zhao, Wanqing Lou, Zhihao Li, Lihui Zhang, Bo Zhang, Jinying Zhang, Bailiang Wang, Alideertu Dong. Bacterial elimination via cell membrane penetration by violet phosphorene peripheral sub-nanoneedles combined with oxidative stress. Chemical Science 2024, 15 (13) , 4926-4937. https://doi.org/10.1039/D3SC05517E
    64. , N. L. M. Shamsuddin, K. Mohamed, . The fabrication process of polydimethylsiloxane (PDMS) nanostructured films with antimicrobial properties against methicillin-resistant staphylococcus aureus (MRSA). Digest Journal of Nanomaterials and Biostructures 2024, 19 (1) , 325-335. https://doi.org/10.15251/DJNB.2024.191.325
    65. Ning Tan, Jisun Im, Nigel Neate, Ricky D. Wildman, Georgina Elizabeth Marsh, Maxine Swee Li Yee. Revolutionizing Antibacterial Surfaces: 3D Printed Nanoscale and Microscale Topographies through Two-Photon Polymerization. Key Engineering Materials 2024, 977 , 163-172. https://doi.org/10.4028/p-9mqIpb
    66. Junhao Sui, Yijin Hou, Mengchen Chen, Zhong Zheng, Xiangyu Meng, Lu Liu, Shicheng Huo, Shu Liu, Hao Zhang. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. Coatings 2024, 14 (3) , 254. https://doi.org/10.3390/coatings14030254
    67. Richard W. van Nieuwenhoven, Alexander M. Bürger, Laura L. E. Mears, Philip Kienzl, Manuel Reithofer, Adelheid Elbe-Bürger, Ille C. Gebeshuber. Verifying antibacterial properties of nanopillars on cicada wings. Applied Nanoscience 2024, 14 (3) , 531-541. https://doi.org/10.1007/s13204-024-03030-5
    68. Graham Reid, Lucia Podhorska, Jessica Mc Fadden, Robert O’Connor, Brian J. Rodriguez, Laura Quinn, Dishon Hiebner, Eoin Casey, Susan M. Kelleher. Insights into the feature size required for the death of Pseudomonas fluorescens on nanostructured silicon fabricated by block copolymer lithography. Materials Today Communications 2024, 38 , 108386. https://doi.org/10.1016/j.mtcomm.2024.108386
    69. Divya Chopra, Tianqi Guo, Anjana Jayasree, Karan Gulati, Sašo Ivanovski. Bioinspired, Bioactive, and Bactericidal: Anodized Nanotextured Dental Implants. Advanced Functional Materials 2024, 17 https://doi.org/10.1002/adfm.202314031
    70. Shao‐Chen Lu, Hsiu‐Wen Chien, Shih‐Hsien Yu, Wei‐Cheng Chen, Hsiu‐Hui Chen. Dual‐Coating of Fluorinated Polydimethylsiloxane/Fluorinated SiO 2 Nanoparticles for Superhydrophobic and High‐Efficiency Bacteriostatic Surface. ChemPhysChem 2024, 25 (3) https://doi.org/10.1002/cphc.202300388
    71. Hee-Kyeong Kim, Hyeon Woo Baek, Hyun-Ha Park, Young-Sam Cho. Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure. Colloids and Surfaces B: Biointerfaces 2024, 234 , 113729. https://doi.org/10.1016/j.colsurfb.2023.113729
    72. Yuan Zhang, Guangfeng Li, Jian Wang, Fengjin Zhou, Xiaoxiang Ren, Jiacan Su. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. Small 2024, 20 (8) https://doi.org/10.1002/smll.202302506
    73. Penggong Wei, Ning Wang, Qiyue Zhang, Wanfeng Wang, Hui Sun, Zengqian Liu, Tingting Yan, Qiang Wang, Lihong Qiu. Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair. Regenerative Biomaterials 2024, 11 https://doi.org/10.1093/rb/rbae051
    74. Yanyan Chen, Santosh Pandit, Shadi Rahimi, Ivan Mijakovic. “Graphene nanospikes exert bactericidal effect through mechanical damage and oxidative stress”. Carbon 2023, 400 , 118740. https://doi.org/10.1016/j.carbon.2023.118740
    75. Qiang Ma, Yi-Feng Wang, Yi-Bo Wang, Ben-Xi Zhang, Shao-Fei Zheng, Yan-Ru Yang, Duu-Jong Lee, Xiao-Dong Wang. Pancake bouncing of nanodroplets impacting superhydrophobic surfaces. Applied Surface Science 2023, 639 , 158273. https://doi.org/10.1016/j.apsusc.2023.158273
    76. Adrian H. A. Lutey, Luca Romoli, Janggeon Lee, Masanori Kunieda. Tailoring microbial response to stainless steel surfaces via electrolyte jet machining and electrodeposition. The International Journal of Advanced Manufacturing Technology 2023, 129 (1-2) , 727-738. https://doi.org/10.1007/s00170-023-12324-x
    77. Neda Norouzi, Willem Woudstra, Edmund J.W. Smith, Gulnur Zulpukarova, Kaili Yao, Viraj G. Damle, Romana Schirhagl, Paul W. May, Tom Kamp. Antimicrobial Studies of Black Silicon and Black Diamond Using Gram‐Positive Bacteria. Advanced Engineering Materials 2023, 25 (21) https://doi.org/10.1002/adem.202301031
    78. Hua Zhou, Qingshuo Li, Zhong Zhang, Xungai Wang, Haitao Niu. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. Advanced Fiber Materials 2023, 5 (5) , 1555-1591. https://doi.org/10.1007/s42765-023-00297-1
    79. S. P. S. N. Buddhika Sampath Kumara, S. W. M. Amal Ishantha Senevirathne, Asha Mathew, Laura Bray, Mohammad Mirkhalaf, Prasad K. D. V. Yarlagadda. Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications. Nanomaterials 2023, 13 (20) , 2799. https://doi.org/10.3390/nano13202799
    80. Xinhua Liu, Boqiang Cui, Xuechuan Wang, Manhui Zheng, Zhongxue Bai, Ouyang Yue, Yifan Fei, Huie Jiang. Nature‐Skin‐Derived e‐Skin as Versatile “Wound Therapy‐Health Monitoring” Bioelectronic Skin‐Scaffolds: Skin to Bio‐e‐Skin. Advanced Healthcare Materials 2023, 12 (20) https://doi.org/10.1002/adhm.202202971
    81. Xiang-yu Xiao, Xiu-hui Huang, Zhi-yuan Yu, Da-min Cao, Shuo Chen, Jia-yi Zhao. Numerical study of the coalescence-induced droplet jumping with macrotexture based on single-phase model. Physics of Fluids 2023, 35 (7) https://doi.org/10.1063/5.0156174
    82. Babak Mehrjou, Yuzheng Wu, Pei Liu, Guomin Wang, Paul K. Chu. Design and Properties of Antimicrobial Biomaterials Surfaces. Advanced Healthcare Materials 2023, 12 (16) https://doi.org/10.1002/adhm.202202073
    83. Shobana Rajaramon, Helma David, Anusree Sajeevan, Karthi Shanmugam, Hrithiha Sriramulu, Rambabu Dandela, Adline Princy Solomon. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review. Frontiers in Cellular and Infection Microbiology 2023, 13 https://doi.org/10.3389/fcimb.2023.1139026
    84. María del Rosario Agustín, Peter Stengel, Matthias Kellermeier, Katrin-Stephanie Tücking, Mareike Müller. Monitoring Growth and Removal of Pseudomonas Biofilms on Cellulose-Based Fabrics. Microorganisms 2023, 11 (4) , 892. https://doi.org/10.3390/microorganisms11040892
    85. Katia Iskandar, Sophie Pecastaings, Céline LeGac, Sylvie Salvatico, Catherine Feuillolay, Mylène Guittard, Loïc Marchin, Marc Verelst, Christine Roques. Demonstrating the In Vitro and In Situ Antimicrobial Activity of Oxide Mineral Microspheres: An Innovative Technology to Be Incorporated into Porous and Nonporous Materials. Pharmaceutics 2023, 15 (4) , 1261. https://doi.org/10.3390/pharmaceutics15041261
    86. Majedul Islam, Falah Sahal S. Aldawsari, Prasad K. D. V. Yarlagadda. Finite Element Modelling of a Gram-Negative Bacterial Cell and Nanospike Array for Cell Rupture Mechanism Study. Molecules 2023, 28 (5) , 2184. https://doi.org/10.3390/molecules28052184
    87. Jindi Lai, Anfu Chen, Jing Li, Yameng Pei, Seyed Ataollah Naghavi, Caihong Lei, Chaozong Liu, Lijia Huang. Bio-inspired mechanically robust superhydrophobic polypropylene surfaces embedded with silicon carbide whiskers for enhancing bactericidal performance. Journal of Materials Research and Technology 2023, 23 , 998-1012. https://doi.org/10.1016/j.jmrt.2023.01.069
    88. S.K. Kirthika, Gaurav Goel, Allan Matthews, Saurav Goel. Review of the untapped potentials of antimicrobial materials in the construction sector. Progress in Materials Science 2023, 133 , 101065. https://doi.org/10.1016/j.pmatsci.2022.101065
    89. Rakesh Pemmada, Aishwary Shrivastava, Madhusmita Dash, Kuiyan Cui, Prasoon Kumar, Seeram Ramakrishna, Yubin Zhou, Vinoy Thomas, Himansu Sekhar Nanda. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings. Current Opinion in Biomedical Engineering 2023, 25 , 100442. https://doi.org/10.1016/j.cobme.2022.100442
    90. Sruthi Venugopal Oopath, Avinash Baji, Mojtaba Abtahi, Trong Quan Luu, Krasimir Vasilev, Vi Khanh Truong. Nature‐Inspired Biomimetic Surfaces for Controlling Bacterial Attachment and Biofilm Development. Advanced Materials Interfaces 2023, 10 (4) https://doi.org/10.1002/admi.202201425
    91. Nasim Mahmoodi, Dario G. Bazzoli, Tim W. Overton, Paula M. Mendes. Plasma Activation and its Nanoconfinement Effects Boost Surface Anti‐Biofouling Performance. Advanced Materials Interfaces 2023, 10 (6) https://doi.org/10.1002/admi.202202087
    92. Sébastien R. Mouchet, Charlotte Verstraete, Bojana Bokic, Dimitrije Mara, Louis Dellieu, Albert G. Orr, Olivier Deparis, Rik Van Deun, Thierry Verbiest, Pete Vukusic, Branko Kolaric. Revealing natural fluorescence in transparent insect wings by linear and nonlinear optical techniques. Journal of Luminescence 2023, 254 , 119490. https://doi.org/10.1016/j.jlumin.2022.119490
    93. Pedro Castillo, Leire Goñi‐Ciaurriz, Felipe Olate‐Moya, Roberto Bastías, Sara Farias, Humberto Palza. Polyethylene with MoS 2 nanoparticles toward antibacterial active packaging. Journal of Applied Polymer Science 2023, 140 (3) https://doi.org/10.1002/app.53323
    94. Jie Wang, Ping Li, Ning Wang, Jing Wang, Dongming Xing. Antibacterial features of material surface: strong enough to serve as antibiotics?. Journal of Materials Chemistry B 2023, 11 (2) , 280-302. https://doi.org/10.1039/D2TB02139K
    95. P. Sriyutha Murthy, Y. Venkat Nanchariah, S. Venkatnarayanan, Arindam Das, T.V. Krishna Mohan. Antifouling mechanisms in and beyond nature: leverages in realization of bioinspired biomimetic antifouling coatings. 2023, 329-362. https://doi.org/10.1016/B978-0-323-91762-9.00013-7
    96. Kushal Yadav, Aditya Kumar. Introduction of smart coatings in various directions. 2023, 219-238. https://doi.org/10.1016/B978-0-323-99291-6.00017-7
    97. Ashwin Kannan. From understanding bacterial interactions to developing bactericidal surfaces. 2023, 41-57. https://doi.org/10.1016/B978-0-323-99977-9.00007-7
    98. 帅 王. Numerical Simulation of Jump Induced by Coalescence of Static and Static Droplets. International Journal of Fluid Dynamics 2023, 11 (03) , 81-93. https://doi.org/10.12677/IJFD.2023.113008
    99. Meng-Shiue Lee, Hussein Reda Hussein, Sheng-Wen Chang, Chia-Yu Chang, Yi-Ying Lin, Yueh Chien, Yi-Ping Yang, Lik-Voon Kiew, Ching-Yun Chen, Shih-Hwa Chiou, Chia-Ching Chang. Nature-Inspired Surface Structures Design for Antimicrobial Applications. International Journal of Molecular Sciences 2023, 24 (2) , 1348. https://doi.org/10.3390/ijms24021348
    100. Jian-Zhi Yang, Yong-Qing He, Feng Jiao, Jin Wang, , , . Influence factors and kinetic analysis of liquid marbles colliding with sessile droplets. Acta Physica Sinica 2023, 72 (16) , 164702. https://doi.org/10.7498/aps.72.20230815
    Load more citations