ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Role of Chloride for a Simple, Non-Grignard Mg Electrolyte in Ether-Based Solvents

View Author Information
† ‡ Joint Center for Energy Storage Research (JCESR) and Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
§ Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
*E-mail: [email protected]. Phone: 630-252-2629.
*E-mail: [email protected]. Phone: 630-252-2045
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 25, 16002–16008
Publication Date (Web):June 3, 2016
https://doi.org/10.1021/acsami.6b03193
Copyright © 2016 American Chemical Society

    Article Views

    3052

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Mg battery operates with Chevrel phase (Mo6S8, ∼1.1 V vs Mg) cathodes that apply Grignard-based or derived electrolytes, which allow etching of the passivating oxide coating forms at the magnesium metal anode. Majority of Mg electrolytes studied to date are focused on developing new synthetic strategies to achieve a better reversible Mg deposition. While most of these electrolytes contain chloride as a component, and there is a lack of literature which investigates the fundamental role of chloride in Mg electrolytes. Further, ease of preparation and potential safety benefits have made simple design of magnesium electrolytes an attractive alternative to traditional air sensitive Grignard reagents-based electrolytes. Work presented here describes simple, non-Grignard magnesium electrolytes composed of magnesium bis(trifluoromethane sulfonyl)imide mixed with magnesium chloride (Mg(TFSI)2-MgCl2) in tetrahydrofuran (THF) and diglyme (G2) that can reversibly plate and strip magnesium. Based on this discovery, the effect of chloride in the electrolyte complex was investigated. Electrochemical properties at different initial mixing ratios of Mg(TFSI)2 and MgCl2 showed an increase of both current density and columbic efficiency for reversible Mg deposition as the fraction content of MgCl2 increased. A decrease in overpotential was observed for rechargeable Mg batteries with electrolytes with increasing MgCl2 concentration, evidenced by the coin cell performance. In this work, the fundamental understanding of the operation mechanisms of rechargeable Mg batteries with the role of chloride content from electrolyte could potentially bring rational design of simple Mg electrolytes for practical Mg battery.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b03193.

    • Electrolyte stability for current collectors, electrolyte stability in DME solvents, and cathode testing results (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 103 publications.

    1. Wendy Zhang, Chaoxuan Gu, Yi Wang, Skyler D. Ware, Lingxiang Lu, Song Lin, Yue Qi, Kimberly A. See. Improving the Mg Sacrificial Anode in Tetrahydrofuran for Synthetic Electrochemistry by Tailoring Electrolyte Composition. JACS Au 2023, 3 (8) , 2280-2290. https://doi.org/10.1021/jacsau.3c00305
    2. Sunghee Shin, Jin Hwan Kwak, Si Hyoung Oh, Hyung-Seok Kim, Seung-Ho Yu, Hee-Dae Lim. Reversible Mg-Metal Batteries Enabled by a Ga-Rich Protective Layer through One-Step Interface Engineering. ACS Applied Materials & Interfaces 2023, 15 (23) , 28684-28691. https://doi.org/10.1021/acsami.2c20571
    3. Toshihiko Mandai, Masaru Yao, Keitaro Sodeyama, Akiko Kagatsume, Yoshitaka Tateyama, Hiroaki Imai. Toward Improved Anodic Stability of Ether-Based Electrolytes for Rechargeable Magnesium Batteries. The Journal of Physical Chemistry C 2023, 127 (22) , 10419-10433. https://doi.org/10.1021/acs.jpcc.3c01452
    4. Rekha Narayan, Aleksandar Blagojević, Gregor Mali, John Fredy Vélez Santa, Jan Bitenc, Anna Randon-Vitanova, Robert Dominko. Nanostructured Poly(hydroquinonyl-benzoquinonyl sulfide)/Multiwalled Carbon Nanotube Composite Cathodes: Improved Synthesis and Performance for Rechargeable Li and Mg Organic Batteries. Chemistry of Materials 2022, 34 (14) , 6378-6388. https://doi.org/10.1021/acs.chemmater.2c00862
    5. Ran Attias, Ben Dlugatch, Omer Blumen, Keren Shwartsman, Michal Salama, Netanel Shpigel, Daniel Sharon. Determination of Average Coulombic Efficiency for Rechargeable Magnesium Metal Anodes in Prospective Electrolyte Solutions. ACS Applied Materials & Interfaces 2022, 14 (27) , 30952-30961. https://doi.org/10.1021/acsami.2c08008
    6. Nathan T. Hahn, Scott A. McClary, Alan T. Landers, Kevin R. Zavadil. Efficacy of Stabilizing Calcium Battery Electrolytes through Salt-Directed Coordination Change. The Journal of Physical Chemistry C 2022, 126 (25) , 10335-10345. https://doi.org/10.1021/acs.jpcc.2c02587
    7. Garvit Agarwal, Jason D. Howard, Venkateshkumar Prabhakaran, Grant E. Johnson, Vijayakumar Murugesan, Karl T. Mueller, Larry A. Curtiss, Rajeev S. Assary. Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from Ab Initio Molecular Dynamics Simulations. ACS Applied Materials & Interfaces 2021, 13 (32) , 38816-38825. https://doi.org/10.1021/acsami.1c07864
    8. Zhen Meng, Zhenyou Li, Liping Wang, Thomas Diemant, Dasari Bosubabu, Yushu Tang, Romain Berthelot, Zhirong Zhao-Karger, Maximilian Fichtner. Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential. ACS Applied Materials & Interfaces 2021, 13 (31) , 37044-37051. https://doi.org/10.1021/acsami.1c07648
    9. Zhenyou Li, Thomas Diemant, Zhen Meng, Yanlei Xiu, Adam Reupert, Liping Wang, Maximilian Fichtner, Zhirong Zhao-Karger. Establishing a Stable Anode–Electrolyte Interface in Mg Batteries by Electrolyte Additive. ACS Applied Materials & Interfaces 2021, 13 (28) , 33123-33132. https://doi.org/10.1021/acsami.1c08476
    10. Anja Kopač Lautar, Jan Bitenc, Robert Dominko, Jean-Sébastien Filhol. Building Ab Initio Interface Pourbaix diagrams to Investigate Electrolyte Stability in the Electrochemical Double Layer: Application to Magnesium Batteries. ACS Applied Materials & Interfaces 2021, 13 (7) , 8263-8273. https://doi.org/10.1021/acsami.0c19579
    11. Shengqi Fan, Genevieve M. Asselin, Baofei Pan, Hao Wang, Yang Ren, John T. Vaughey, Niya Sa. A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. ACS Applied Materials & Interfaces 2020, 12 (9) , 10252-10260. https://doi.org/10.1021/acsami.9b18833
    12. Vallabh Vasudevan, Mingchao Wang, Jodie A. Yuwono, Jacek Jasieniak, Nick Birbilis, Nikhil V. Medhekar. Ion Agglomeration and Transport in MgCl2-Based Electrolytes for Rechargeable Magnesium Batteries. The Journal of Physical Chemistry Letters 2019, 10 (24) , 7856-7862. https://doi.org/10.1021/acs.jpclett.9b03023
    13. Romain Dugas, Juan D. Forero-Saboya, Alexandre Ponrouch. Methods and Protocols for Reliable Electrochemical Testing in Post-Li Batteries (Na, K, Mg, and Ca). Chemistry of Materials 2019, 31 (21) , 8613-8628. https://doi.org/10.1021/acs.chemmater.9b02776
    14. Sung-Jin Kang, Hyeonji Kim, Sunwook Hwang, Minsang Jo, Minchul Jang, Changhun Park, Seung-Tae Hong, Hochun Lee. Electrolyte Additive Enabling Conditioning-Free Electrolytes for Magnesium Batteries. ACS Applied Materials & Interfaces 2019, 11 (1) , 517-524. https://doi.org/10.1021/acsami.8b13588
    15. Nathan T. Hahn, Trevor J. Seguin, Ka-Cheong Lau, Chen Liao, Brian J. Ingram, Kristin A. Persson, Kevin R. Zavadil. Enhanced Stability of the Carba-closo-dodecaborate Anion for High-Voltage Battery Electrolytes through Rational Design. Journal of the American Chemical Society 2018, 140 (35) , 11076-11084. https://doi.org/10.1021/jacs.8b05967
    16. Kohei Shimokawa, Hajime Matsumoto, Tetsu Ichitsubo. Solvation-Structure Modification by Concentrating Mg(TFSA)2–MgCl2–Triglyme Ternary Electrolyte. The Journal of Physical Chemistry Letters 2018, 9 (16) , 4732-4737. https://doi.org/10.1021/acs.jpclett.8b02209
    17. Kim Ta, Kimberly A. See, Andrew A. Gewirth. Elucidating Zn and Mg Electrodeposition Mechanisms in Nonaqueous Electrolytes for Next-Generation Metal Batteries. The Journal of Physical Chemistry C 2018, 122 (25) , 13790-13796. https://doi.org/10.1021/acs.jpcc.8b00835
    18. Jeffrey S. Lowe, Donald J. Siegel. Reaction Pathways for Solvent Decomposition on Magnesium Anodes. The Journal of Physical Chemistry C 2018, 122 (20) , 10714-10724. https://doi.org/10.1021/acs.jpcc.8b01752
    19. Dong-Min Kim, Sung Chul Jung, Seongmin Ha, Youngjin Kim, Yuwon Park, Ji Heon Ryu, Young-Kyu Han, Kyu Tae Lee. Cointercalation of Mg2+ Ions into Graphite for Magnesium-Ion Batteries. Chemistry of Materials 2018, 30 (10) , 3199-3203. https://doi.org/10.1021/acs.chemmater.8b00288
    20. Seydou Hebié, Fannie Alloin, Cristina Iojoiu, Romain Berthelot, and Jean-Claude Leprêtre . Magnesium Anthracene System-Based Electrolyte as a Promoter of High Electrochemical Performance Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces 2018, 10 (6) , 5527-5533. https://doi.org/10.1021/acsami.7b16491
    21. Hyun Deog Yoo, Sang-Don Han, Igor L. Bolotin, Gene M. Nolis, Ryan D. Bayliss, Anthony K. Burrell, John T. Vaughey, and Jordi Cabana . Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF3SO2)2N– at High Current Densities. Langmuir 2017, 33 (37) , 9398-9406. https://doi.org/10.1021/acs.langmuir.7b01051
    22. Seydou Hebié, Hoang Phuong Khanh Ngo, Jean-Claude Leprêtre, Cristina Iojoiu, Laure Cointeaux, Romain Berthelot, and Fannie Alloin . Electrolyte Based on Easily Synthesized, Low Cost Triphenolate–Borohydride Salt for High Performance Mg(TFSI)2-Glyme Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces 2017, 9 (34) , 28377-28385. https://doi.org/10.1021/acsami.7b06022
    23. Sung-Jin Kang, Sung-Chul Lim, Hyeonji Kim, Jongwook W. Heo, Sunwook Hwang, Minchul Jang, Dookyong Yang, Seung-Tae Hong, and Hochun Lee . Non-Grignard and Lewis Acid-Free Sulfone Electrolytes for Rechargeable Magnesium Batteries. Chemistry of Materials 2017, 29 (7) , 3174-3180. https://doi.org/10.1021/acs.chemmater.7b00248
    24. Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Daniel C. Hannah, Rahul Malik, Miao Liu, Kevin G. Gallagher, Kristin A. Persson, and Gerbrand Ceder . Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews 2017, 117 (5) , 4287-4341. https://doi.org/10.1021/acs.chemrev.6b00614
    25. Justin G. Connell, Bostjan Genorio, Pietro Papa Lopes, Dusan Strmcnik, Vojislav R. Stamenkovic, and Nenad M. Markovic . Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H2O/Cl– in Organic Electrolytes. Chemistry of Materials 2016, 28 (22) , 8268-8277. https://doi.org/10.1021/acs.chemmater.6b03227
    26. Hyun Deog Yoo, Sang-Don Han, Ryan D. Bayliss, Andrew A. Gewirth, Bostjan Genorio, Nav Nidhi Rajput, Kristin A. Persson, Anthony K. Burrell, and Jordi Cabana . “Rocking-Chair”-Type Metal Hybrid Supercapacitors. ACS Applied Materials & Interfaces 2016, 8 (45) , 30853-30862. https://doi.org/10.1021/acsami.6b08367
    27. Benjamin W. Schick, Xu Hou, Viktor Vanoppen, Matthias Uhl, Matthias Kruck, Erik J. Berg, Timo Jacob. Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM‐D. ChemSusChem 2023, https://doi.org/10.1002/cssc.202301269
    28. Meng Zhang, Wanyu Zhao, Xiaowei Yang. Recent advances on electrode/electrolyte interfacial modulation in rechargeable magnesium batteries. SCIENTIA SINICA Chimica 2023, 46 https://doi.org/10.1360/SSC-2023-0191
    29. Tatiana K. Zakharchenko, Mikhail А. Nazarov, Mikhail V. Golubev, Alina I. Inozemtseva, Alexander A. Gulin, Daniil M. Itkis, Lada V. Yashina. On the Role of Electrolyte in Aprotic Mg-O2 Battery Performance. Electrochimica Acta 2023, 463 , 142816. https://doi.org/10.1016/j.electacta.2023.142816
    30. Zonghan Zhang, Baofeng Wang, Shunlong Ju, Zhijun Wu, Yaxiong Yang, Hongge Pan, Xuebin Yu. Progress and prospects for solving the “shuttle effect” in magnesium-sulfur batteries. Energy Storage Materials 2023, 62 , 102933. https://doi.org/10.1016/j.ensm.2023.102933
    31. Shiyang Wang, Kewei Wang, Yuchen Zhang, Yulin Jie, Xinpeng Li, Yuxue Pan, Xiaowen Gao, Qingshun Nian, Ruiguo Cao, Qi Li, Shuhong Jiao, Dongsheng Xu. High‐entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202304411
    32. Shiyang Wang, Kewei Wang, Yuchen Zhang, Yulin Jie, Xinpeng Li, Yuxue Pan, Xiaowen Gao, Qingshun Nian, Ruiguo Cao, Qi Li, Shuhong Jiao, Dongsheng Xu. High‐entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202304411
    33. Runjing Xu, Xin Gao, Ya Chen, Chengxin Peng, Zhiyuan Zhang, Cheng Wang, Hongchao Sun, Xiaodong Chen, Lifeng Cui. Research advances of the electrolytes for rechargeable magnesium ion batteries. Materials Today Physics 2023, 36 , 101186. https://doi.org/10.1016/j.mtphys.2023.101186
    34. Zhonghua Zhang, Meijia Song, Conghui Si, Wenrun Cui, Yan Wang. Amorphous germanium-crystalline bismuth films as a promising anode for magnesium-ion batteries. eScience 2023, 3 (1) , 100070. https://doi.org/10.1016/j.esci.2022.07.004
    35. Heng Zhang, Lixin Qiao, Michel Armand. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angewandte Chemie 2022, 134 (52) https://doi.org/10.1002/ange.202214054
    36. Heng Zhang, Lixin Qiao, Michel Armand. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angewandte Chemie International Edition 2022, 61 (52) https://doi.org/10.1002/anie.202214054
    37. Chuanliang Wei, Liwen Tan, Yuchan Zhang, Zhengran Wang, Jinkui Feng, Yitai Qian. Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Storage Materials 2022, 52 , 299-319. https://doi.org/10.1016/j.ensm.2022.08.014
    38. Shuxin Zhang, Mingxiang Cheng, Peng Zhang, Yaru Wang, Duo Zhang, Yang Yang, Jiulin Wang, Yanna NuLi. Insights into the stability of magnesium borate salts for rechargeable magnesium batteries from AIMD simulations. Chemical Communications 2022, 58 (85) , 11969-11972. https://doi.org/10.1039/D2CC04357B
    39. Yue Sun, Fei Ai, Yi‐Chun Lu. Electrolyte and Interphase Design for Magnesium Anode: Major Challenges and Perspectives. Small 2022, 18 (43) https://doi.org/10.1002/smll.202200009
    40. Mingxiang Cheng, Wen Ren, Duo Zhang, Shuxin Zhang, Yang Yang, Xuecheng Lv, Jun Yang, Jiulin Wang, Yanna NuLi. Efficient single-perfluorinated borate-based electrolytes for rechargeable magnesium batteries. Energy Storage Materials 2022, 51 , 764-776. https://doi.org/10.1016/j.ensm.2022.07.021
    41. Zhenzhen Yang, Mengxi Yang, Nathan T. Hahn, Justin Connell, Ira Bloom, Chen Liao, Brian J. Ingram, Lynn Trahey. Toward practical issues: Identification and mitigation of the impurity effect in glyme solvents on the reversibility of Mg plating/stripping in Mg batteries. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.966332
    42. Steve Zaubitzer, Saustin Dongmo, Philipp Schüler, Sven Krieck, Florian Fiesinger, Daniel Gaissmaier, Matthias van den Borg, Timo Jacob, Matthias Westerhausen, Margret Wohlfahrt-Mehrens, Mario Marinaro. A Novel and Highly Efficient Indolyl‐Based Electrolyte for Mg Batteries. Energy Technology 2022, 10 (8) https://doi.org/10.1002/ente.202200440
    43. Cuicui Li, Lu Lin, Wanlong Wu, Xiaoqi Sun. A High Potential Polyanion Cathode Material for Rechargeable Mg‐Ion Batteries. Small Methods 2022, 6 (8) https://doi.org/10.1002/smtd.202200363
    44. Kok Long Ng, Kewei Shu, Gisele Azimi. A rechargeable Mg|O2 battery. iScience 2022, 25 (8) , 104711. https://doi.org/10.1016/j.isci.2022.104711
    45. Ananyo Roy, Vinayan Bhagavathi Parambath, Thomas Diemant, Gregor Neusser, Christine Kranz, R. Jürgen Behm, Zhenyou Li, Zhirong Zhao‐Karger, Maximilian Fichtner. Investigation of the Anode‐Electrolyte Interface in a Magnesium Full‐Cell with Fluorinated Alkoxyborate‐Based Electrolyte. Batteries & Supercaps 2022, 5 (4) https://doi.org/10.1002/batt.202100305
    46. Juan D. Forero‐Saboya, Deyana S. Tchitchekova, Patrik Johansson, M. Rosa Palacín, Alexandre Ponrouch. Interfaces and Interphases in Ca and Mg Batteries. Advanced Materials Interfaces 2022, 9 (8) https://doi.org/10.1002/admi.202101578
    47. Piotr Jankowski, Zhenyou Li, Zhirong Zhao-Karger, Thomas Diemant, Maximilian Fichtner, Tejs Vegge, Juan Maria Garcia Lastra. Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt. Energy Storage Materials 2022, 45 , 1133-1143. https://doi.org/10.1016/j.ensm.2021.11.012
    48. Verena Küpers, Jan Frederik Dohmann, Peter Bieker, Martin Winter, Tobias Placke, Martin Kolek. Opportunities and Limitations of Ionic Liquid‐ and Organic Carbonate Solvent‐Based Electrolytes for Mg‐Ion‐Based Dual‐Ion Batteries. ChemSusChem 2021, 14 (20) , 4480-4498. https://doi.org/10.1002/cssc.202101227
    49. Ran Attias, Daniel Sharon, Yosef Goffer, Doron Aurbach. Critical Review on the Unique Interactions and Electroanalytical Challenges Related to Cathodes ‐ Solutions Interfaces in Non‐Aqueous Mg Battery Prototypes. ChemElectroChem 2021, 8 (17) , 3229-3238. https://doi.org/10.1002/celc.202100452
    50. Minato EGASHIRA, Kouki MATSUBARA. Phenoxyimine Ligand Molecular Structure Influence on Reversible Magnesium Electrode Reaction in a Magnesium Chloride Complex. Electrochemistry 2021, 89 (4) , 377-381. https://doi.org/10.5796/electrochemistry.21-00041
    51. Chao Han, Xinyi Wang, Jian Peng, Qingbing Xia, Shulei Chou, Gang Cheng, Zhenguo Huang, Weijie Li. Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors. Polymers 2021, 13 (13) , 2137. https://doi.org/10.3390/polym13132137
    52. Yaqi Li, Shaoliang Guan, Hua Huo, Yulin Ma, Yunzhi Gao, Pengjian Zuo, Geping Yin. A Review of Magnesium Aluminum Chloride Complex Electrolytes for Mg Batteries. Advanced Functional Materials 2021, 31 (24) https://doi.org/10.1002/adfm.202100650
    53. Yan Lu, Cong Wang, Qiang Liu, Xiaoyan Li, Xinyu Zhao, Zaiping Guo. Progress and Perspective on Rechargeable Magnesium–Sulfur Batteries. Small Methods 2021, 5 (5) https://doi.org/10.1002/smtd.202001303
    54. Yoichi Tominaga, Sawako Kato, Naomi Nishimura. Preparation and electrochemical characterization of magnesium gel electrolytes based on crosslinked Poly(tetrahydrofuran). Polymer 2021, 224 , 123743. https://doi.org/10.1016/j.polymer.2021.123743
    55. Qijie Wu, Kewei Shu, Lili Sun, Haihua Wang. Recent Advances in Non‐nucleophilic Mg Electrolytes. Frontiers in Materials 2021, 7 https://doi.org/10.3389/fmats.2020.612134
    56. Minato EGASHIRA, Kaori HIRATSUKA. Properties of Magnesium Electrode Covered with Magnesium Chloride-Modified Graphene Oxide. Electrochemistry 2021, 89 (1) , 49-53. https://doi.org/10.5796/electrochemistry.20-00119
    57. Fanfan Liu, Tiantian Wang, Xiaobin Liu, Li‐Zhen Fan. Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries. Advanced Energy Materials 2021, 11 (2) https://doi.org/10.1002/aenm.202000787
    58. Jelena Popovic. Nanostructured alkali and alkaline earth metal interfaces for high-energy batteries. 2021, 327-359. https://doi.org/10.1016/B978-0-12-821434-3.00007-7
    59. Wanfei Li, Xin Li, Haiyan Fan, Jianhua Xiao, Qianqian Liu, Miao Cheng, Jing Hu, Tao Wei, Zhengying Wu, Yun Ling, Bo Liu, Yuegang Zhang. Progress of Non-Nucleophilic Electrolytes for Magnesium/Sulfur Battery. Acta Chimica Sinica 2021, 79 (5) , 628. https://doi.org/10.6023/A21010038
    60. Chaolin You, Xiongwei Wu, Xinhai Yuan, Yuhui Chen, Lili Liu, Yusong Zhu, Lijun Fu, Yuping Wu, Yu-Guo Guo, Teunis van Ree. Advances in rechargeable Mg batteries. Journal of Materials Chemistry A 2020, 8 (48) , 25601-25625. https://doi.org/10.1039/D0TA09330K
    61. Piotr Jankowski, Juan Maria García Lastra, Tejs Vegge. Structure of Magnesium Chloride Complexes in Ethereal Systems: Computational Comparison of THF and Glymes as Solvents for Magnesium Battery Electrolytes. Batteries & Supercaps 2020, 3 (12) , 1350-1359. https://doi.org/10.1002/batt.202000168
    62. Xin-Cheng Hu, Zhen-Zhen Shen, Jing Wan, Yue-Xian Song, Bing Liu, Hui-Juan Yan, Rui Wen, Li-Jun Wan. Insight into interfacial processes and degradation mechanism in magnesium metal batteries. Nano Energy 2020, 78 , 105338. https://doi.org/10.1016/j.nanoen.2020.105338
    63. V. Küpers, D. Weintz, C. Mück-Lichtenfeld, P. Bieker, M. Winter, M. Kolek. Approaching Electrochemical Limits of Mg x Cl y z+ Complex-Based Electrolytes for Mg Batteries by Tailoring the Solution Structure. Journal of The Electrochemical Society 2020, 167 (16) , 160505. https://doi.org/10.1149/1945-7111/abc7e4
    64. Pieter Geysens, Jan Fransaer, Koen Binnemans. Reversible electrodeposition and stripping of magnesium from solvate ionic liquid–tetrabutylammonium chloride mixtures. RSC Advances 2020, 10 (69) , 42021-42029. https://doi.org/10.1039/D0RA08187F
    65. Jiayan Shi, Jian Zhang, Juchen Guo, Jun Lu. Interfaces in rechargeable magnesium batteries. Nanoscale Horizons 2020, 5 (11) , 1467-1475. https://doi.org/10.1039/D0NH00379D
    66. Mengxi Yang, Noel Leon, Baofei Pan, Zhou Yu, Lei Cheng, Chen Liao. Mechanistic Insights in Quinone-Based Zinc Batteries with Nonaqueous Electrolytes. Journal of The Electrochemical Society 2020, 167 (10) , 100536. https://doi.org/10.1149/1945-7111/ab9b0a
    67. Haiyan Fan, Yuxing Zhao, Jianhua Xiao, Jifang Zhang, Min Wang, Yuegang Zhang. A non-nucleophilic gel polymer magnesium electrolyte compatible with sulfur cathode. Nano Research 2020, 13 (10) , 2749-2754. https://doi.org/10.1007/s12274-020-2923-5
    68. Amol Bhairuba Ikhe, Su Cheol Han, S. J. Richard Prabakar, Woon Bae Park, Kee-Sun Sohn, Myoungho Pyo. 3Mg/Mg 2 Sn anodes with unprecedented electrochemical performance towards viable magnesium-ion batteries. Journal of Materials Chemistry A 2020, 8 (28) , 14277-14286. https://doi.org/10.1039/D0TA05828A
    69. Saustin Dongmo, Steve Zaubitzer, Philipp Schüler, Sven Krieck, Ludwig Jörissen, Margret Wohlfahrt‐Mehrens, Matthias Westerhausen, Mario Marinaro. Stripping and Plating a Magnesium Metal Anode in Bromide‐Based Non‐Nucleophilic Electrolytes. ChemSusChem 2020, 13 (13) , 3530-3538. https://doi.org/10.1002/cssc.202000249
    70. Emily Sahadeo, Yang Wang, Chuan-Fu Lin, Yue Li, Gary Rubloff, Sang Bok Lee. Mg 2+ ion-catalyzed polymerization of 1,3-dioxolane in battery electrolytes. Chemical Communications 2020, 56 (33) , 4583-4586. https://doi.org/10.1039/D0CC01769H
    71. Xiangyu Zhao, Zhirong Zhao‐Karger, Maximilian Fichtner, Xiaodong Shen. Halogenid‐basierte Materialien und Chemie für wiederaufladbare Batterien. Angewandte Chemie 2020, 132 (15) , 5954-6004. https://doi.org/10.1002/ange.201902842
    72. Xiangyu Zhao, Zhirong Zhao‐Karger, Maximilian Fichtner, Xiaodong Shen. Halide‐Based Materials and Chemistry for Rechargeable Batteries. Angewandte Chemie International Edition 2020, 59 (15) , 5902-5949. https://doi.org/10.1002/anie.201902842
    73. Muhammad Rashad, Muhammad Asif, Yuxin Wang, Zhen He, Iftikhar Ahmed. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Materials 2020, 25 , 342-375. https://doi.org/10.1016/j.ensm.2019.10.004
    74. Haiyan Fan, Zhaozhao Zheng, Lijuan Zhao, Wanfei Li, Jian Wang, Mimi Dai, Yuxing Zhao, Jianhua Xiao, Guang Wang, Xiaoyu Ding, Hai Xiao, Jun Li, Yang Wu, Yuegang Zhang. Extending Cycle Life of Mg/S Battery by Activation of Mg Anode/Electrolyte Interface through an LiCl‐Assisted MgCl 2 Solubilization Mechanism. Advanced Functional Materials 2020, 30 (9) https://doi.org/10.1002/adfm.201909370
    75. Jared B. Moss, Liping Zhang, Kevin V. Nielson, Yujing Bi, Chao Wu, Steve Scheiner, T. Leo Liu. Computational Insights into Mg‐Cl Complex Electrolytes for Rechargeable Magnesium Batteries. Batteries & Supercaps 2019, 2 (9) , 792-800. https://doi.org/10.1002/batt.201900029
    76. Mingguang Pan, Jianxin Zou, Richard Laine, Darvaish Khan, Rui Guo, Xiaoqin Zeng, Wenjiang Ding. Using CoS cathode materials with 3D hierarchical porosity and an ionic liquid (IL) as an electrolyte additive for high capacity rechargeable magnesium batteries. Journal of Materials Chemistry A 2019, 7 (32) , 18880-18888. https://doi.org/10.1039/C9TA05233J
    77. Toshihiko Mandai, Kenji Tatesaka, Kenya Soh, Hyuma Masu, Ashu Choudhary, Yoshitaka Tateyama, Ryuta Ise, Hiroaki Imai, Tatsuya Takeguchi, Kiyoshi Kanamura. Modifications in coordination structure of Mg[TFSA] 2 -based supporting salts for high-voltage magnesium rechargeable batteries. Physical Chemistry Chemical Physics 2019, 21 (23) , 12100-12111. https://doi.org/10.1039/C9CP01400D
    78. Niya Sa, Arijita Mukherjee, Binghong Han, Yang Ren, Robert F. Klie, Baris Key, John T. Vaughey. Direct observation of MgO formation at cathode electrolyte interface of a spinel MgCo2O4 cathode upon electrochemical Mg removal and insertion. Journal of Power Sources 2019, 424 , 68-75. https://doi.org/10.1016/j.jpowsour.2019.03.102
    79. Kohei Shimokawa, Taruto Atsumi, Maho Harada, Robyn E. Ward, Masanobu Nakayama, Yu Kumagai, Fumiyasu Oba, Norihiko L. Okamoto, Kiyoshi Kanamura, Tetsu Ichitsubo. Zinc-based spinel cathode materials for magnesium rechargeable batteries: toward the reversible spinel–rocksalt transition. Journal of Materials Chemistry A 2019, 7 (19) , 12225-12235. https://doi.org/10.1039/C9TA02281C
    80. Jennifer L. Schaefer, Laura C. Merrill. Multivalent Metallic Anodes for Rechargeable Batteries. 2019, 1-14. https://doi.org/10.1002/9781119951438.eibc2678
    81. Hui Dong, Yanliang Liang, Oscar Tutusaus, Rana Mohtadi, Ye Zhang, Fang Hao, Yan Yao. Directing Mg-Storage Chemistry in Organic Polymers toward High-Energy Mg Batteries. Joule 2019, 3 (3) , 782-793. https://doi.org/10.1016/j.joule.2018.11.022
    82. Marta Cabello, Gregorio Ortiz, Pedro Lavela, José Tirado. On the Beneficial Effect of MgCl2 as Electrolyte Additive to Improve the Electrochemical Performance of Li4Ti5O12 as Cathode in Mg Batteries. Nanomaterials 2019, 9 (3) , 484. https://doi.org/10.3390/nano9030484
    83. Evan N. Keyzer, Jeongjae Lee, Zigeng Liu, Andrew D. Bond, Dominic S. Wright, Clare P. Grey. A general synthetic methodology to access magnesium aluminate electrolyte systems for Mg batteries. Journal of Materials Chemistry A 2019, 7 (6) , 2677-2685. https://doi.org/10.1039/C8TA10295C
    84. Ran Attias, Michael Salama, Baruch Hirsch, Yosef Goffer, Doron Aurbach. Anode-Electrolyte Interfaces in Secondary Magnesium Batteries. Joule 2019, 3 (1) , 27-52. https://doi.org/10.1016/j.joule.2018.10.028
    85. A. Mauger, C.M. Julien, A. Paolella, M. Armand, K. Zaghib. A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Materials Science and Engineering: R: Reports 2018, 134 , 1-21. https://doi.org/10.1016/j.mser.2018.07.001
    86. Jeffrey G. Smith, Gülin Vardar, Charles W. Monroe, Donald J. Siegel. Experimental and Computational Investigation of Nonaqueous Mg / O 2 Batteries. 2018, 293-329. https://doi.org/10.1002/9783527807666.ch11
    87. Zhonghua Zhang, Shamu Dong, Zili Cui, Aobing Du, Guicun Li, Guanglei Cui. Rechargeable Magnesium Batteries using Conversion‐Type Cathodes: A Perspective and Minireview. Small Methods 2018, 2 (10) https://doi.org/10.1002/smtd.201800020
    88. Jing Zeng, Zulai Cao, Yang Yang, Yunhui Wang, Yueying Peng, Yiyong Zhang, Jing Wang, Jinbao Zhao. A long cycle-life Na-Mg hybrid battery with a chlorine-free electrolyte based on Mg(TFSI)2. Electrochimica Acta 2018, 284 , 1-9. https://doi.org/10.1016/j.electacta.2018.07.111
    89. Nav Nidhi Rajput, Trevor J. Seguin, Brandon M. Wood, Xiaohui Qu, Kristin A. Persson. Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review. Topics in Current Chemistry 2018, 376 (3) https://doi.org/10.1007/s41061-018-0195-2
    90. Jian Zhi Hu, Nav Nidhi Rajput, Chuan Wan, Yuyan Shao, Xuchu Deng, Nicholas R. Jaegers, Mary Hu, Yingwen Chen, Yongwoo Shin, Joshua Monk, Zhong Chen, Zhaohai Qin, Karl Todd Mueller, Jun Liu, Kristin A. Persson. 25Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes. Nano Energy 2018, 46 , 436-446. https://doi.org/10.1016/j.nanoen.2018.01.051
    91. Claudiu B. Bucur. Magnesium Electrolytes. 2018, 11-38. https://doi.org/10.1007/978-3-319-65067-8_2
    92. Masahiro Shimizu, Makoto Umeki, Susumu Arai. Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide. Physical Chemistry Chemical Physics 2018, 20 (2) , 1127-1133. https://doi.org/10.1039/C7CP06057B
    93. Boeun Lee, Jae-Hyun Cho, Hyo Ree Seo, Su Bin Na, Jong Hak Kim, Byung Won Cho, Taeeun Yim, Si Hyoung Oh. Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A 2018, 6 (7) , 3126-3133. https://doi.org/10.1039/C7TA09330F
    94. Zhao-Karger Zhirong, Fichtner Maximilian. Magnesium-sulfur battery: its beginning and recent progress. MRS Communications 2017, 7 (4) , 770-784. https://doi.org/10.1557/mrc.2017.101
    95. John Muldoon, Claudiu B. Bucur, Thomas Gregory. Magnesiumbatterien – ein Aufruf an Synthesechemiker: Elektrolyte und Kathoden dringend gesucht. Angewandte Chemie 2017, 129 (40) , 12232-12253. https://doi.org/10.1002/ange.201700673
    96. John Muldoon, Claudiu B. Bucur, Thomas Gregory. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists—Electrolytes and Cathodes Needed. Angewandte Chemie International Edition 2017, 56 (40) , 12064-12084. https://doi.org/10.1002/anie.201700673
    97. Carl A. Nist-Lund, Jake T. Herb, Craig B. Arnold. Improving halide-containing magnesium-ion electrolyte performance via sterically hindered alkoxide ligands. Journal of Power Sources 2017, 362 , 308-314. https://doi.org/10.1016/j.jpowsour.2017.07.045
    98. Shuijian He, Kevin V. Nielson, Jian Luo, T. Leo Liu. Recent advances on MgCl2 based electrolytes for rechargeable Mg batteries. Energy Storage Materials 2017, 8 , 184-188. https://doi.org/10.1016/j.ensm.2016.12.001
    99. Jan Bitenc, Marko Firm, Anna Randon Vitanova, Robert Dominko. Effect of Cl− and TFSI− anions on dual electrolyte systems in a hybrid Mg/Li4Ti5O12 battery. Electrochemistry Communications 2017, 76 , 29-33. https://doi.org/10.1016/j.elecom.2017.01.013
    100. Jake T. Herb, Carl A. Nist-Lund, Craig B. Arnold. A fluorinated dialkoxide-based magnesium-ion electrolyte. Journal of Materials Chemistry A 2017, 5 (17) , 7801-7805. https://doi.org/10.1039/C7TA01578J
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect