Control of Triboelectrification by Engineering Surface Dipole and Surface Electronic StateClick to copy article linkArticle link copied!
Abstract

Although triboelectrification is a well-known phenomenon, fundamental understanding of its principle on a material surface has not been studied systematically. Here, we demonstrated that the surface potential, especially the surface dipoles and surface electronic states, governed the triboelectrification by controlling the surface with various electron-donating and -withdrawing functional groups. The functional groups critically affected the surface dipoles and surface electronic states followed by controlling the amount of and even the polarity of triboelectric charges. As a result, only one monolayer with a thickness of less than 1 nm significantly changed the conventional triboelectric series. First-principles simulations confirmed the atomistic origins of triboelectric charges and helped elucidate the triboelectrification mechanism. The simulation also revealed for the first time where charges are retained after triboelectrification. This study provides new insights to understand triboelectrification.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 112 publications.
- Ignacio Collado, José Sánchez del Río Saez, Jimena de la Vega, Antonio Vázquez-López. Energy from Waste: Triboelectric Nanogenerators from Fully Fabric Materials for Smart Textiles. An Introductory Activity for Fine Arts and Design Students. Journal of Chemical Education 2024, 101
(12)
, 5324-5333. https://doi.org/10.1021/acs.jchemed.4c00885
- Osvalds Verners. Water-Assisted Contact Electrification Properties of Selected Polymers and Surface Functionalization Molecules: A Computational Study. The Journal of Physical Chemistry B 2024, 128
(8)
, 1975-1986. https://doi.org/10.1021/acs.jpcb.3c05716
- Gregory Amato, Natalia Vargas Perdomo, Nianyue Zhang, Xiaoshi Xie, Jie Ji, Cansu Bolukbas, Zhen Wen, Rafik Naccache, Yuan Fang, Diana Consuelo Rodríguez Burbano, Oleksandr Ivasenko, Louis Cuccia. A Pedagogical Approach to Assemble and Characterize Paper-Based Triboelectric Nanogenerators. Journal of Chemical Education 2023, 100
(12)
, 4917-4924. https://doi.org/10.1021/acs.jchemed.3c00684
- Osvalds Verners, Amit Das. Comparison of Contact Electrification Mechanisms of Selected Polymers and Surface-Functionalized Molecules. The Journal of Physical Chemistry B 2023, 127
(46)
, 10035-10042. https://doi.org/10.1021/acs.jpcb.3c04817
- Minki Kang, Dong-Min Lee, Inah Hyun, Najaf Rubab, So-Hee Kim, Sang-Woo Kim. Advances in Bioresorbable Triboelectric Nanogenerators. Chemical Reviews 2023, 123
(19)
, 11559-11618. https://doi.org/10.1021/acs.chemrev.3c00301
- Dongwhi Choi, Younghoon Lee, Zong-Hong Lin, Sumin Cho, Miso Kim, Chi Kit Ao, Siowling Soh, Changwan Sohn, Chang Kyu Jeong, Jeongwan Lee, Minbaek Lee, Seungah Lee, Jungho Ryu, Parag Parashar, Yujang Cho, Jaewan Ahn, Il-Doo Kim, Feng Jiang, Pooi See Lee, Gaurav Khandelwal, Sang-Jae Kim, Hyun Soo Kim, Hyun-Cheol Song, Minje Kim, Junghyo Nah, Wook Kim, Habtamu Gebeyehu Menge, Yong Tae Park, Wei Xu, Jianhua Hao, Hyosik Park, Ju-Hyuck Lee, Dong-Min Lee, Sang-Woo Kim, Ji Young Park, Haixia Zhang, Yunlong Zi, Ru Guo, Jia Cheng, Ze Yang, Yannan Xie, Sangmin Lee, Jihoon Chung, Il-Kwon Oh, Ji-Seok Kim, Tinghai Cheng, Qi Gao, Gang Cheng, Guangqin Gu, Minseob Shim, Jeehoon Jung, Changwoo Yun, Chi Zhang, Guoxu Liu, Yufeng Chen, Suhan Kim, Xiangyu Chen, Jun Hu, Xiong Pu, Zi Hao Guo, Xudong Wang, Jun Chen, Xiao Xiao, Xing Xie, Mourin Jarin, Hulin Zhang, Ying-Chih Lai, Tianyiyi He, Hakjeong Kim, Inkyu Park, Junseong Ahn, Nghia Dinh Huynh, Ya Yang, Zhong Lin Wang, Jeong Min Baik, Dukhyun Choi. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS Nano 2023, 17
(12)
, 11087-11219. https://doi.org/10.1021/acsnano.2c12458
- Jieni Zhou, Mang Gao, Junho Choi. Enhancement of Output Power and Durability of DLC-Based Sliding TENGs Modified with Self-Assembled Monolayers. ACS Applied Electronic Materials 2023, 5
(5)
, 2853-2861. https://doi.org/10.1021/acsaelm.3c00340
- Meng-Fang Lin, Po-Yen Chang, Chia-Hsien Lee, Xin-Xian Wu, Ru-Jong Jeng, Chih-Ping Chen. Biowaste Eggshell Membranes for Bio-triboelectric Nanogenerators and Smart Sensors. ACS Omega 2023, 8
(7)
, 6699-6707. https://doi.org/10.1021/acsomega.2c07292
- Jinyang Zhang, Shiquan Lin, Zhong Lin Wang. Triboelectric Nanogenerator Array as a Probe for In Situ Dynamic Mapping of Interface Charge Transfer at a Liquid–Solid Contacting. ACS Nano 2023, 17
(2)
, 1646-1652. https://doi.org/10.1021/acsnano.2c11633
- Seokwon Joo, Jong Hyeok Kim, Chae-Eun Lee, Jeongmin Kang, Soonmin Seo, Ju-Hyung Kim, Yoon-Kyu Song. Eco-Friendly Keratin-Based Additives in the Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. ACS Applied Bio Materials 2022, 5
(12)
, 5706-5715. https://doi.org/10.1021/acsabm.2c00736
- Wimonsiri Intarabumrung, Saman Kuntharin, Viyada Harnchana, Teerayut Prada, Pornnapa Kasemsiri, Andrew J. Hunt, Nontipa Supanchaiyamat. Facile Synthesis of Biobased Polyamide Derived from Epoxidized Soybean Oil as a High-Efficiency Triboelectric Nanogenerator. ACS Sustainable Chemistry & Engineering 2022, 10
(41)
, 13680-13691. https://doi.org/10.1021/acssuschemeng.2c03592
- Andrew C. Antony, Sushmit Goyal, Hyunhang Park, Joy Banerjee, Nicholas J. Smith, Gabriel Agnello, Robert G. Manley. Passivation of Mid-Gap Electronic States at Calcium Aluminosilicate Glass Surfaces upon Water Exposure: An Ab Initio Study. The Journal of Physical Chemistry B 2022, 126
(39)
, 7709-7719. https://doi.org/10.1021/acs.jpcb.2c02550
- Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Contact Electrification at the Liquid–Solid Interface. Chemical Reviews 2022, 122
(5)
, 5209-5232. https://doi.org/10.1021/acs.chemrev.1c00176
- Seung-Mo Kang, Han Eol Lee, Hee Seung Wang, Jung Ho Shin, Woosung Jo, Yung Lee, Hyunhwan Lee, Daewon Lee, Yun Hyeok Kim, Taek-Soo Kim, Keon Jae Lee, Byeong-Soo Bae. Self-Powered Flexible Full-Color Display via Dielectric-Tuned Hybrimer Triboelectric Nanogenerators. ACS Energy Letters 2021, 6
(11)
, 4097-4107. https://doi.org/10.1021/acsenergylett.1c01729
- Jinyang Zhang, Shiquan Lin, Mingli Zheng, Zhong Lin Wang. Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces. ACS Nano 2021, 15
(9)
, 14830-14837. https://doi.org/10.1021/acsnano.1c04903
- Shiquan Lin, Mingli Zheng, Jianjun Luo, Zhong Lin Wang. Effects of Surface Functional Groups on Electron Transfer at Liquid–Solid Interfacial Contact Electrification. ACS Nano 2020, 14
(8)
, 10733-10741. https://doi.org/10.1021/acsnano.0c06075
- Chanho Park, Min Koo, Giyoung Song, Suk Man Cho, Han Sol Kang, Tae Hyun Park, Eui Hyuk Kim, Cheolmin Park. Surface-Conformal Triboelectric Nanopores via Supramolecular Ternary Polymer Assembly. ACS Nano 2020, 14
(1)
, 755-766. https://doi.org/10.1021/acsnano.9b07746
- Qiang Li, In Ho Cho, Rana Biswas, Jaeyoun Kim. Nanoscale Modulation of Friction and Triboelectrification via Surface Nanotexturing. Nano Letters 2019, 19
(2)
, 850-856. https://doi.org/10.1021/acs.nanolett.8b04038
- Ayelet Vilan, Dinesh Aswal, and David Cahen . Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chemical Reviews 2017, 117
(5)
, 4248-4286. https://doi.org/10.1021/acs.chemrev.6b00595
- Doga Doganay, Mete Batuhan Durukan, Murathan Cugunlular, Onuralp Cakir, Melih Ogeday Cicek, Onur Demircioglu, Di Wei, Husnu Emrah Unalan. Triboelectric nanogenerators from fundamentals to applications. Nano Energy 2025, 138 , 110825. https://doi.org/10.1016/j.nanoen.2025.110825
- Yue Zhou, Xin Dai, Xin Shi, Liupeng Zhao, Tianshuang Wang, Fangmeng Liu, Xu Yan, Xiaoteng Jia, Peng Sun, Geyu Lu. Artificial Tactile Perception for Object Recognition and Grab via Multifunctional Ionic Fiber‐Based Sensor System. Advanced Functional Materials 2025, 15 https://doi.org/10.1002/adfm.202504314
- Lin Huang, Guangzhao Huang, Dandan Zhang, Xiangyu Chen. Diversified applications of triboelectric and electrostatic effect. Friction 2025, 13
(2)
, 9440893. https://doi.org/10.26599/FRICT.2025.9440893
- Wei Li, Lei Zhu, Liran Ma, Xuefeng Xu. Dynamics of electron transfer and coupling between charging and discharging in triboelectrification between insulators. Friction 2025, 13
(2)
, 9440931. https://doi.org/10.26599/FRICT.2025.9440931
- Xinyi Huo, Shaoxin Li, Bing Sun, Zhong Lin Wang, Di Wei. Recent Progress of Chemical Reactions Induced by Contact Electrification. Molecules 2025, 30
(3)
, 584. https://doi.org/10.3390/molecules30030584
- Jia Tian, Yue He, Fangpei Li, Wenbo Peng, Yongning He. A comprehensive review on the mechanism of contact electrification. Journal of Materials Chemistry A 2025, 13
(4)
, 2505-2536. https://doi.org/10.1039/D4TA07756C
- Rachana I. Malekar, Rajashree M. Hodlur, Mohammad Hussain Kasim Rabinal. Molecularly Modified Electrodes for Efficient Triboelectric Nanogenerators. Energy Technology 2025, 13
(1)
https://doi.org/10.1002/ente.202401029
- Yizhou Wang, Lin Shi, Tianchao Guo, Chen Liu, Zhengnan Tian, Yusuf Khan, Husam N. Alshareef. Control of crystal orientation for enhanced triboelectric nanogenerator design. Nano Energy 2024, 131 , 110286. https://doi.org/10.1016/j.nanoen.2024.110286
- J. Alvarez-Quintana. The population growth model of electrostatic charges: A novel concept for engineering optimal performance triboelectric nanogenerators. Sustainable Energy Technologies and Assessments 2024, 70 , 103951. https://doi.org/10.1016/j.seta.2024.103951
- Līva Ģērmane, Astrīda Bērziņa, Raivis Eglītis, Mairis Iesalnieks, Jānis Lungevičs, Artis Linarts, Andris Šutka, Linards Lapčinskis. Physical and Chemical Surface Modification of Recycled Polystyrene Films for Improved Triboelectric Properties. Energy Technology 2024, 12
(9)
https://doi.org/10.1002/ente.202400762
- Egbert Zojer. Electrostatically Designing Materials and Interfaces. Advanced Materials 2024, 40 https://doi.org/10.1002/adma.202406178
- Yuxin Ma, Chuanhui Wei, Zixun Wang, Tianmei Lv, Yingxue Tan, Jianlei He, Xiao Peng, Kai Dong. Precise chemical regulation of polar groups to enhance the charge transfer density of cellulosic triboelectric textiles. Journal of Materials Chemistry A 2024, 12
(28)
, 17702-17713. https://doi.org/10.1039/D4TA02816C
- Zhiqiang Wang, Chenxu Chen, Rihong Ye, Salvinder Singh Karam Singh, Shaofeng Wu, Xu Zhao. Review of triboelectricity-controlled fluid technologies for enhancing the lubrication performance on the coupled surface. Tribology International 2024, 195 , 109584. https://doi.org/10.1016/j.triboint.2024.109584
- Ling Ding, Zhan Wei, Na Sun, Yawei Cai, Yanhong Zhou, Kan Fang, Guigen Wang. Photo-Enhanced Lead-Free Antimony-Based perovskite triboelectric nanogenerator for Dual-Mode detector. Chemical Engineering Journal 2024, 487 , 150395. https://doi.org/10.1016/j.cej.2024.150395
- Yisha Jiang, Yitian Wu, Guoheng Xu, Senyao Wang, Tingting Mei, Nannan Liu, Tao Wang, Yude Wang, Kai Xiao. Charges Transfer in Interfaces for Energy Generating. Small Methods 2024, 8
(4)
https://doi.org/10.1002/smtd.202300261
- James R. Middleton, Mojtaba Ghadiri, Andrew J. Scott. Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations. Pharmaceutics 2024, 16
(3)
, 433. https://doi.org/10.3390/pharmaceutics16030433
- Chen Cao, Zhongjie Li, Fan Shen, Qin Zhang, Ying Gong, Hengyu Guo, Yan Peng, Zhong Lin Wang. Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy & Environmental Science 2024, 17
(3)
, 885-924. https://doi.org/10.1039/D3EE03520D
- Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Electron transfer in liquid–solid contact electrification and double-layer formation. 2024, 576-599. https://doi.org/10.1016/B978-0-323-85669-0.00142-2
- K. Paige Williams, Noah Hann-Deschaine, Div Chamria, Hans T. Benze, Ramesh Y. Adhikari. Facile fabrication of triboelectric nanogenerators based on paper and natural rubber as low-cost bio-derived materials. Discover Materials 2023, 3
(1)
https://doi.org/10.1007/s43939-023-00036-8
- Yahui Li, Qi Zhang, Yuhong Cao, Zhipeng Kang, Han Ren, Zhiyuan Hu, Mang Gao, Xiaole Ma, Jinyuan Yao, Yan Wang, Congchun Zhang, Guifu Ding, Junshan Liu, Jiming Bao, Hui Wang, Zhuoqing Yang. A constant-current generator
via
water droplets driving Schottky diodes without a rectifying circuit. Energy & Environmental Science 2023, 16
(10)
, 4620-4629. https://doi.org/10.1039/D3EE02280C
- Bin Luo, Chenchen Cai, Tao Liu, Xiangjiang Meng, Xinli Zhuang, Yanhua Liu, Cong Gao, Mingchao Chi, Song Zhang, Jinlong Wang, Yayu Bai, Shuangfei Wang, Shuangxi Nie. Multiscale Structural Nanocellulosic Triboelectric Aerogels Induced by Hofmeister Effect. Advanced Functional Materials 2023, 33
(42)
https://doi.org/10.1002/adfm.202306810
- Kangpyo Lee, HyukSu Han, Jeong Ho Ryu, Sukhyun Kang, Kyunghwan Jung, Young-Kwang Kim, Taeseup Song, Sungwook Mhin, Kang Min Kim. Laser-driven formation of ZnSnO3/CNT heterostructure and its critical role in boosting performance of the triboelectric nanogenerator. Carbon 2023, 212 , 118120. https://doi.org/10.1016/j.carbon.2023.118120
- M. Edith Navarro-Segura, Margarita Sánchez-Domínguez, Ana Arizmendi-Morquecho, J. Alvarez-Quintana. Triboelectric nanogenerator based on electrodeposited Ag octahedral nano-assemblies. Journal of Energy Chemistry 2023, 83 , 478-495. https://doi.org/10.1016/j.jechem.2023.04.041
- Minsoo P. Kim. Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review. Micromachines 2023, 14
(8)
, 1640. https://doi.org/10.3390/mi14081640
- Mohammad M. Rastegardoost, Omid Aghababaei Tafreshi, Zia Saadatnia, Shahriar Ghaffari-Mosanenzadeh, Chul B. Park, Hani E. Naguib. Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy 2023, 111 , 108365. https://doi.org/10.1016/j.nanoen.2023.108365
- XiangYu CHEN, ZhaoQi LIU, ZhongLin WANG. The process of interfacial electron transfer in liquid-solid contact and the two-step mechanism model of EDL structure. SCIENTIA SINICA Technologica 2023, 53
(6)
, 844-859. https://doi.org/10.1360/SST-2023-0038
- Yang Dong, Nannan Wang, Di Yang, Jian Wang, Wenlong Lu, Daoai Wang. Robust Solid‐Liquid Triboelectric Nanogenerators: Mechanisms, Strategies and Applications. Advanced Functional Materials 2023, 33
(22)
https://doi.org/10.1002/adfm.202300764
- Yanqiang Lei, Jiahong Yang, Yao Xiong, Shishuo Wu, Weidong Guo, Gui-Shi Liu, Qijun Sun, Zhong Lin Wang. Surface engineering AgNW transparent conductive films for triboelectric nanogenerator and self-powered pressure sensor. Chemical Engineering Journal 2023, 462 , 142170. https://doi.org/10.1016/j.cej.2023.142170
- Xin-Xian Wu, Jun-Jie Zhang, Chia-Hsien Lee, Meng-Fang Lin. Enhanced triboelectric properties of Eu
2
O
3
-doped BaTiO
3
/PVDF-HFP nanofibers. Nanoscale 2023, 15
(8)
, 3823-3831. https://doi.org/10.1039/D2NR05990H
- Mohammad M. Rastegardoost, Omid Aghababaei Tafreshi, Zia Saadatnia, Shahriar Ghaffari-Mosanenzadeh, Chul B. Park, Hani E. Naguib. Porous PVDF mats with significantly enhanced dielectric properties and novel dipole arrangement for high-performance triboelectric nanogenerators. Applied Materials Today 2023, 30 , 101732. https://doi.org/10.1016/j.apmt.2023.101732
- Muhammad Tayyab, Zhiguo Zhu, Bo Wu, Nasir Mahmood Abbasi, Yvonne Joseph, Deqing Gao. Enhanced Surface Charge Density of Nanogenerators by Small Molecules: A Review. Energy Technology 2023, 11
(1)
https://doi.org/10.1002/ente.202200879
- Csaba Dani, Mihail Lungu. Physical factors influencing the process of triboelectrostatic separation of granular plastics. 2023, 040013. https://doi.org/10.1063/5.0151889
- Zhenyuan Xu, Dongzhi Zhang, Haolin Cai, Yan Yang, Hao Zhang, Chen Du. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy 2022, 102 , 107719. https://doi.org/10.1016/j.nanoen.2022.107719
- Donghyeon Kang, Hyeon Yeong Lee, Joon-Ha Hwang, Sera Jeon, Dabin Kim, SeongMin Kim, Sang-Woo Kim. Deformation-contributed negative triboelectric property of polytetrafluoroethylene: A density functional theory calculation. Nano Energy 2022, 100 , 107531. https://doi.org/10.1016/j.nanoen.2022.107531
- Ishtia Zahir Hossain, Ashaduzzaman Khan, Gaffar Hossain. A Piezoelectric Smart Textile for Energy Harvesting and Wearable Self-Powered Sensors. Energies 2022, 15
(15)
, 5541. https://doi.org/10.3390/en15155541
- Junho Jang, Dong Wook Kim, Ju Hyun Lee, Chungryong Choi, Myeongcheol Go, Jin Kon Kim, Unyong Jeong. Triboelectric UV patterning for wearable one-terminal tactile sensor array to perceive dynamic contact motions. Nano Energy 2022, 98 , 107320. https://doi.org/10.1016/j.nanoen.2022.107320
- Wenhao Zhang, Yuxiang Shi, Yufang Li, Xiangyu Chen, Honglie Shen. A Review: Contact Electrification on Special Interfaces. Frontiers in Materials 2022, 9 https://doi.org/10.3389/fmats.2022.909746
- Seokjun Cha, Yujang Cho, Jong Gyeong Kim, Hyeongsub Choi, Dahye Ahn, Jingzhe Sun, Dong‐soo Kang, Chanho Pak, Jong‐Jin Park. Controllable Triboelectric Series Using Gradient Positive and Negative Charge‐Confinement Layer with Different Particle Sizes of Mesoporous Carbon Materials. Small Methods 2022, 6
(5)
https://doi.org/10.1002/smtd.202101545
- Mengnan Qu, Wenchao Sun, Yuyu Xue, Yajie Pang, Fan Shi, Zhanxia Luo, Rong Wang, Lei Peng, Jinmei He. Sodium carboxymethylcellulose-based aerogel as friction positive layer material for high-performance triboelectric nanogenerator. Journal of Materials Science: Materials in Electronics 2022, 33
(13)
, 10611-10625. https://doi.org/10.1007/s10854-022-08046-7
- Han-Hsuan Huang, Ruey-Chi Wang, Yu-Jie Chen. Fluorinated graphite paper used for self-powered water speed sensors by immersion-type tribovoltaic effect-dominated triboelectric nanogenerators. Nano Energy 2022, 93 , 106887. https://doi.org/10.1016/j.nanoen.2021.106887
- Seokwon Joo, Jong Hyeok Kim, Chae-Eun Lee, Jeongmin Kang, Soonmin Seo, Ju-Hyung Kim, Yoon-Kyu Song. Eco-Friendly Keratin-Based Additives in Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. SSRN Electronic Journal 2022, 1 https://doi.org/10.2139/ssrn.4124163
- Milad Taghavivand, Andrew Sowinski, Poupak Mehrani. Triboelectric effects of continuity additives and a silica catalyst support on polyethylene fluidized bed wall fouling. Chemical Engineering Science 2021, 245 , 116882. https://doi.org/10.1016/j.ces.2021.116882
- Yanhua Liu, Qiu Fu, Jilong Mo, Yanxu Lu, Chenchen Cai, Bin Luo, Shuangxi Nie. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 2021, 89 , 106369. https://doi.org/10.1016/j.nanoen.2021.106369
- Huimin Qiao, Pin Zhao, Owoong Kwon, Ahrum Sohn, Fangping Zhuo, Dong‐Min Lee, Changhyo Sun, Daehee Seol, Daesu Lee, Sang‐Woo Kim, Yunseok Kim. Mixed Triboelectric and Flexoelectric Charge Transfer at the Nanoscale. Advanced Science 2021, 8
(20)
https://doi.org/10.1002/advs.202101793
- John Lama, Andy Yau, Guorui Chen, Aditya Sivakumar, Xun Zhao, Jun Chen. Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A 2021, 9
(35)
, 19149-19178. https://doi.org/10.1039/D1TA02518J
- Mervat Ibrahim, Jinxing Jiang, Zhen Wen, Xuhui Sun. Surface Engineering for Enhanced Triboelectric Nanogenerator. Nanoenergy Advances 2021, 1
(1)
, 58-80. https://doi.org/10.3390/nanoenergyadv1010004
- Ruey-Chi Wang, Yu-Cheng Lin, Po-Tsang Chen, Hsiu-Cheng Chen, Wan-Ting Chiu. Anomalous output performance enhancement of RGO-based triboelectric nanogenerators by Cu-bonding. Nano Energy 2021, 86 , 106126. https://doi.org/10.1016/j.nanoen.2021.106126
- Swathi Ippili, Venkatraju Jella, Alphi Maria Thomas, Chongsei Yoon, Jang-Su Jung, Soon-Gil Yoon. ZnAl–LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. Journal of Materials Chemistry A 2021, 9
(29)
, 15993-16005. https://doi.org/10.1039/D1TA02966E
- Milad Taghavivand, Poupak Mehrani, Andrew Sowinski. Triboelectric effects of a pneumatically injected silica catalyst support on polyethylene fluidized bed wall fouling. Powder Technology 2021, 385 , 287-298. https://doi.org/10.1016/j.powtec.2021.03.002
- Irum Firdous, Muhammad Fahim, Walid A. Daoud. Performance enhancement of triboelectric nanogenerator through hole and electron blocking layers-based interfacial design. Nano Energy 2021, 82 , 105694. https://doi.org/10.1016/j.nanoen.2020.105694
- Yu‐Hsuan Cheng, Chia‐Jung Lee, Chih‐Yu Chang. Achieving High Power Density and Long‐Term Stable Flexible Triboelectric Nanogenerators through Surface Functionalization of High Work‐Function Electrode with Cationic Thiol‐Based Self‐Assembled Monolayer. Advanced Materials Technologies 2021, 6
(3)
https://doi.org/10.1002/admt.202000985
- J.L. Armitage, A. Ghanbarzadeh, C. Wang, A. Neville. An investigation into the influence of tribological parameters on the operation of sliding triboelectric nanogenerators. Tribology International 2021, 155 , 106778. https://doi.org/10.1016/j.triboint.2020.106778
- Jia-Ruei Yang, Chia-Jung Lee, Chih-Yu Chang. An electrostatically self-assembled fluorinated molecule as a surface modification layer for a high-performance and stable triboelectric nanogenerator. Journal of Materials Chemistry A 2021, 9
(7)
, 4230-4239. https://doi.org/10.1039/D0TA11596G
- Weradesh Sangkhun, Sompit Wanwong. Natural textile based triboelectric nanogenerators for efficient energy harvesting applications. Nanoscale 2021, 13
(4)
, 2420-2428. https://doi.org/10.1039/D0NR07756A
- Sumanta Kumar Karan, Sandip Maiti, Jin Kon Kim, Bhanu Bhusan Khatua. An approach to designing smart future electronics using nature-driven biopiezoelectric/triboelectric nanogenerators. 2021, 251-282. https://doi.org/10.1016/B978-0-12-820628-7.00010-1
- Gulzhian I. Dzhardimalieva, Bal C. Yadav, Tat'yana V. Lifintseva, Igor E. Uflyand. Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. European Polymer Journal 2021, 142 , 110163. https://doi.org/10.1016/j.eurpolymj.2020.110163
- Yuankai Jin, Wanghuai Xu, Huanhuan Zhang, Huanxi Zheng, Yaqi Cheng, Xiantong Yan, Shouwei Gao, Daoai Wang, Yunlong Zi, Feng Zhou, Zuankai Wang. Complete Prevention of Contact Electrification by Molecular Engineering. Matter 2021, 4
(1)
, 290-301. https://doi.org/10.1016/j.matt.2020.10.019
- Zhinan Zhang, Nian Yin, Zishuai Wu, Shuaihang Pan, Daoai Wang. Research methods of contact electrification: Theoretical simulation and experiment. Nano Energy 2021, 79 , 105501. https://doi.org/10.1016/j.nanoen.2020.105501
- Han-Hsuan Huang, Ruey-Chi Wang, Yu-Jie Chen. Fluorinated Graphite Paper Used for Self-Powered Water Speed Sensors by Immersion-Type Tribovoltaic Effect-Dominated Triboelectric Nanogenerators. SSRN Electronic Journal 2021, 312 https://doi.org/10.2139/ssrn.3954102
- Junho Jang, Dong Wook Kim, Ju Hyun Lee, Chungryong Choi, Myeongcheol Go, Jin Kon Kim, Unyong Jeong. Triboelectric Uv Patterning for Wearable One-Terminal Tactile Sensor Array to Perceive Dynamic Contact Motions. SSRN Electronic Journal 2021, 26 https://doi.org/10.2139/ssrn.3994521
- Yanhua Liu, Jilong Mo, Qiu Fu, Yanxu Lu, Ni Zhang, Shuangfei Wang, Shuangxi Nie. Enhancement of Triboelectric Charge Density by Chemical Functionalization. Advanced Functional Materials 2020, 30
(50)
https://doi.org/10.1002/adfm.202004714
- Tingting Zhang, Zhen Wen, Yina Liu, Zhiyuan Zhang, Yongling Xie, Xuhui Sun. Hybridized Nanogenerators for Multifunctional Self-Powered Sensing: Principles, Prototypes, and Perspectives. iScience 2020, 23
(12)
, 101813. https://doi.org/10.1016/j.isci.2020.101813
- Dong Wook Kim, Ju Hyun Lee, Jin Kon Kim, Unyong Jeong. Material aspects of triboelectric energy generation and sensors. NPG Asia Materials 2020, 12
(1)
https://doi.org/10.1038/s41427-019-0176-0
- Jing Xu, Yongjiu Zou, Ardo Nashalian, Jun Chen. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.577327
- Abdelsalam Ahmed, Islam Hassan, Amir Masoud Pourrahimi, Ahmed S. Helal, Maher F. El‐Kady, Hamidreza Khassaf, Richard B. Kaner. Toward High‐Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap. Advanced Materials Technologies 2020, 5
(11)
https://doi.org/10.1002/admt.202000520
- Titao Jing, Bingang Xu, Yujue Yang. Liquid doping materials as micro-carrier of functional molecules for functionalization of triboelectric materials and flexible triboelectric nanogenerators for energy harvesting and gesture detection. Nano Energy 2020, 74 , 104856. https://doi.org/10.1016/j.nanoen.2020.104856
- Yihao Zhou, Weili Deng, Jing Xu, Jun Chen. Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Reports Physical Science 2020, 1
(8)
, 100142. https://doi.org/10.1016/j.xcrp.2020.100142
- Jihye Kim, Hanjun Ryu, Jeong Hwan Lee, Usman Khan, Sung Soo Kwak, Hong‐Joon Yoon, Sang‐Woo Kim. High Permittivity CaCu
3
Ti
4
O
12
Particle‐Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators. Advanced Energy Materials 2020, 10
(9)
https://doi.org/10.1002/aenm.201903524
- Bo-Yeon Lee, Dong Hyun Kim, Jiseul Park, Kwi-Il Park, Keon Jae Lee, Chang Kyu Jeong. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Science and Technology of Advanced Materials 2019, 20
(1)
, 758-773. https://doi.org/10.1080/14686996.2019.1631716
- Wook Kim, Takeru Okada, Hyun-Woo Park, Jihye Kim, Sungsoo Kim, Sang-Woo Kim, Seiji Samukawa, Dukhyun Choi. Surface modification of triboelectric materials by neutral beams. Journal of Materials Chemistry A 2019, 7
(43)
, 25066-25077. https://doi.org/10.1039/C9TA09990E
- Aifang Yu, Yaxing Zhu, Wei Wang, Junyi Zhai. Progress in Triboelectric Materials: Toward High Performance and Widespread Applications. Advanced Functional Materials 2019, 29
(41)
https://doi.org/10.1002/adfm.201900098
- Lin Shi, Shurong Dong, Hongsheng Xu, Shuyi Huang, Qikai Ye, Shuting Liu, Ting Wu, Jinkai Chen, Shaomin Zhang, Shijian Li, Xiaozhi Wang, Hao Jin, Jong Min Kim, Jikui Luo. Enhanced performance triboelectric nanogenerators based on solid polymer electrolytes with different concentrations of cations. Nano Energy 2019, 64 , 103960. https://doi.org/10.1016/j.nanoen.2019.103960
- Hwisu Oh, Sung Soo Kwak, Bosung Kim, Eunju Han, Guh‐Hwan Lim, Sang‐Woo Kim, Byungkwon Lim. Highly Conductive Ferroelectric Cellulose Composite Papers for Efficient Triboelectric Nanogenerators. Advanced Functional Materials 2019, 29
(37)
https://doi.org/10.1002/adfm.201904066
- Xiaojuan Li, Liqiang Zhang, Yange Feng, Xiaolong Zhang, Daoai Wang, Feng Zhou. Solid–Liquid Triboelectrification Control and Antistatic Materials Design Based on Interface Wettability Control. Advanced Functional Materials 2019, 29
(35)
https://doi.org/10.1002/adfm.201903587
- Daniel J. Lacks, Troy Shinbrot. Long-standing and unresolved issues in triboelectric charging. Nature Reviews Chemistry 2019, 3
(8)
, 465-476. https://doi.org/10.1038/s41570-019-0115-1
- Shiquan Lin, Liang Xu, Laipan Zhu, Xiangyu Chen, Zhong Lin Wang. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Advanced Materials 2019, 31
(27)
https://doi.org/10.1002/adma.201901418
- Jiaqing Xiong, Hongsheng Luo, Dace Gao, Xinran Zhou, Peng Cui, Gurunathan Thangavel, Kaushik Parida, Pooi See Lee. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 2019, 61 , 584-593. https://doi.org/10.1016/j.nanoen.2019.04.089
- Shiquan Lin, Liang Xu, Cheng Xu, Xiangyu Chen, Aurelia C. Wang, Binbin Zhang, Pei Lin, Ya Yang, Huabo Zhao, Zhong Lin Wang. Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. Advanced Materials 2019, 31
(17)
https://doi.org/10.1002/adma.201808197
- Hyungseok Kang, Hyoung Taek Kim, Hwi Je Woo, Han Kim, Do Hwan Kim, Sungjoo Lee, SeongMin Kim, Young Jae Song, Sang-Woo Kim, Jeong Ho Cho. Metal nanowire–polymer matrix hybrid layer for triboelectric nanogenerator. Nano Energy 2019, 58 , 227-233. https://doi.org/10.1016/j.nanoen.2019.01.046
- Sandip Maiti, Sumanta Kumar Karan, Jin Kon Kim, Bhanu Bhusan Khatua. Nature Driven Bio‐Piezoelectric/Triboelectric Nanogenerator as Next‐Generation Green Energy Harvester for Smart and Pollution Free Society. Advanced Energy Materials 2019, 9
(9)
https://doi.org/10.1002/aenm.201803027
- Khalid M. Abdelaziz, James Chen, Tyler J. Hieber, Zayd C. Leseman. Atomistic Field Theory for contact electrification of dielectrics. Journal of Electrostatics 2018, 96 , 10-15. https://doi.org/10.1016/j.elstat.2018.09.001
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.