ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery
My Activity

Figure 1Loading Img
    Research Article

    Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery
    Click to copy article linkArticle link copied!

    View Author Information
    Joint Center for Energy Storage Research, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
    Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
    Department of Physics and Astronomy, California State University, Northridge, California 91330, United States
    Materials Science Division, #Chemical Sciences and Engineering Division, and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2016, 8, 50, 34360–34371
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.6b11358
    Published November 16, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Li–S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed “solvates” that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN)2–LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li–S cell and the solvation structure of the (MeCN)2–LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li+ at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent, in the electrolyte. The electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li–S cell likely as a result of the solvation power of the free MeCN.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b11358.

    • 7Li and 19F NMR of the wet (>50 ppm water) solvate electrolyte before and after Li metal exposure; CVs of the solvate electrolyte neat and diluted with TTE; Raman spectra of the LiTFSI concentration series in MeCN; assignments of Raman modes for the LiTFSI concentration series; Gaussian fits of the ex situ Raman spectra; DFT-calculated 7Li NMR shifts of dilute LiTFSI in MeCN, (MeCN)2–LiTFSI, and (MeCN)2–LiTFSI:TTE (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 63 publications.

    1. Mengxue He, Yun An, Lujun Zhu, Yatao Liu, Yongfeng Jia, Yizhou Hao, Guo Ye, Xufeng Hong, Zhitong Xiao, Yue Ma, Huimin Song, Kaier Shen, Yingjing Yan, Weize Shi, Chenxi Zheng, Jianhao Chen, Muhammad Burhan Shafqat, Quanquan Pang. Regulating Polysulfide Clustering with an Anion Acceptor for Low-Temperature Sulfur Batteries. Nano Letters 2025, Article ASAP.
    2. Jing Yu, Ivan Pinto-Huguet, Chao Yue Zhang, Yingtang Zhou, Yaolin Xu, Alen Vizintin, Juan-Jesús Velasco-Vélez, Xueqiang Qi, Xiaobo Pan, Gozde Oney, Annabel Olgo, Katharina Märker, Leonardo M. Da Silva, Yufeng Luo, Yan Lu, Chen Huang, Eneli Härk, Joe Fleming, Pascale Chenevier, Andreu Cabot, Yunfei Bai, Marc Botifoll, Ashley P. Black, Qi An, Tazdin Amietszajew, Jordi Arbiol. Mechanistic Insights and Technical Challenges in Sulfur-Based Batteries: A Comprehensive In Situ/Operando Monitoring Toolbox. ACS Energy Letters 2024, 9 (12) , 6178-6214. https://doi.org/10.1021/acsenergylett.4c02703
    3. Zixiong Shi, Simil Thomas, Dong Guo, Zhengnan Tian, Zhiming Zhao, Yizhou Wang, Abdul-Hamid Emwas, Nimer Wehbe, Georgian Melinte, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef. Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries. ACS Energy Letters 2024, 9 (11) , 5391-5402. https://doi.org/10.1021/acsenergylett.4c02049
    4. Xi-Yao Li, Shuai Feng, Yun-Wei Song, Chang-Xin Zhao, Zheng Li, Zi-Xian Chen, Qian Cheng, Xiang Chen, Xue-Qiang Zhang, Bo-Quan Li, Jia-Qi Huang, Qiang Zhang. Kinetic Evaluation on Lithium Polysulfide in Weakly Solvating Electrolyte toward Practical Lithium–Sulfur Batteries. Journal of the American Chemical Society 2024, 146 (21) , 14754-14764. https://doi.org/10.1021/jacs.4c02603
    5. Jinhui Han, Xiaohua Yang, Zhiping Liu. Effect of Fluorinated Carboxylic Acid Ester on Lithium Solvation as an Additive in Electrolyte and Low-Temperature Insight on Battery Performance. Industrial & Engineering Chemistry Research 2023, 62 (19) , 7682-7692. https://doi.org/10.1021/acs.iecr.3c00417
    6. Widitha Samarakoon, Jiangtao Hu, Miao Song, Mark Bowden, Nabajit Lahiri, Jia Liu, Le Wang, Timothy Droubay, Krishna Koirala, Hua Zhou, Zhenxing Feng, Jinhui Tao, Yingge Du. Direct Imaging of the Structural and Morphological Evolution of Epitaxial LiCoO2 Films during Charge and Overcharge. The Journal of Physical Chemistry C 2022, 126 (37) , 15882-15890. https://doi.org/10.1021/acs.jpcc.2c01940
    7. Nan Yao, Xiang Chen, Zhong-Heng Fu, Qiang Zhang. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews 2022, 122 (12) , 10970-11021. https://doi.org/10.1021/acs.chemrev.1c00904
    8. You Wang, Dongchang Chen. Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion. ACS Applied Materials & Interfaces 2022, 14 (20) , 23033-23055. https://doi.org/10.1021/acsami.1c20893
    9. Eric S. Thornburg, Richard T. Haasch, Andrew A. Gewirth. Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents. ACS Applied Energy Materials 2022, 5 (3) , 2768-2779. https://doi.org/10.1021/acsaem.1c03336
    10. Skyler D. Ware, Charles J. Hansen, John-Paul Jones, John Hennessy, Ratnakumar V. Bugga, Kimberly A. See. Fluoride in the SEI Stabilizes the Li Metal Interface in Li–S Batteries with Solvate Electrolytes. ACS Applied Materials & Interfaces 2021, 13 (16) , 18865-18875. https://doi.org/10.1021/acsami.1c02629
    11. Yasuo Kameda, Shu Saito, Aoi Saji, Yuko Amo, Takeshi Usuki, Hikari Watanabe, Nana Arai, Yasuhiro Umebayashi, Kenta Fujii, Kazuhide Ueno, Kazutaka Ikeda, Toshiya Otomo. Solvation Structure of Li+ in Concentrated Acetonitrile and N,N-Dimethylformamide Solutions Studied by Neutron Diffraction with 6Li/7Li Isotopic Substitution Methods. The Journal of Physical Chemistry B 2020, 124 (46) , 10456-10464. https://doi.org/10.1021/acs.jpcb.0c08021
    12. Chibueze V. Amanchukwu, Zhiao Yu, Xian Kong, Jian Qin, Yi Cui, Zhenan Bao. A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. Journal of the American Chemical Society 2020, 142 (16) , 7393-7403. https://doi.org/10.1021/jacs.9b11056
    13. Rinaldo Raccichini, James W. Dibden, Ashley Brew, John R. Owen, Nuria García-Aráez. Ion Speciation and Transport Properties of LiTFSI in 1,3-Dioxolane Solutions: A Case Study for Li–S Battery Applications. The Journal of Physical Chemistry B 2018, 122 (1) , 267-274. https://doi.org/10.1021/acs.jpcb.7b09614
    14. Youchen Hao, Dongbin Xiong, Wen Liu, Linlin Fan, Dejun Li, and Xifei Li . Controllably Designed “Vice-Electrode” Interlayers Harvesting High Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces 2017, 9 (46) , 40273-40280. https://doi.org/10.1021/acsami.7b12710
    15. Minjeong Shin, Heng-Liang Wu, Badri Narayanan, Kimberly A. See, Rajeev S. Assary, Lingyang Zhu, Richard T. Haasch, Shuo Zhang, Zhengcheng Zhang, Larry A. Curtiss, and Andrew A. Gewirth . Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li+ Solvation Structure and Li–S Battery Performance. ACS Applied Materials & Interfaces 2017, 9 (45) , 39357-39370. https://doi.org/10.1021/acsami.7b11566
    16. Rubha Ponraj, Aravindaraj G. Kannan, Jun Hwan Ahn, Jae Hee Lee, Joonhee Kang, Byungchan Han, and Dong-Won Kim . Effective Trapping of Lithium Polysulfides Using a Functionalized Carbon Nanotube-Coated Separator for Lithium–Sulfur Cells with Enhanced Cycling Stability. ACS Applied Materials & Interfaces 2017, 9 (44) , 38445-38454. https://doi.org/10.1021/acsami.7b10641
    17. Chang-Wook Lee, Quan Pang, Seungbum Ha, Lei Cheng, Sang-Don Han, Kevin R. Zavadil, Kevin G. Gallagher, Linda F. Nazar, and Mahalingam Balasubramanian . Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries. ACS Central Science 2017, 3 (6) , 605-613. https://doi.org/10.1021/acscentsci.7b00123
    18. Qilong Yang, Xucheng Lv, Yongzhu Fu, Kang Xu, Wei Guo. Ligand exchange of Li-ion solvation sheath enables balanced electrolytes. Joule 2025, 378 , 101821. https://doi.org/10.1016/j.joule.2025.101821
    19. Huimin Song, Konrad Münch, Xu Liu, Kaier Shen, Ruizhuo Zhang, Timo Weintraut, Yuriy Yusim, Dequan Jiang, Xufeng Hong, Jiashen Meng, Yatao Liu, Mengxue He, Yitao Li, Philip Henkel, Torsten Brezesinski, Jürgen Janek, Quanquan Pang. All-solid-state Li–S batteries with fast solid–solid sulfur reaction. Nature 2025, 16 https://doi.org/10.1038/s41586-024-08298-9
    20. Siwu Wang, Huajun Guo, Xinhai Li, Zhixing Wang, Wenjie Peng, Jiexi Wang, Hui Duan, Guangchao Li, Guochun Yan. A screening method for film-forming additive in high-voltage graphite/LiCoO2. Journal of Electroanalytical Chemistry 2025, 976 , 118788. https://doi.org/10.1016/j.jelechem.2024.118788
    21. Shizhu Wang, Jianyu Shi, Zhenhui Liu, Yongyao Xia. Advanced Ether‐Based Electrolytes for Lithium‐ion Batteries. Advanced Energy Materials 2024, 3 https://doi.org/10.1002/aenm.202401526
    22. Yuping Zhang, Siyin Li, Junkai Shi, Jiawei Lai, Ziyue Zhuang, Jingwen Liu, Wenming Yang, Liang Ma, Yue-Peng Cai, Jijian Xu, Qifeng Zheng. Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries. Journal of Energy Chemistry 2024, 94 , 171-180. https://doi.org/10.1016/j.jechem.2024.02.059
    23. Yun‐Wei Song, Liang Shen, Nan Yao, Shuai Feng, Qian Cheng, Jin Ma, Xiang Chen, Bo‐Quan Li, Qiang Zhang. Anion‐Involved Solvation Structure of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2024, 63 (19) https://doi.org/10.1002/anie.202400343
    24. Yun‐Wei Song, Liang Shen, Nan Yao, Shuai Feng, Qian Cheng, Jin Ma, Xiang Chen, Bo‐Quan Li, Qiang Zhang. Anion‐Involved Solvation Structure of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie 2024, 136 (19) https://doi.org/10.1002/ange.202400343
    25. Yatao Liu, Linhan Xu, Yongquan Yu, MengXue He, Han Zhang, Yanqun Tang, Feng Xiong, Song Gao, Aijun Li, Jianhui Wang, Shenzhen Xu, Doron Aurbach, Ruqiang Zou, Quanquan Pang. Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction. Joule 2023, 7 (9) , 2074-2091. https://doi.org/10.1016/j.joule.2023.07.013
    26. Peitao Xiao, Xiaoru Yun, Yufang Chen, Xiaowei Guo, Peng Gao, Guangmin Zhou, Chunman Zheng. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chemical Society Reviews 2023, 52 (15) , 5255-5316. https://doi.org/10.1039/D3CS00151B
    27. Carla C. Fraenza, Steve G. Greenbaum, Sophia N. Suarez. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. International Journal of Molecular Sciences 2023, 24 (12) , 10373. https://doi.org/10.3390/ijms241210373
    28. Jake A. Klorman, Kah Chun Lau. The Relevance of Lithium Salt Solvate Crystals in Superconcentrated Electrolytes in Lithium Batteries. Energies 2023, 16 (9) , 3700. https://doi.org/10.3390/en16093700
    29. Xiaobing Chen, Daniel G. Kuroda. Ionic conduction mechanism in high concentration lithium ion electrolytes. Chemical Communications 2023, 59 (13) , 1849-1852. https://doi.org/10.1039/D2CC05645C
    30. Yuxi Chen, Elizabeth M. Y. Lee, Phwey S. Gil, Peiyuan Ma, Chibueze V. Amanchukwu, Juan J. de Pablo. Molecular engineering of fluoroether electrolytes for lithium metal batteries. Molecular Systems Design & Engineering 2023, 8 (2) , 195-206. https://doi.org/10.1039/D2ME00135G
    31. Hangchao Wang, Jin Song, Kun Zhang, Qiu Fang, Yuxuan Zuo, Tonghuan Yang, Yali Yang, Chuan Gao, Xuefeng Wang, Quanquan Pang, Dingguo Xia. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy & Environmental Science 2022, 15 (12) , 5149-5158. https://doi.org/10.1039/D2EE02904A
    32. Wandi Wahyudi, Xianrong Guo, Viko Ladelta, Leonidas Tsetseris, Mohamad I. Nugraha, Yuanbao Lin, Vincent Tung, Nikos Hadjichristidis, Qian Li, Kang Xu, Jun Ming, Thomas D. Anthopoulos. Hitherto Unknown Solvent and Anion Pairs in Solvation Structures Reveal New Insights into High‐Performance Lithium‐Ion Batteries. Advanced Science 2022, 9 (28) https://doi.org/10.1002/advs.202202405
    33. Gbenga S. Taiwo, Ali Rashti, Mritunjay Mishra, Koffi P. C. Yao. Polysulfide Speciation in Li–S Battery Electrolyte via In-Operando Optical Imaging and Ex-Situ UV-vis Spectra Analysis. Journal of The Electrochemical Society 2022, 169 (9) , 090518. https://doi.org/10.1149/1945-7111/ac8b3d
    34. Wesley A. Henderson, Monte L. Helm, Daniel M. Seo, Paul C. Trulove, Hugh C. De Long, Oleg Borodin. Electrolyte Solvation and Ionic Association: VIII. Reassessing Raman Spectroscopic Studies of Ion Coordination for LiTFSI. Journal of The Electrochemical Society 2022, 169 (6) , 060515. https://doi.org/10.1149/1945-7111/ac71d4
    35. Hualin Ye, Yanguang Li. Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?. Nano Research Energy 2022, 1 , e9120012. https://doi.org/10.26599/NRE.2022.9120012
    36. Jun Hwan Ahn, Da-Ae Lim, Jiwan Kim, Tae-Sun You, Dong-Won Kim. Enhancement of the cycling stability of lithium-sulfur batteries by using a reactive additive for blocking dissolution of lithium polysulfides. Journal of Industrial and Engineering Chemistry 2022, 108 , 484-492. https://doi.org/10.1016/j.jiec.2022.01.025
    37. Xiaoqun Qi, Fengyi Yang, Long Qie. L i–Sulfur Battery. 2022, 87-123. https://doi.org/10.1002/9783527830053.ch3
    38. Yatao Liu, Yuval Elias, Jiashen Meng, Doron Aurbach, Ruqiang Zou, Dingguo Xia, Quanquan Pang. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5 (9) , 2323-2364. https://doi.org/10.1016/j.joule.2021.06.009
    39. Ziyang Lu, Yong Guo, Siwei Zhang, Shichao Wu, Rongwei Meng, Shuang Hong, Jiaxi Li, Haoyu Xue, Boyi Zhang, Dinghui Fan, Yifang Zhang, Chen Zhang, Wei Lv, Quan‐Hong Yang. Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendrite‐Free Alkali‐Metal Battery. Advanced Materials 2021, 33 (31) https://doi.org/10.1002/adma.202101745
    40. Christian Kensy, Friedrich Schwotzer, Susanne Dörfler, Holger Althues, Stefan Kaskel. Impact of Carbon Porosity on Sulfur Conversion in Li−S Battery Cathodes in a Sparingly Polysulfide Solvating Electrolyte. Batteries & Supercaps 2021, 4 (5) , 823-833. https://doi.org/10.1002/batt.202000286
    41. Long Kong, Lihong Yin, Fei Xu, Juncao Bian, Huimin Yuan, Zhouguang Lu, Yusheng Zhao. Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry 2021, 55 , 80-91. https://doi.org/10.1016/j.jechem.2020.06.054
    42. Florian S. Reuter, Chen‐Jui Huang, Yi‐Chen Hsieh, Susanne Dörfler, Gunther Brunklaus, Holger Althues, Martin Winter, Shawn D. Lin, Bing‐Joe Hwang, Stefan Kaskel. Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents. Batteries & Supercaps 2021, 4 (2) , 347-358. https://doi.org/10.1002/batt.202000190
    43. Hui Zhao, Jinlei Gu, Yuliang Gao, Qian Hou, Zengying Ren, Yaqin Qi, Kun Zhang, Chao Shen, Jun Zhang, Keyu Xie. A multifunctional electrolyte with highly-coordinated solvation structure-in-nonsolvent for rechargeable lithium batteries. Journal of Energy Chemistry 2020, 51 , 362-371. https://doi.org/10.1016/j.jechem.2020.04.044
    44. Alberto Varzi, Katharina Thanner, Roberto Scipioni, Daniele Di Lecce, Jusef Hassoun, Susanne Dörfler, Holger Altheus, Stefan Kaskel, Christian Prehal, Stefan A. Freunberger. Current status and future perspectives of lithium metal batteries. Journal of Power Sources 2020, 480 , 228803. https://doi.org/10.1016/j.jpowsour.2020.228803
    45. Leyuan Zhang, Yumin Qian, Ruozhu Feng, Yu Ding, Xihong Zu, Changkun Zhang, Xuelin Guo, Wei Wang, Guihua Yu. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17662-y
    46. Xiaobing Chen, Daniel G. Kuroda. Molecular motions of acetonitrile molecules in the solvation shell of lithium ions. The Journal of Chemical Physics 2020, 153 (16) https://doi.org/10.1063/5.0024486
    47. Xiaoqun Qi, Ying Yang, Qiang Jin, Fengyi Yang, Yong Xie, Pengfei Sang, Kun Liu, Wenbin Zhao, Xiaobin Xu, Yongzhu Fu, Jian Zhou, Long Qie, Yunhui Huang. Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie 2020, 132 (33) , 14012-14018. https://doi.org/10.1002/ange.202004424
    48. Xiaoqun Qi, Ying Yang, Qiang Jin, Fengyi Yang, Yong Xie, Pengfei Sang, Kun Liu, Wenbin Zhao, Xiaobin Xu, Yongzhu Fu, Jian Zhou, Long Qie, Yunhui Huang. Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie International Edition 2020, 59 (33) , 13908-13914. https://doi.org/10.1002/anie.202004424
    49. Guan-Ying Du, Chi-You Liu, Elise Y. Li. A DFT Investigation on the Origins of Solvent-Dependent Polysulfide Reduction Mechanism in Rechargeable Li-S Batteries. Catalysts 2020, 10 (8) , 911. https://doi.org/10.3390/catal10080911
    50. Yangzhi Zhao, Chen Fang, Guangzhao Zhang, Dion Hubble, Asritha Nallapaneni, Chenhui Zhu, Zhuowen Zhao, Zhimeng Liu, Jonathan Lau, Yanbao Fu, Gao Liu. A Micelle Electrolyte Enabled by Fluorinated Ether Additives for Polysulfide Suppression and Li Metal Stabilization in Li-S Battery. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00484
    51. Xiwen Wang, Yuqing Tan, Guohong Shen, Shiguo Zhang. Recent progress in fluorinated electrolytes for improving the performance of Li–S batteries. Journal of Energy Chemistry 2020, 41 , 149-170. https://doi.org/10.1016/j.jechem.2019.05.010
    52. Tianyi Wang, Yushu Liu, Dawei Su, Guoxiu Wang. 1D and 2D Flexible Carbon Matrix Materials for Lithium–Sulfur Batteries. 2020, 145-170. https://doi.org/10.1002/9781119468288.ch5
    53. Christine Weller, Jonas Pampel, Susanne Dörfler, Holger Althues, Stefan Kaskel. Polysulfide Shuttle Suppression by Electrolytes with Low‐Density for High‐Energy Lithium–Sulfur Batteries. Energy Technology 2019, 7 (12) https://doi.org/10.1002/ente.201900625
    54. Chibueze V. Amanchukwu, Xian Kong, Jian Qin, Yi Cui, Zhenan Bao. Nonpolar Alkanes Modify Lithium‐Ion Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials 2019, 9 (41) https://doi.org/10.1002/aenm.201902116
    55. Minjeong Shin, Andrew A. Gewirth. Incorporating Solvate and Solid Electrolytes for All‐Solid‐State Li 2 S Batteries with High Capacity and Long Cycle Life. Advanced Energy Materials 2019, 9 (26) https://doi.org/10.1002/aenm.201900938
    56. Min‐Suk Lee, Victor Roev, Changhoon Jung, Ji‐Rae Kim, Sangil Han, Hyo‐Rang Kang, Dongmin Im, Il‐Seok Kim. An Aggregate Cluster‐Dispersed Electrolyte Guides the Uniform Nucleation and Growth of Lithium at Lithium Metal Anodes. ChemistrySelect 2018, 3 (41) , 11527-11534. https://doi.org/10.1002/slct.201800757
    57. Ming Li, Zhila Amirzadeh, Roland De Marco, Xin Fu Tan, Andrew Whittaker, Xia Huang, Roger Wepf, Ruth Knibbe. In Situ Techniques for Developing Robust Li–S Batteries. Small Methods 2018, 2 (11) https://doi.org/10.1002/smtd.201800133
    58. Lili Wang, Yusheng Ye, Nan Chen, Yongxin Huang, Li Li, Feng Wu, Renjie Chen. Development and Challenges of Functional Electrolytes for High‐Performance Lithium–Sulfur Batteries. Advanced Functional Materials 2018, 28 (38) https://doi.org/10.1002/adfm.201800919
    59. Quan Pang, Abhinandan Shyamsunder, Badri Narayanan, Chun Yuen Kwok, Larry A. Curtiss, Linda F. Nazar. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy 2018, 3 (9) , 783-791. https://doi.org/10.1038/s41560-018-0214-0
    60. Tianyi Wang, Yushu Liu, Dawei Su, Guoxiu Wang. 1D and 2D Flexible Carbon Matrix Materials for Lithium–Sulfur Batteries. 2018, 127-153. https://doi.org/10.1002/9783527342631.ch5
    61. Molleigh B. Preefer, Bernd Oschmann, Craig J. Hawker, Ram Seshadri, Fred Wudl. High Sulfur Content Material with Stable Cycling in Lithium‐Sulfur Batteries. Angewandte Chemie 2017, 129 (47) , 15314-15318. https://doi.org/10.1002/ange.201708746
    62. Molleigh B. Preefer, Bernd Oschmann, Craig J. Hawker, Ram Seshadri, Fred Wudl. High Sulfur Content Material with Stable Cycling in Lithium‐Sulfur Batteries. Angewandte Chemie International Edition 2017, 56 (47) , 15118-15122. https://doi.org/10.1002/anie.201708746
    63. Heng-Liang Wu, Richard T. Haasch, Brian R. Perdue, Christopher A. Apblett, Andrew A. Gewirth. The effect of water-containing electrolyte on lithium-sulfur batteries. Journal of Power Sources 2017, 369 , 50-56. https://doi.org/10.1016/j.jpowsour.2017.09.044

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2016, 8, 50, 34360–34371
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.6b11358
    Published November 16, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3614

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.