ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol–Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering

View Author Information
Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
§ Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
*[email protected] (Judith A. Roether).
*[email protected] (Qingqing Yao).
Cite this: ACS Appl. Mater. Interfaces 2016, 8, 27, 17098–17108
Publication Date (Web):June 13, 2016
https://doi.org/10.1021/acsami.6b03997
Copyright © 2016 American Chemical Society

    Article Views

    1602

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (10 MB)

    Abstract

    Abstract Image

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol–gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol–gel method. Physical features such as fiber diameter distribution, mechanical strength and Young’s modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity .

    Cited By

    This article is cited by 87 publications.

    1. Mozhgan Keshavarz, Parvin Alizadeh, Firoz Babu Kadumudi, Gorka Orive, Akhilesh K. Gaharwar, Miguel Castilho, Nasim Golafshan, Alireza Dolatshahi-Pirouz. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS Applied Materials & Interfaces 2023, 15 (17) , 21476-21495. https://doi.org/10.1021/acsami.3c01717
    2. Łukasz Kaniuk, Urszula Stachewicz. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomaterials Science & Engineering 2021, 7 (12) , 5339-5362. https://doi.org/10.1021/acsbiomaterials.1c00757
    3. Marjan Bahraminasab, Mahsa Janmohammadi, Samaneh Arab, Athar Talebi, Vajihe Taghdiri Nooshabadi, Parisa Koohsarian, Mohammad Sadegh Nourbakhsh. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomaterials Science & Engineering 2021, 7 (12) , 5397-5431. https://doi.org/10.1021/acsbiomaterials.1c00920
    4. Leslie J. R. Foster, Rodman T. H. Chan, Robert A. Russell, Peter J. Holden. Using Humidity to Control the Morphology and Properties of Electrospun BioPEGylated Polyhydroxybutyrate Scaffolds. ACS Omega 2020, 5 (41) , 26476-26485. https://doi.org/10.1021/acsomega.0c02993
    5. Rosy Alphons Sequeira, Sonam Dubey, Matheus M. Pereira, Tapan Kumar Maity, Sanju Singh, Sandhya Mishra, Kamalesh Prasad. Neoteric Solvent Systems as Sustainable Media for Dissolution and Film Preparation of Poly-[(R)-3-hydroxybutyrate]. ACS Sustainable Chemistry & Engineering 2020, 8 (32) , 12005-12013. https://doi.org/10.1021/acssuschemeng.0c02684
    6. Laijun Liu, Chaojing Li, Xingxing Liu, Yongjie Jiao, Fujun Wang, Guansen Jiang, Lu Wang. Tricalcium Phosphate Sol-Incorporated Poly(ε-caprolactone) Membrane with Improved Mechanical and Osteoinductive Activity as an Artificial Periosteum. ACS Biomaterials Science & Engineering 2020, 6 (8) , 4631-4643. https://doi.org/10.1021/acsbiomaterials.0c00511
    7. Teresa Walter, Alina Gruenewald, Rainer Detsch, Aldo R. Boccaccini, Nicolas Vogel. Cell Interactions with Size-Controlled Colloidal Monolayers: Toward Improved Coatings in Bone Tissue Engineering. Langmuir 2020, 36 (7) , 1793-1803. https://doi.org/10.1021/acs.langmuir.9b03308
    8. Henri Granel, Cédric Bossard, Anne-Margaux Collignon, Fabien Wauquier, Julie Lesieur, Gael Y Rochefort, Edouard Jallot, Jonathan Lao, Yohann Wittrant. Bioactive Glass/Polycaprolactone Hybrid with a Dual Cortical/Trabecular Structure for Bone Regeneration. ACS Applied Bio Materials 2019, 2 (8) , 3473-3483. https://doi.org/10.1021/acsabm.9b00407
    9. Xiaolong Wang, Yamin Pan, Xianhu Liu, Hu Liu, Ning Li, Chuntai Liu, Dirk W. Schubert, Changyu Shen. Facile Fabrication of Superhydrophobic and Eco-Friendly Poly(lactic acid) Foam for Oil–Water Separation via Skin Peeling. ACS Applied Materials & Interfaces 2019, 11 (15) , 14362-14367. https://doi.org/10.1021/acsami.9b02285
    10. Jaime Santillán, Emmanuel A. Dwomoh, Yaiel G. Rodríguez-Avilés, Samir A. Bello, Eduardo Nicolau. Fabrication and Evaluation of Polycaprolactone Beads-on-String Membranes for Applications in Bone Tissue Regeneration. ACS Applied Bio Materials 2019, 2 (3) , 1031-1040. https://doi.org/10.1021/acsabm.8b00628
    11. Siew Yin Chan, Benjamin Qi Yu Chan, Zengping Liu, Bhav Harshad Parikh, Kangyi Zhang, Qianyu Lin, Xinyi Su, Dan Kai, Wee Sim Choo, David James Young, and Xian Jun Loh . Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering. ACS Omega 2017, 2 (12) , 8959-8968. https://doi.org/10.1021/acsomega.7b01604
    12. Liuyun Jiang, Ye Li, Chengdong Xiong, Shengpei Su, and Haojie Ding . Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering. ACS Applied Materials & Interfaces 2017, 9 (5) , 4890-4897. https://doi.org/10.1021/acsami.6b15032
    13. Manxuan Liu, Yihan Sun, Lijun Liu, Zhiying Zhang, Maierhaba Aimaijiang, Lu Zhang, Sezhen Quni, Minghui Li, Xiuyu Liu, Daowei Li, Junhu Zhang, Yanmin Zhou. Novel PVAMA/GelMA aerogels prepared by liquid-phase collection of photoinitiated polymerisation: injectable and flowable low-density 3D scaffolds for bone regeneration. Nanoscale 2023, 15 (34) , 14189-14204. https://doi.org/10.1039/D3NR02398B
    14. Guadalupe Gabriel Flores-Rojas, Bélen Gómez-Lazaro, Felipe López-Saucedo, Ricardo Vera-Graziano, Emilio Bucio, Eduardo Mendizábal. Electrospun Scaffolds for Tissue Engineering: A Review. Macromol 2023, 3 (3) , 524-553. https://doi.org/10.3390/macromol3030031
    15. Maryam Gharehasanloo, Mansoor Anbia, Fatemeh Yazdi. Preparation of superhydrophobic, green, and eco-friendly modified polylactic acid foams for separation oil from water. International Journal of Biological Macromolecules 2023, 240 , 124159. https://doi.org/10.1016/j.ijbiomac.2023.124159
    16. Farnaz Ghorbani, Theresa Reiter, Liliana Liverani, Dirk W. Schubert, Aldo R. Boccaccini, Judith A. Roether. Progress on Electrospun Composite Fibers Incorporating Bioactive Glass: An Overview. Advanced Engineering Materials 2023, 25 (6) https://doi.org/10.1002/adem.202201103
    17. Lukas Gritsch, Cédric Bossard, Edouard Jallot, Julian R. Jones, Jonathan Lao. Bioactive glass-based organic/inorganic hybrids: an analysis of the current trends in polymer design and selection. Journal of Materials Chemistry B 2023, 11 (3) , 519-545. https://doi.org/10.1039/D2TB02089K
    18. S. Sowmya, Nirmal Mathivanan, Arthi Chandramouli, R. Jayakumar. Polymer/Ceramic Nanocomposite Fibers in Bone Tissue Engineering. 2023, 191-211. https://doi.org/10.1007/12_2023_145
    19. Pooriya Sarrami, Saeed Karbasi, Zohreh Farahbakhsh, Ashkan Bigham, Mohammad Rafienia. Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications. International Journal of Biological Macromolecules 2022, 220 , 1368-1389. https://doi.org/10.1016/j.ijbiomac.2022.09.117
    20. Peng Lin, Wenjuan Zhang, Daiyun Chen, Yanran Yang, Tongke Sun, Hao Chen, Jun Zhang. Electrospun nanofibers containing chitosan-stabilized bovine serum albumin nanoparticles for bone regeneration. Colloids and Surfaces B: Biointerfaces 2022, 217 , 112680. https://doi.org/10.1016/j.colsurfb.2022.112680
    21. Talita V Barbosa, Janaina A Dernowsek, Raul J R Tobar, Bruna C Casali, Carlos A Fortulan, Eduardo B Ferreira, Heloisa S Selistre-de-Araújo, Marcia C Branciforti. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications. Biomedical Materials 2022, 17 (5) , 055014. https://doi.org/10.1088/1748-605X/ac88ad
    22. Durgalakshmi Dhinasekaran, Anuj Kumar. Fabrication of Bioactive Structures from Sol–Gel Derived Bioactive Glass. 2022, 87-117. https://doi.org/10.1002/9781119724193.ch6
    23. Pei Feng, Kai Wang, Yang Shuai, Shuping Peng, Yongbin Hu, Cijun Shuai. Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold. Materials Today Advances 2022, 15 , 100272. https://doi.org/10.1016/j.mtadv.2022.100272
    24. Qiaohua Qiu, Xinbo Ding, Yanmin Wang, Yuhua Zheng, Lingqi Zhu, Ya Li, Tao Liu. Rational design of nanofibrous scaffolds via bionic coating: Microstructural behavior and in vitro biological evaluation. Materials Today Communications 2022, 32 , 104098. https://doi.org/10.1016/j.mtcomm.2022.104098
    25. Kanchan Maji, Krishna Pramanik. Electrospun scaffold for bone regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials 2022, 71 (11) , 842-857. https://doi.org/10.1080/00914037.2021.1915784
    26. Pavni Rekhi, Moushmi Goswami, Seeram Ramakrishna, Mousumi Debnath. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Critical Reviews in Biotechnology 2022, 42 (5) , 668-692. https://doi.org/10.1080/07388551.2021.1960265
    27. Thiruchelvi Pulingam, Jimmy Nelson Appaturi, Thaigarajan Parumasivam, Azura Ahmad, Kumar Sudesh. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers 2022, 14 (11) , 2141. https://doi.org/10.3390/polym14112141
    28. Sunena Dhania, Manju Bernela, Ruma Rani, Minakshi Parsad, Sapna Grewal, Santosh Kumari, Rajesh Thakur. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). International Journal of Biological Macromolecules 2022, 208 , 243-259. https://doi.org/10.1016/j.ijbiomac.2022.03.030
    29. Nastaran Barati, Jiechao Jiang, Efstathios I. Meletis. Microstructural evolution of ceramic nanocomposites coated on 7075 Al alloy by plasma electrolytic oxidation. Surface and Coatings Technology 2022, 437 , 128345. https://doi.org/10.1016/j.surfcoat.2022.128345
    30. Wentai Guo, Keli Yang, Xiusen Qin, Rui Luo, Hui Wang, Rongkang Huang. Polyhydroxyalkanoates in tissue repair and regeneration. Engineered Regeneration 2022, 3 (1) , 24-40. https://doi.org/10.1016/j.engreg.2022.01.003
    31. Yuxuan Zhang, Tao Lin, Haoye Meng, Xueting Wang, Hong Peng, Guangbo Liu, Shuai Wei, Qiang Lu, Yu Wang, Aiyuan Wang, Wenjing Xu, Huiping Shao, Jiang Peng. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. Journal of Orthopaedic Translation 2022, 33 , 13-23. https://doi.org/10.1016/j.jot.2021.11.005
    32. Ahmed A. El-Shanshory, Mona M. Agwa, Ahmed I. Abd-Elhamid, Hesham M. A. Soliman, Xiumei Mo, El-Refaie Kenawy. Metronidazole Topically Immobilized Electrospun Nanofibrous Scaffold: Novel Secondary Intention Wound Healing Accelerator. Polymers 2022, 14 (3) , 454. https://doi.org/10.3390/polym14030454
    33. Qiaohua Qiu, Xinbo Ding, Yanmin Wang, Yuhua Zheng, Lingqi Zhu, Ya Li, Tao Liu. Rational Design of Nanofibrous Scaffolds Via Bionic Coating: Microstructural Behavior and in Vitro Biological Evaluation. SSRN Electronic Journal 2022, 129 https://doi.org/10.2139/ssrn.4088253
    34. Jian Li, Xu Zhang, Anjaneyulu Udduttula, Zhi Shan Fan, Jian Hai Chen, Antonia RuJia Sun, Peng Zhang. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.763031
    35. Zakaria Tabia, Sihame Akhtach, Meriame Bricha, Khalil El Mabrouk. Tailoring the biodegradability and bioactivity of green-electrospun polycaprolactone fibers by incorporation of bioactive glass nanoparticles for guided bone regeneration. European Polymer Journal 2021, 161 , 110841. https://doi.org/10.1016/j.eurpolymj.2021.110841
    36. Mitra Aghayan, Parvin Alizadeh, Mozhgan Keshavarz. Multifunctional polyethylene imine hybrids decorated by silica bioactive glass with enhanced mechanical properties, antibacterial, and osteogenesis for bone repair. Materials Science and Engineering: C 2021, 131 , 112534. https://doi.org/10.1016/j.msec.2021.112534
    37. Laijun Liu, Yuna Shang, Chaojing Li, Yongjie Jiao, Yanchen Qiu, Chengyi Wang, Yuge Wu, Qiuyun Zhang, Fujun Wang, Zhimou Yang, Lu Wang. Hierarchical Nanostructured Electrospun Membrane with Periosteum‐Mimic Microenvironment for Enhanced Bone Regeneration. Advanced Healthcare Materials 2021, 10 (21) https://doi.org/10.1002/adhm.202101195
    38. Manuel Horue, Ignacio Rivero Berti, Maximiliano L. Cacicedo, Guillermo R. Castro. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. Bioresource Technology 2021, 340 , 125671. https://doi.org/10.1016/j.biortech.2021.125671
    39. Maryam Abdollahi Asl, Saeed Karbasi, Saeed Beigi-Boroujeni, Soheila Zamanlui Benisi, Mahdi Saeed. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules 2021, 191 , 500-513. https://doi.org/10.1016/j.ijbiomac.2021.09.078
    40. Tao Lin, Xueting Wang, Liuping Jin, Wenyuan Li, Yuxuan Zhang, Aiyuan Wang, Jiang Peng, Huiping Shao. Manufacturing of porous magnesium scaffolds for bone tissue engineering by 3D gel-printing. Materials & Design 2021, 209 , 109948. https://doi.org/10.1016/j.matdes.2021.109948
    41. Xuyang Zhang, Xingzhong Guo, Jinming Zhang, Xianping Fan, Mingxing Chen, Hui Yang. Nucleation, crystallization and biological activity of Na2O-CaO-P2O5-SiO2 bioactive glass. Journal of Non-Crystalline Solids 2021, 568 , 120929. https://doi.org/10.1016/j.jnoncrysol.2021.120929
    42. Sabbir Ansari, Neha Sami, Durdana Yasin, Nazia Ahmad, Tasneem Fatma. Biomedical applications of environmental friendly poly-hydroxyalkanoates. International Journal of Biological Macromolecules 2021, 183 , 549-563. https://doi.org/10.1016/j.ijbiomac.2021.04.171
    43. Yaping Ding, Wei Li, Dirk W. Schubert, Aldo R. Boccaccini, Judith A. Roether, Hélder A. Santos. An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. Materials Science and Engineering: C 2021, 124 , 112079. https://doi.org/10.1016/j.msec.2021.112079
    44. Filipe V. Ferreira, Caio G. Otoni, João H. Lopes, Lucas P. de Souza, Lucia H.I. Mei, Liliane M.F. Lona, Karen Lozano, Anderson O. Lobo, Luiz H.C. Mattoso. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Materials Science and Engineering: C 2021, 123 , 111853. https://doi.org/10.1016/j.msec.2020.111853
    45. Léa Dejob, Bérangère Toury, Solène Tadier, Laurent Grémillard, Claire Gaillard, Vincent Salles. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomaterialia 2021, 123 , 123-153. https://doi.org/10.1016/j.actbio.2020.12.032
    46. Natália Bastos-Bitencourt, Marilia Velo, Tatiana Nascimento, Cassiana Scotti, Maria Gardennia da Fonseca, Luiz Goulart, Lucio Castellano, Sergio Ishikiriama, Juliana Bombonatti, Salvatore Sauro. In Vitro Evaluation of Desensitizing Agents Containing Bioactive Scaffolds of Nanofibers on Dentin Remineralization. Materials 2021, 14 (5) , 1056. https://doi.org/10.3390/ma14051056
    47. Maxwell de Paula Cavalcante, Lívia Rodrigues de Menezes, Elton Jorge da Rocha Rodrigues, Maria Inês Bruno Tavares. Selective localization of nanohydroxyapatite in poly(3-hydroxybutyrate)/polycaprolactone blends composites and its effects on crystallization and molecular dynamics. Journal of Materials Science 2021, 56 (5) , 3692-3712. https://doi.org/10.1007/s10853-020-05492-8
    48. Pandurang Appana Dalavi, Sukumaran Anil, Jayachandran Venkatesan. Bioceramics-Based Biomaterials for Bone Tissue Engineering. 2021, 573-587. https://doi.org/10.1007/978-981-16-4420-7_20
    49. Sajjad Fanaee, Sheyda Labbaf, Mohammad Hossein Enayati, Fereshteh Karamali, Mohammad-Hossein Nasr Esfahani. A nano approach towards the creation of a biointerface as stimulator of osteogenic differentiation. Materials Science and Engineering: C 2021, 120 , 111746. https://doi.org/10.1016/j.msec.2020.111746
    50. Tanawut Rittidach, Tanatsaparn Tithito, Panan Suntornsaratoon, Narattaphol Charoenphandhu, Jirawan Thongbunchoo, Nateetip Krishnamra, I Ming Tang, Weeraphat Pon-On. Effect of zirconia-mullite incorporated biphasic calcium phosphate/biopolymer composite scaffolds for bone tissue engineering. Biomedical Physics & Engineering Express 2020, 6 (5) , 055004. https://doi.org/10.1088/2057-1976/aba1c2
    51. Si Chen, Dagmar Galusková, Hana Kaňková, Kai Zheng, Martin Michálek, Liliana Liverani, Dušan Galusek, Aldo R. Boccaccini. Electrospun PCL Fiber Mats Incorporating Multi-Targeted B and Co Co-Doped Bioactive Glass Nanoparticles for Angiogenesis. Materials 2020, 13 (18) , 4010. https://doi.org/10.3390/ma13184010
    52. Fady Abd El-malek, Heba Khairy, Aida Farag, Sanaa Omar. The sustainability of microbial bioplastics, production and applications. International Journal of Biological Macromolecules 2020, 157 , 319-328. https://doi.org/10.1016/j.ijbiomac.2020.04.076
    53. Govindaraj Perumal, Ponnurengam Malliappan Sivakumar, A. Maya Nandkumar, Mukesh Doble. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Materials Science and Engineering: C 2020, 109 , 110527. https://doi.org/10.1016/j.msec.2019.110527
    54. Laijun Liu, Yu Zhang, Chaojing Li, Jiacheng Cao, Er He, Xiaotong Wu, Fujun Wang, Lu Wang. Facile preparation PCL/ modified nano ZnO organic-inorganic composite and its application in antibacterial materials. Journal of Polymer Research 2020, 27 (3) https://doi.org/10.1007/s10965-020-02046-z
    55. Barbara Dariš, Željko Knez. Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering. Acta Pharmaceutica 2020, 70 (1) , 1-15. https://doi.org/10.2478/acph-2020-0007
    56. Romare M. Antrobus, Hannah R. Childs, Ming C. Chan, Jessica Liu, Philip A. Brudnicki, Helen H. Lu. Tissue Engineering—Bone Mimics. 2020, 750-777. https://doi.org/10.1016/B978-0-12-801238-3.11276-0
    57. Tatiana Rita de Lima Nascimento, Marilia Mattar de Amoêdo Campos Velo, Camila Félix Silva, Sara Brito Silva Costa Cruz, Brenna Louise Cavalcanti Gondim, Rafael Francisco Lia Mondelli, Lúcio Roberto Cançado Castellano. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Current Pharmaceutical Design 2019, 25 (37) , 3997-4012. https://doi.org/10.2174/1381612825666191108162948
    58. Libin Pang, Yifan Shen, Haoran Hu, Xiangqiong Zeng, Wenhai Huang, Hong Gao, Hui Wang, Deping Wang. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration. Materials Science and Engineering: C 2019, 105 , 110076. https://doi.org/10.1016/j.msec.2019.110076
    59. Abbas Haghighat, Salman Shakeri, Mehdi Mehdikhani, Shiva Soltani Dehnavi, Ardeshir Talebi. Histologic, Histomorphometric, and Osteogenesis Comparative Study of a Novel Fabricated Nanocomposite Membrane Versus Cytoplast Membrane. Journal of Oral and Maxillofacial Surgery 2019, 77 (10) , 2027-2039. https://doi.org/10.1016/j.joms.2019.05.012
    60. Alejandra Rodriguez-Contreras. Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine. Bioengineering 2019, 6 (3) , 82. https://doi.org/10.3390/bioengineering6030082
    61. Neda Aslankoohi, Dibakar Mondal, Amin S. Rizkalla, Kibret Mequanint. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers 2019, 11 (9) , 1437. https://doi.org/10.3390/polym11091437
    62. Rafael S. Kurusu, Nicole R. Demarquette. Surface modification to control the water wettability of electrospun mats. International Materials Reviews 2019, 64 (5) , 249-287. https://doi.org/10.1080/09506608.2018.1484577
    63. Hanumantharao, Rao. Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. Fibers 2019, 7 (7) , 66. https://doi.org/10.3390/fib7070066
    64. Burak Bal, Ibrahim Burkay Tugluca, Nuray Koc, Ismail Alper Isoglu. On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express 2019, 6 (6) , 065411. https://doi.org/10.1088/2053-1591/ab0eaa
    65. Djurdja Vukajlovic, Julie Parker, Oana Bretcanu, Katarina Novakovic. Chitosan based polymer/bioglass composites for tissue engineering applications. Materials Science and Engineering: C 2019, 96 , 955-967. https://doi.org/10.1016/j.msec.2018.12.026
    66. Yaping Ding, Wei Li, Feng Zhang, Zehua Liu, Nazanin Zanjanizadeh Ezazi, Dongfei Liu, Hélder A. Santos. Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials 2019, 29 (2) https://doi.org/10.1002/adfm.201802852
    67. Mohanasundaram Sugappriya, Dorairaj Sudarsanam, Jerrine Joseph, Mudasir A. Mir, Chandrabose Selvaraj. Applications of Polyhydroxyalkanoates Based Nanovehicles as Drug Carriers. 2019, 125-169. https://doi.org/10.1007/978-981-13-3759-8_6
    68. Peyman Sheikholeslami Kandelousi, Sayed Mahmood Rabiee, Mohsen Jahanshahi, Fatemeh Nasiri. The effect of bioactive glass nanoparticles on polycaprolactone/chitosan scaffold: Melting enthalpy and cell viability. Journal of Bioactive and Compatible Polymers 2019, 34 (1) , 97-111. https://doi.org/10.1177/0883911518819109
    69. Daoyong Mao, Qing Li, Daikun Li, Ya Tan, Qijun Che. 3D porous poly(ε-caprolactone)/58S bioactive glass–sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering. Materials & Design 2018, 160 , 1-8. https://doi.org/10.1016/j.matdes.2018.08.062
    70. Alireza Khoshraftar, Behnam Noorani, Fatemeh Yazdian, Hamid Rashedi, Roza Vaez Ghaemi, Zakie Alihemmati, Saleheh Shahmoradi. Fabrication and evaluation of nanofibrous polyhydroxybutyrate valerate scaffolds containing hydroxyapatite particles for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 2018, 67 (17) , 987-995. https://doi.org/10.1080/00914037.2017.1417283
    71. Yang Hu, Shuifeng Liu, Xin Li, Teng Yuan, Xiuju Zou, Yinyan He, Xianming Dong, Wuyi Zhou, Zhuohong Yang. Facile preparation of biocompatible poly(l-lactic acid)-modified halloysite nanotubes/poly(ε-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion templates. Journal of Materials Science 2018, 53 (20) , 14774-14788. https://doi.org/10.1007/s10853-018-2588-6
    72. Shiva Soltani Dehnavi, Mehdi Mehdikhani, Mohammad Rafienia, Shahin Bonakdar. Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Materials Science and Engineering: C 2018, 90 , 236-247. https://doi.org/10.1016/j.msec.2018.04.065
    73. Alireza Shahin-Shamsabadi, Ata Hashemi, Mohammadreza Tahriri, Farshid Bastami, Majid Salehi, Fatemeh Mashhadi Abbas. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering: C 2018, 90 , 280-288. https://doi.org/10.1016/j.msec.2018.04.080
    74. A. Daskalova, B. Ostrowska, A. Zhelyazkova, W. Święszkowski, A. Trifonov, H. Declercq, C. Nathala, K. Szlazak, M. Lojkowski, W. Husinsky, I. Buchvarov. Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications. Applied Physics A 2018, 124 (6) https://doi.org/10.1007/s00339-018-1831-y
    75. F. Ublekov, D. Budurova, M. Staneva, M. Natova, H. Penchev. Self-supporting electrospun PHB and PHBV/organoclay nanocomposite fibrous scaffolds. Materials Letters 2018, 218 , 353-356. https://doi.org/10.1016/j.matlet.2018.02.056
    76. Junyu Zhang, Ekaterina I. Shishatskaya, Tatiana G. Volova, Luiziana Ferreira da Silva, Guo-Qiang Chen. Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C 2018, 86 , 144-150. https://doi.org/10.1016/j.msec.2017.12.035
    77. Daoyong Mao, Qing Li, Daikun Li, Yashi Chen, Xinhong Chen, Xi Xu. Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Materials & Design 2018, 142 , 1-10. https://doi.org/10.1016/j.matdes.2018.01.016
    78. Yanfei Gao, Weili Shao, Wang Qian, Jianxin He, Yuman Zhou, Kun Qi, Lidan Wang, Shizhong Cui, Rui Wang. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Materials Science and Engineering: C 2018, 84 , 195-207. https://doi.org/10.1016/j.msec.2017.11.047
    79. Guo-Qiang Chen, Junyu Zhang. Microbial polyhydroxyalkanoates as medical implant biomaterials. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46 (1) , 1-18. https://doi.org/10.1080/21691401.2017.1371185
    80. Fakhraddin Akbari Dourbash, Parvin Alizadeh. Organosilane modified bioactive glass/poly (amido amine) generation 5 hybrids: Effect of solvent and synthesis route on structural properties, thermal stability and apatite formation. Materials Chemistry and Physics 2017, 202 , 104-113. https://doi.org/10.1016/j.matchemphys.2017.09.023
    81. Fakhraddin Akbari Dourbash, Parvin Alizadeh, Shahram Nazari, Alireza Farasat. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration. Materials Science and Engineering: C 2017, 78 , 1135-1146. https://doi.org/10.1016/j.msec.2017.04.142
    82. Minghuan Liu, Xiao-Peng Duan, Ye-Ming Li, Da-Peng Yang, Yun-Ze Long. Electrospun nanofibers for wound healing. Materials Science and Engineering: C 2017, 76 , 1413-1423. https://doi.org/10.1016/j.msec.2017.03.034
    83. B N Singh, K Pramanik. Development of novel silk fibroin/polyvinyl alcohol/sol–gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Biofabrication 2017, 9 (1) , 015028. https://doi.org/10.1088/1758-5090/aa644f
    84. S. Ribeiro, D. M. Correia, C. Ribeiro, S. Lanceros-Méndez. Electrospun Polymeric Smart Materials for Tissue Engineering Applications. 2017, 251-282. https://doi.org/10.1007/978-3-319-70049-6_9
    85. J.L. Robinson, P. Brudnicki, H.H. Lu. 1.21 Polymer-Bioactive Ceramic Composites. 2017, 460-477. https://doi.org/10.1016/B978-0-12-803581-8.09345-0
    86. Felix Hanßke, Onur Bas, Cédryck Vaquette, Gernot Hochleitner, Jürgen Groll, Erhard Kemnitz, Dietmar W. Hutmacher, Hans G. Börner. Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties. Journal of Materials Chemistry B 2017, 5 (25) , 5037-5047. https://doi.org/10.1039/C7TB00165G
    87. Elise Vene, Ghislaine Barouti, Kathleen Jarnouen, Thomas Gicquel, Claudine Rauch, Catherine Ribault, Sophie M. Guillaume, Sandrine Cammas-Marion, Pascal Loyer. Opsonisation of nanoparticles prepared from poly(β-hydroxybutyrate) and poly(trimethylene carbonate)-b-poly(malic acid) amphiphilic diblock copolymers: Impact on the in vitro cell uptake by primary human macrophages and HepaRG hepatoma cells. International Journal of Pharmaceutics 2016, 513 (1-2) , 438-452. https://doi.org/10.1016/j.ijpharm.2016.09.048

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect