ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Pillar[5]arene-Based Supramolecular Plasmonic Thin Films for Label-Free, Quantitative and Multiplex SERS Detection

View Author Information
Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Departamento de Química Física, Universidad de Santiago, 15782 Santiago, Spain
§ Departamento de Teoría de la Señal y Comunicaciones, Universidade de Vigo, 36310 Vigo, Spain
Departamento Tecnología de los Computadores y de las Comunicaciones, Universidad de Extremadura, 10003 Cáceres, Spain
Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Económicas y Empresariales & Centro Singular de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
*E-mail: [email protected] (I.P.-S.).
*E-mail: [email protected] (J.P.-J.).
Cite this: ACS Appl. Mater. Interfaces 2017, 9, 31, 26372–26382
Publication Date (Web):July 19, 2017
https://doi.org/10.1021/acsami.7b08297
Copyright © 2017 American Chemical Society

    Article Views

    1893

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Novel plasmonic thin films based on electrostatic layer-by-layer (LbL) deposition of citrate-stabilized Au nanoparticles (NPs) and ammonium pillar[5]arene (AP[5]A) have been developed. The supramolecular-induced LbL assembly of the plasmonic nanoparticles yields the formation of controlled hot spots with uniform interparticle distances. At the same time, this strategy allows modulating the density and dimensions of the Au aggregates, and therefore the optical response, on the thin film with the number of AuNP-AP[5]A deposition cycles. Characterization of the AuNP-AP[5]A hybrid platforms as a function of the deposition cycles was performed by means of visible–NIR absorption spectroscopy, and scanning electron and atomic force microscopies, showing larger aggregates with the number of cycles. Additionally, the surface enhanced Raman scattering efficiency of the resulting AuNP-AP[5]A thin films has been investigated for three different laser excitations (633, 785, and 830 nm) and using pyrene as Raman probe. The best performance was shown by the AuNP-AP[5]A film obtained with two deposition cycles ((AuNP-AP[5]A)2) when excited with a 785 laser line. The optical response and SERS efficiency of the thin films were also simulated using the M3 solver and employing computer aided design models built based on SEM images of the different films. The use of host molecules as building blocks to fabricate (AuNP-AP[5]A)2) films has enabled the ultradetection, in liquid and gas phase, of low molecular weight polyaromatic hydrocarbons, PAHs, with no affinity for gold but toward the hydrophobic AP[5]A cavity. Besides, these plasmonic platforms allowed achieving quantitative detection within certain concentration regimes. Finally, the multiplex sensing capabilities of the AuNP-AP[5]A)2 were evaluated for their ability to detect in liquid and gas phase three different PAHs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b08297.

    • Visible–NIR extinction spectrum and TEM analysis of citrate-stabilized Au nanoparticles; chemical structure of AP[5]A; SEM and AFM analysis and theoretical optical response of plasmonic substrates with different AuNP-AP[5]A deposition cycles; analysis of the host–guest interaction through fluorescence spectroscopy; CAD models of the different AuNP-AP[5]A assemblies; experimental and simulated SERS mappings obtained for (AuNP-AP[5]A)1 and (AuNP-AP[5]A)3 with 633 nm, 785, and 830 nm excitation laser lines; SERS mapping analysis of pyrene, nitropyrene, and anthracene at different concentrations; SERS spectra of pyrene, nitropyrene, and anthracene obtained from gas-phase experiments; vibrational band assignments for the three PAH molecules; detection limits reported for the three PAH studied (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 31 publications.

    1. Jiyeon Kim, Jae-Myoung Kim, Kyungin Choi, Jeong-Eun Park, Jwa-Min Nam. Open Cross-gap Gold Nanocubes with Strong, Large-Area, Symmetric Electromagnetic Field Enhancement for On-Particle Molecular-Fingerprint Raman Bioassays. Journal of the American Chemical Society 2024, 146 (20) , 14012-14021. https://doi.org/10.1021/jacs.4c02099
    2. Hao Zhang, Xin Wang, Kun-Tao Huang, Feng Liang, Ying-Wei Yang. Green Synthesis of Leaning Tower[6]arene-Mediated Gold Nanoparticles for Label-Free Detection. Organic Letters 2021, 23 (12) , 4677-4682. https://doi.org/10.1021/acs.orglett.1c01300
    3. Alexander Castro-Grijalba, Verónica Montes-García, María José Cordero-Ferradás, Eduardo Coronado, Jorge Pérez-Juste, Isabel Pastoriza-Santos. SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sensors 2020, 5 (3) , 693-702. https://doi.org/10.1021/acssensors.9b01882
    4. Yongchao Lai, Cuijuan Wang, Hua Shao. Thioctic Acid-Modified Silver Nanoplates on Copper Foil for Low Interference Detection of Fluoranthene by Surface-Enhanced Raman Spectroscopy. ACS Applied Nano Materials 2020, 3 (2) , 1800-1807. https://doi.org/10.1021/acsanm.9b02496
    5. Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, Guillermo C. Bazan, Steven E. J. Bell, Anja Boisen, Alexandre G. Brolo, Jaebum Choo, Dana Cialla-May, Volker Deckert, Laura Fabris, Karen Faulds, F. Javier García de Abajo, Royston Goodacre, Duncan Graham, Amanda J. Haes, Christy L. Haynes, Christian Huck, Tamitake Itoh, Mikael Käll, Janina Kneipp, Nicholas A. Kotov, Hua Kuang, Eric C. Le Ru, Hiang Kwee Lee, Jian-Feng Li, Xing Yi Ling, Stefan A. Maier, Thomas Mayerhöfer, Martin Moskovits, Kei Murakoshi, Jwa-Min Nam, Shuming Nie, Yukihiro Ozaki, Isabel Pastoriza-Santos, Jorge Perez-Juste, Juergen Popp, Annemarie Pucci, Stephanie Reich, Bin Ren, George C. Schatz, Timur Shegai, Sebastian Schlücker, Li-Lin Tay, K. George Thomas, Zhong-Qun Tian, Richard P. Van Duyne, Tuan Vo-Dinh, Yue Wang, Katherine A. Willets, Chuanlai Xu, Hongxing Xu, Yikai Xu, Yuko S. Yamamoto, Bing Zhao, Luis M. Liz-Marzán. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1) , 28-117. https://doi.org/10.1021/acsnano.9b04224
    6. Xiaoping Tan, Zhong Zhang, Tuanwu Cao, Wenjie Zeng, Ting Huang, Genfu Zhao. Control Assembly of Pillar[6]arene-Modified Ag Nanoparticles on Covalent Organic Framework Surface for Enhanced Sensing Performance toward Paraquat. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 20051-20059. https://doi.org/10.1021/acssuschemeng.9b05804
    7. Yan Yu, Pan Zeng, Cheng Yang, Junyi Gong, Rongqing Liang, Qiongrong Ou, Shuyu Zhang. Gold-Nanorod-Coated Capillaries for the SERS-Based Detection of Thiram. ACS Applied Nano Materials 2019, 2 (1) , 598-606. https://doi.org/10.1021/acsanm.8b02075
    8. Supriya Atta, Joy Qiaoyi Li, Tuan Vo-Dinh. Multiplex SERS detection of polycyclic aromatic hydrocarbon (PAH) pollutants in water samples using gold nanostars and machine learning analysis. The Analyst 2023, 148 (20) , 5105-5116. https://doi.org/10.1039/D3AN00636K
    9. Yazhou Qin, Jiaxin Qiu, Nan Tang, Yuanzhao Wu, Weixuan Yao, Yingsheng He. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water. Environmental Research 2023, 228 , 115926. https://doi.org/10.1016/j.envres.2023.115926
    10. Nazia Tarannum, Shahjadi Khatoon, Akanksha Yadav, Anil K. Yadav. SERS-based molecularly imprinted polymer sensor for highly sensitive norfloxacin detection. Journal of Food Composition and Analysis 2023, 119 , 105281. https://doi.org/10.1016/j.jfca.2023.105281
    11. Chang Wang, Shihao Zhou, Yue Tian, Anxin Jiao, Hui Ma, Mengya Zhang, Linqi Zheng, Xiangdong Liu, Qingqiang Cui, Shuang Li, Ming Chen. Super-hydrophilic SERS sensor with both ultrahigh activity and exceptional 3D spatial uniformity for sensitive detection of toxic pollutants. Applied Surface Science 2022, 603 , 154445. https://doi.org/10.1016/j.apsusc.2022.154445
    12. Hang Yin, Ziyi Jin, Wenjia Duan, Bing Han, Limei Han, Cong Li. Emergence of Responsive Surface‐Enhanced Raman Scattering Probes for Imaging Tumor‐Associated Metabolites. Advanced Healthcare Materials 2022, 11 (12) https://doi.org/10.1002/adhm.202200030
    13. Mengya Zhang, Yue Tian, Anxin Jiao, Hui Ma, Chang Wang, Linqi Zheng, Shuang Li, Ming Chen. Synergistic double laser beam-boosted liquid-NIR-SERS for ultralow detection of non-adsorptive polycyclic aromatic hydrocarbons in lake water. Nanophotonics 2022, 11 (12) , 2875-2889. https://doi.org/10.1515/nanoph-2022-0010
    14. Borja Gómez-González, Luis García-Río, Nuno Basílio, Juan C. Mejuto, Jesus Simal-Gandara. Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics 2022, 14 (1) , 60. https://doi.org/10.3390/pharmaceutics14010060
    15. Sanu Mathew Simon, Gejo George, Sajna M S, Prakashan V P, Twinkle Anna Jose, Prathibha Vasudevan, A.C. Saritha, P.R. Biju, Cyriac Joseph, N.V. Unnikrishnan. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Applied Surface Science Advances 2021, 6 , 100173. https://doi.org/10.1016/j.apsadv.2021.100173
    16. Chunchun Li, Yiming Huang, Xinyuan Li, Yingrui Zhang, Qinglu Chen, Ziwei Ye, Zarah Alqarni, Steven E. J. Bell, Yikai Xu. Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates. Journal of Materials Chemistry C 2021, 9 (35) , 11517-11552. https://doi.org/10.1039/D1TC02134F
    17. Sara Gullace, Verónica Montes‐García, Victor Martín, David Larios, Valentina Girelli Consolaro, Fernando Obelleiro, Giuseppe Calogero, Stefano Casalini, Paolo Samorì. Universal Fabrication of Highly Efficient Plasmonic Thin‐Films for Label‐Free SERS Detection. Small 2021, 17 (33) https://doi.org/10.1002/smll.202100755
    18. Yaser Acikbas, Mehmet Aksoy, Merve Aksoy, Damla Karaagac, Elif Bastug, Ahmed Nuri Kursunlu, Matem Erdogan, Rifat Capan, Mustafa Ozmen, Mustafa Ersoz. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2021, 100 (1-2) , 39-54. https://doi.org/10.1007/s10847-021-01059-5
    19. Verónica Montes‐García, Rafael Furlan de Oliveira, Ye Wang, Andrey Berezin, Pablo Fanjul‐Bolado, María Begoña González García, Thomas M. Hermans, Davide Bonifazi, Stefano Casalini, Paolo Samorì. Harnessing Selectivity and Sensitivity in Ion Sensing via Supramolecular Recognition: A 3D Hybrid Gold Nanoparticle Network Chemiresistor. Advanced Functional Materials 2021, 31 (10) https://doi.org/10.1002/adfm.202008554
    20. Qi Li, Huangtianzhi Zhu, Feihe Huang. Pillararene-Based Supramolecular Functional Materials. Trends in Chemistry 2020, 2 (9) , 850-864. https://doi.org/10.1016/j.trechm.2020.07.004
    21. Gustavo Bodelón, Isabel Pastoriza-Santos. Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00478
    22. Ahmed Nuri Kursunlu, Yaser Acikbas, Mustafa Ozmen, Matem Erdogan, Rifat Capan. Fabrication of LB thin film of pillar[5]arene-2-amino-3-hydroxypyridine for the sensing of vapors. Materials Letters 2020, 267 , 127538. https://doi.org/10.1016/j.matlet.2020.127538
    23. Marta Lafuente, Silvia Ruiz-Rincón, Reyes Mallada, Pilar Cea, Maria Pilar Pina. Towards the reproducible fabrication of homogeneous SERS substrates by Langmuir-Schaefer technique: A low cost and scalable approach for practical SERS based sensing applications. Applied Surface Science 2020, 506 , 144663. https://doi.org/10.1016/j.apsusc.2019.144663
    24. Jing Sun, Fang Guo, Qiaofang Shi, Huayu Wu, Yan Sun, Ming Chen, Guowang Diao. Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. Journal of Electroanalytical Chemistry 2019, 847 , 113221. https://doi.org/10.1016/j.jelechem.2019.113221
    25. Ahmed Nuri Kursunlu, Yaser Acikbas, Mustafa Ozmen, Matem Erdogan, Rifat Capan. Haloalkanes and aromatic hydrocarbons sensing using Langmuir–Blodgett thin film of pillar[5]arene-biphenylcarboxylic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 565 , 108-117. https://doi.org/10.1016/j.colsurfa.2018.12.050
    26. Zhi‐Yuan Zhang, Yong Chen, Yan Zhou, Yu Liu. Tunable Supramolecular Nanoarchitectures Constructed by the Complexation of Diphenanthro‐24‐Crown‐8/Cesium(I) with Nickel(II) and Silver(I) Ions. ChemPlusChem 2019, 84 (2) , 161-165. https://doi.org/10.1002/cplu.201900002
    27. Siyu Sun, Dou Lu, Qing Huang, Quan Liu, Yong Yao, Yujun Shi. Reversible surface activity and self-assembly behavior and transformation of amphiphilic ionic liquids in water induced by a pillar[5]arene-based host-guest interaction. Journal of Colloid and Interface Science 2019, 533 , 42-46. https://doi.org/10.1016/j.jcis.2018.08.051
    28. Qi Lin, Xiao-Wen Guan, Shan-Shan Song, Haiyan Fan, Hong Yao, You-Ming Zhang, Tai-Bao Wei. A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar[5]arene for fluorescence detection and separation of aromatic acid isomers. Polymer Chemistry 2019, 10 (2) , 253-259. https://doi.org/10.1039/C8PY01299G
    29. Xiao-Yu Jin, Nan Song, Xu Wang, Chun-Yu Wang, Yan Wang, Ying-Wei Yang. Monosulfonicpillar[5]arene: Synthesis, Characterization, and Complexation with Tetraphenylethene for Aggregation-Induced Emission. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-22446-y
    30. Verónica Montes‐García, Sergio Rodal‐Cedeira, María José Cordero‐Ferradás, Borja Gómez, Luis García‐Río, Isabel Pastoriza‐Santos, Jorge Pérez‐Juste. Pillar[5]arene‐stabilized Plasmonic Nanoparticles as Selective SERS Sensors. Israel Journal of Chemistry 2018, 58 (11) , 1251-1260. https://doi.org/10.1002/ijch.201800041
    31. Uichi Akiba, Daichi Minaki, Jun-ichi Anzai. Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review. Polymers 2018, 10 (2) , 130. https://doi.org/10.3390/polym10020130

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect