ACS Publications. Most Trusted. Most Cited. Most Read
Electrical Contacts in Monolayer Arsenene Devices
My Activity

Figure 1Loading Img
    Research Article

    Electrical Contacts in Monolayer Arsenene Devices
    Click to copy article linkArticle link copied!

    View Author Information
    Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
    State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
    § Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
    School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
    School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, P. R. China
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2017, 9, 34, 29273–29284
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.7b08513
    Published August 7, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b08513.

    • Benchmark of the performance of ML arsenene MOSFETs against other 2DSC FETs; cross sections of the ELF for different ML arsenene-metal junctions; electron density differences after the formation of arsenene-Pt and arsenene-graphene-Pt contacts, PDOS of As electron orbitals for different ML arsenene-bulk metal contacts; band structures of ML arsenene and ML arsenene-Pt contact with the SOC effect; and band structure and plane-averaged total potential V of the ML arsenene-Pt contact in which ML arsenene is strained to fit the bulk metal Pt (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 79 publications.

    1. Ying Li, Lianqiang Xu, Chen Yang, Linqiang Xu, Shiqi Liu, Zongmeng Yang, Qiuhui Li, Jichao Dong, Jie Yang, Jing Lu. Electrical Contacts in Monolayer MoSi2N4 Transistors. ACS Applied Materials & Interfaces 2024, 16 (37) , 49496-49507. https://doi.org/10.1021/acsami.4c09880
    2. Wen Ai, Yongfei Shi, Xiaohui Hu, Jian Yang, Litao Sun. Tunable Schottky Barrier and Efficient Ohmic Contacts in MSi2N4 (M = Mo, W)/2D Metal Contacts. ACS Applied Electronic Materials 2023, 5 (10) , 5606-5613. https://doi.org/10.1021/acsaelm.3c00922
    3. Zhongjian Xie, Bin Zhang, Yanqi Ge, Yao Zhu, Guohui Nie, YuFeng Song, Chang-Keun Lim, Han Zhang, Paras N. Prasad. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews 2022, 122 (1) , 1127-1207. https://doi.org/10.1021/acs.chemrev.1c00165
    4. Evgeniya Kovalska, Nikolas Antonatos, Jan Luxa, Zdeněk Sofer. “Top-down” Arsenene Production by Low-Potential Electrochemical Exfoliation. Inorganic Chemistry 2020, 59 (16) , 11259-11265. https://doi.org/10.1021/acs.inorgchem.0c00243
    5. Pooja Jamdagni, Anil Thakur, Ashok Kumar, P. K. Ahluwalia, Ravindra Pandey. Superior Mechanical and Electronic Properties of Novel 2D Allotropes of As and Sb Monolayers. The Journal of Physical Chemistry C 2019, 123 (44) , 27214-27221. https://doi.org/10.1021/acs.jpcc.9b07348
    6. Xiao-Juan Ye, Gui-Lin Zhu, Jin Liu, Chun-Sheng Liu, Xiao-Hong Yan. Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion Batteries: A First-Principles Study. The Journal of Physical Chemistry C 2019, 123 (25) , 15777-15786. https://doi.org/10.1021/acs.jpcc.9b02399
    7. Yi Hu, Zheng-Hang Qi, Jingyu Lu, Renpeng Chen, Mingzhi Zou, Tao Chen, Wenjun Zhang, Yanrong Wang, Xiaolan Xue, Jing Ma, Zhong Jin. van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. Chemistry of Materials 2019, 31 (12) , 4524-4535. https://doi.org/10.1021/acs.chemmater.9b01151
    8. Cheng He, Ming Cheng, Tongtong Li, Wenxue Zhang. Tunable Ohmic, p-Type Quasi-Ohmic, and n-Type Schottky Contacts of Monolayer SnSe with Metals. ACS Applied Nano Materials 2019, 2 (5) , 2767-2775. https://doi.org/10.1021/acsanm.9b00276
    9. Lianqiang Xu, Shiqi Liu, Jie Yang, Bowen Shi, Yuanyuan Pan, Xiuying Zhang, Hong Li, Jiahuan Yan, Jingzhen Li, Linqiang Xu, Jinbo Yang, Jing Lu. Pervasive Ohmic Contacts in Bilayer Bi2O2Se–Metal Interfaces. The Journal of Physical Chemistry C 2019, 123 (14) , 8923-8931. https://doi.org/10.1021/acs.jpcc.8b12278
    10. Rui Sun, Yan Gu, Guofeng Yang, Jin Wang, Xiudong Fang, Naiyan Lu, Bin Hua, Xiaomi Yan. Theoretical Study on the Interfacial Properties of Monolayer TiS3–Metal Contacts for Electronic Device Applications. The Journal of Physical Chemistry C 2019, 123 (12) , 7390-7396. https://doi.org/10.1021/acs.jpcc.8b08946
    11. Sibai Li, Weiji Xiao, Yuanyuan Pan, Jianshu Jie, Chao Xin, Jiaxin Zheng, Jing Lu, Feng Pan. Interfacial Properties of Monolayer SnS–Metal Contacts. The Journal of Physical Chemistry C 2018, 122 (23) , 12322-12331. https://doi.org/10.1021/acs.jpcc.8b03308
    12. Mouyi Weng, Sibai Li, Jiaxin Zheng, Feng Pan, and Lin-Wang Wang . Wannier Koopmans Method Calculations of 2D Material Band Gaps. The Journal of Physical Chemistry Letters 2018, 9 (2) , 281-285. https://doi.org/10.1021/acs.jpclett.7b03041
    13. Huabing Yin, Jingwei Gao, Guang-Ping Zheng, Yuanxu Wang, and Yuchen Ma . Giant Piezoelectric Effects in Monolayer Group-V Binary Compounds with Honeycomb Phases: A First-Principles Prediction. The Journal of Physical Chemistry C 2017, 121 (45) , 25576-25584. https://doi.org/10.1021/acs.jpcc.7b08822
    14. Deepika Tyagi, Vijay Laxmi, Nilanjan Basu, Leelakrishna Reddy, Yibin Tian, Zhengbiao Ouyang, Pramoda K. Nayak. Recent advances in two-dimensional perovskite materials for light-emitting diodes. Discover Nano 2024, 19 (1) https://doi.org/10.1186/s11671-024-04044-2
    15. Xin Pei, Xiaohui Hu, Tao Xu, Litao Sun. The Contact Properties of Monolayer and Multilayer MoS2-Metal van der Waals Interfaces. Nanomaterials 2024, 14 (13) , 1075. https://doi.org/10.3390/nano14131075
    16. Jiayang Wang, Alexander Sredenschek, David Sanchez, Mauricio Terrones, Susan Sinnott. First-principles study on the electronic properties and Schottky barrier of WC/ W S 2 and WC/ WS e 2 heterostructures. Physical Review Materials 2024, 8 (4) https://doi.org/10.1103/PhysRevMaterials.8.044004
    17. Qian 前 Liang 梁, Xiangyan 祥燕 Luo 罗, Guolin 国林 Qian 钱, Yuanfan 远帆 Wang 王, Yongchao 永超 Liang 梁, Quan 泉 Xie 谢. Effects of vacancy and external electric field on the electronic properties of the MoSi 2 N 4 /graphene heterostructure. Chinese Physics B 2024, 33 (3) , 037101. https://doi.org/10.1088/1674-1056/acef04
    18. Xinxin Wang, Shiqiang Yu, Yushuo Xu, Baibiao Huang, Ying Dai, Wei Wei. Ohmic contacts of the two-dimensional Ca 2 N/MoS 2 donor–acceptor heterostructure. Physical Chemistry Chemical Physics 2023, 25 (22) , 15433-15440. https://doi.org/10.1039/D3CP01412F
    19. Wenjing Yu, Jingzhen Li, Yi Wu, Jing Lu, Yongzhe Zhang. Systematic investigation of the mechanical, electronic, and interfacial properties of high mobility monolayer InAs from first-principles calculations. Physical Chemistry Chemical Physics 2023, 25 (15) , 10769-10777. https://doi.org/10.1039/D2CP05916A
    20. Lijun Luan, Kaiyang Bai, Zhefan Ma, Pengfei Yu, Li Duan. Barrier height control of the Mg-MoS2 heterojunction doped with group VIA elements. Chinese Science Bulletin 2023, 68 (6) , 705-712. https://doi.org/10.1360/TB-2022-0683
    21. Shiqi Li, Guoyi Huang, Yiding Jia, Bing Wang, Hongcheng Wang, Han Zhang. Photoelectronic properties and devices of 2D Xenes. Journal of Materials Science & Technology 2022, 126 , 44-59. https://doi.org/10.1016/j.jmst.2022.02.038
    22. Vo Van On, J. Guerrero-Sanchez, R. Ponce-Pérez, Tuan V. Vu, J.F. Rivas-Silva, Gregorio H. Cocoletzi, D.M. Hoat. Defective and doped MgO monolayer as promising 2D materials for optoelectronic and spintronic applications. Materials Science in Semiconductor Processing 2022, 149 , 106876. https://doi.org/10.1016/j.mssp.2022.106876
    23. Ying Guo, Gaoyang Zhao, Feng Pan, Ruge Quhe, Jing Lu. The Interfacial Properties of Monolayer MX–Metal Contacts. Journal of Electronic Materials 2022, 51 (9) , 4824-4835. https://doi.org/10.1007/s11664-022-09747-9
    24. Vahidreza Darugar, Mohammad Vakili, Silvia Antonia Brandán. Electrical transport and NDR property on the cis–trans photo-isomerization of (1R,3S)-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropanecarboxylate as an optical molecular switch; A DFT-NEGF study. Chemical Physics Letters 2022, 803 , 139818. https://doi.org/10.1016/j.cplett.2022.139818
    25. Yi Hu, Junchuan Liang, Yuren Xia, Cheng Zhao, Minghang Jiang, Jing Ma, Zuoxiu Tie, Zhong Jin. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. Small 2022, 18 (9) https://doi.org/10.1002/smll.202104556
    26. Yi Hu, Junchuan Liang, Lixiu Zhang, Zhong Jin, Liming Ding. 2D arsenenes. Journal of Semiconductors 2022, 43 (3) , 030201. https://doi.org/10.1088/1674-4926/43/3/030201
    27. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli. Recent advances in arsenene nanostructures towards prediction, properties, synthesis and applications. Surfaces and Interfaces 2022, 28 , 101610. https://doi.org/10.1016/j.surfin.2021.101610
    28. Linpeng Dong, Shun Zhou, Kaiwen Pu, Chen Yang, Bin Xin, Bo Peng, Weiguo Liu. Electrical contacts in monolayer Ga2O3 field-effect tansistors. Applied Surface Science 2021, 564 , 150386. https://doi.org/10.1016/j.apsusc.2021.150386
    29. Ruo-Si Chen, Guanglong Ding, Ye Zhou, Su-Ting Han. Fermi-level depinning of 2D transition metal dichalcogenide transistors. Journal of Materials Chemistry C 2021, 9 (35) , 11407-11427. https://doi.org/10.1039/D1TC01463C
    30. Karim Khan, Ayesha Khan Tareen, Qudrat Ullah Khan, Muhammad Iqbal, Han Zhang, Zhongyi Guo. Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Materials Chemistry Frontiers 2021, 5 (17) , 6333-6391. https://doi.org/10.1039/D1QM00629K
    31. Yee Sin Ang, Liemao Cao, Lay Kee Ang. Physics of electron emission and injection in two‐dimensional materials: Theory and simulation. InfoMat 2021, 3 (5) , 502-535. https://doi.org/10.1002/inf2.12168
    32. Yangyang Wang, Shiqi Liu, Qiuhui Li, Ruge Quhe, Chen Yang, Ying Guo, Xiuying Zhang, Yuanyuan Pan, Jingzhen Li, Han Zhang, Lin Xu, Bowen Shi, Hao Tang, Ying Li, Jinbo Yang, Zhiyong Zhang, Lin Xiao, Feng Pan, Jing Lu. Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment. Reports on Progress in Physics 2021, 84 (5) , 056501. https://doi.org/10.1088/1361-6633/abf1d4
    33. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli. Molecular interaction studies of cumene and toluene on δ -arsenene nanosheet – a first-principles outlook. Molecular Physics 2021, 119 (3) , e1800853. https://doi.org/10.1080/00268976.2020.1800853
    34. Lei Zhang, Tian Gong, Zhiqiang Yu, Huan Dai, Zhenjingfeng Yang, Ganlin Chen, Jinhua Li, Ruikun Pan, Huide Wang, Zhinan Guo, Han Zhang, Xiao Fu. Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Advanced Functional Materials 2021, 31 (1) https://doi.org/10.1002/adfm.202005471
    35. Bing Wang, Shipeng Zhong, Ping Xu, Han Zhang. Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal 2021, 403 , 126336. https://doi.org/10.1016/j.cej.2020.126336
    36. Mi-Mi Dong, Guang-Ping Zhang, Zong-Liang Li, Ming-Lang Wang, Chuan-Kui Wang, Xiao-Xiao Fu. Anisotropic interfacial properties of monolayer C 2 N field effect transistors. Physical Chemistry Chemical Physics 2020, 22 (48) , 28074-28085. https://doi.org/10.1039/D0CP04450D
    37. Serhan Yamacli. Investigation of static and dynamic electronic transport characteristics of zigzag arsenene nanoribbons: An ab-initio study. Materials Today Communications 2020, 25 , 101581. https://doi.org/10.1016/j.mtcomm.2020.101581
    38. Nur Farhanah Rosli, Carmen C. Mayorga-Martinez, Adrian C. Fisher, Osamah Alduhaish, Richard D. Webster, Martin Pumera. Arsenene nanomotors as anticancer drug carrier. Applied Materials Today 2020, 21 , 100819. https://doi.org/10.1016/j.apmt.2020.100819
    39. Bing Wang, Shipeng Zhong, Ping Xu, Han Zhang. Recent development and advances in Photodetectors based on two-dimensional topological insulators. Journal of Materials Chemistry C 2020, 8 (44) , 15526-15574. https://doi.org/10.1039/D0TC03410J
    40. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli. DFT Outlook on Surface Adsorption Properties of Nitrobenzene on Novel Red Tricycle Arsenene Nanoring. Journal of Inorganic and Organometallic Polymers and Materials 2020, 30 (11) , 4329-4341. https://doi.org/10.1007/s10904-020-01633-3
    41. Vo Van On, D M Hoat, Duy Khanh Nguyen, R Ponce-Pérez, Tuan V Vu, J F Rivas-Silva, Gregorio H Cocoletzi. Fluorinating the graphene-like BeO monolayer: A spin-polarized first principles study of the electronic, magnetic and optical properties. Physica Scripta 2020, 95 (10) , 105806. https://doi.org/10.1088/1402-4896/abb698
    42. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli. Interaction studies of aniline on pristine and Al-doped ε-Arsenene nanosheets – A first-principles insight. Chemical Physics Letters 2020, 752 , 137588. https://doi.org/10.1016/j.cplett.2020.137588
    43. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli. Methyl and Ethyl mercaptan molecular adsorption studies on novel Kagome arsenene nanosheets - A DFT outlook. Physica B: Condensed Matter 2020, 586 , 412135. https://doi.org/10.1016/j.physb.2020.412135
    44. Bahar Meshginqalam, Jamal Barvestani. Doped Arsenene Nanoribbon as a Promising Candidate for Sensing Toxic Gas Molecules: Theoretical Approach. IEEE Sensors Journal 2020, 20 (11) , 5984-5991. https://doi.org/10.1109/JSEN.2020.2972157
    45. Bing Wang, Shipeng Zhong, Yanqi Ge, Huide Wang, Xiaoling Luo, Han Zhang. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Research 2020, 13 (4) , 891-918. https://doi.org/10.1007/s12274-020-2749-1
    46. J Shah, W Wang, H M Sohail, R I G Uhrberg. Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material. 2D Materials 2020, 7 (2) , 025013. https://doi.org/10.1088/2053-1583/ab64fb
    47. Nicholas R. Glavin, Rahul Rao, Vikas Varshney, Elisabeth Bianco, Amey Apte, Ajit Roy, Emilie Ringe, Pulickel M. Ajayan. Emerging Applications of Elemental 2D Materials. Advanced Materials 2020, 32 (7) https://doi.org/10.1002/adma.201904302
    48. Feng Ning, Shi-Zhang Chen, Yong Zhang, Gao-Hua Liao, Ping-Ying Tang, Zheng-Liang Li, Li-Ming Tang. Interfacial charge transfers and interactions drive rectifying and negative differential resistance behaviors in InAs/graphene van der Waals heterostructure. Applied Surface Science 2019, 496 , 143629. https://doi.org/10.1016/j.apsusc.2019.143629
    49. Rijun Gui, Hui Jin, Yujiao Sun, Xiaowen Jiang, Zejun Sun. Two-dimensional group-VA nanomaterials beyond black phosphorus: synthetic methods, properties, functional nanostructures and applications. Journal of Materials Chemistry A 2019, 7 (45) , 25712-25771. https://doi.org/10.1039/C9TA09582A
    50. Alaa A. Al-Jobory, Mohammed D. Noori. Electrical and thermal properties of GaAs1−x Px2D-nanostructures. The European Physical Journal D 2019, 73 (10) https://doi.org/10.1140/epjd/e2019-100033-8
    51. Ying Guo, Feng Pan, Yajie Ren, Yangyang Wang, Binbin Yao, Gaoyang Zhao, Jing Lu. Anisotropic interfacial properties of monolayer GeSe—metal contacts. Semiconductor Science and Technology 2019, 34 (9) , 095021. https://doi.org/10.1088/1361-6641/ab37cc
    52. A Ektarawong, Y P Feng, B Alling. Phase stability of three-dimensional bulk and two-dimensional monolayer As 1− x Sb x solid solutions from first principles. Journal of Physics: Condensed Matter 2019, 31 (24) , 245702. https://doi.org/10.1088/1361-648X/ab0fd2
    53. Feiyao Chen, Hongxiang Xu, Jianyu Wang, Zhendong Wang, Xiaoqing Liu, Yan Lu, Li Wang. A new phase of monolayer group-V binary compounds with direct bandgap and giant piezoelectric properties. Journal of Applied Physics 2019, 125 (21) https://doi.org/10.1063/1.5081489
    54. Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Bowen Shi, Hao Tang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, Jing Lv. Bilayer tellurene–metal interfaces. Journal of Semiconductors 2019, 40 (6) , 062003. https://doi.org/10.1088/1674-4926/40/6/062003
    55. Han Zhang, Junhua Xiong, Meng Ye, Jingzhen Li, Xiuying Zhang, Ruge Quhe, Zhigang Song, Jinbo Yang, Qiaoxuan Zhang, Bowen Shi, Jiahuan Yan, Wanlin Guo, John Robertson, Yangyang Wang, Feng Pan, Jing Lu. Interfacial Properties of Monolayer Antimonene Devices. Physical Review Applied 2019, 11 (6) https://doi.org/10.1103/PhysRevApplied.11.064001
    56. A. A. Kistanov, S. Kh. Khadiullin, S. V. Dmitriev, E. A. Korznikova. Adsorption of Common Transition Metal Atoms on Arsenene: A First-Principles Study. Russian Journal of Physical Chemistry A 2019, 93 (6) , 1088-1092. https://doi.org/10.1134/S0036024419060153
    57. F. Ersan, D. Kecik, V. O. Özçelik, Y. Kadioglu, O. Üzengi Aktürk, E. Durgun, E. Aktürk, S. Ciraci. Two-dimensional pnictogens: A review of recent progresses and future research directions. Applied Physics Reviews 2019, 6 (2) https://doi.org/10.1063/1.5074087
    58. Shiqi Liu, Lianqiang Xu, Yuanyuan Pan, Jie Yang, Jingzhen Li, Xiuying Zhang, Lin Xu, Hua Pang, Jiahuan Yan, Bowen Shi, Xiaotian Sun, Han Zhang, Linqiang Xu, Jinbo Yang, Zhiyong Zhang, Feng Pan, Jing Lu. Unusual Fermi‐Level Pinning and Ohmic Contact at Monolayer Bi 2 O 2 Se–Metal Interface. Advanced Theory and Simulations 2019, 2 (5) https://doi.org/10.1002/adts.201800178
    59. Hao Tang, Bowen Shi, Yuanyuan Pan, Jingzhen Li, Xiuying Zhang, Jiahuan Yan, Shiqi Liu, Jie Yang, Lianqiang Xu, Jinbo Yang, Mingbo Wu, Jing Lu. Schottky Contact in Monolayer WS 2 Field‐Effect Transistors. Advanced Theory and Simulations 2019, 2 (5) https://doi.org/10.1002/adts.201900001
    60. Wei-Hua Xiao, Fang Xie, Xiao-Jiao Zhang, Yu-Fang Chu, Jian-Ping Liu, Hai-Yan Wang, Zhi-Qiang Fan, Meng-Qiu Long, Ke-Qiu Chen. Large negative differential resistance behavior in arsenene nanoribbons induced by vacant defects. Physics Letters A 2019, 383 (14) , 1629-1635. https://doi.org/10.1016/j.physleta.2019.02.022
    61. A. Ektarawong, Y. P. Feng, B. Alling. Phase stability of two-dimensional monolayer As 1 − x P x solid solutions revealed by a first-principles cluster expansion. Physical Review Materials 2019, 3 (5) https://doi.org/10.1103/PhysRevMaterials.3.054005
    62. Zhen Luo, Dedong Han, Junchen Dong, Huijin Li, Wen Yu, Shengdong Zhang, Xing Zhang, Yi Wang. Tunable arsenene band gap in arsenene/graphene heterostructures. Japanese Journal of Applied Physics 2019, 58 (SB) , SBBH01. https://doi.org/10.7567/1347-4065/aaf69b
    63. Qinglong Fang, Xumei Zhao, Yuhong Huang, Kewei Xu, Tai Min, Fei Ma. Junction-configuration-dependent interfacial electronic states of a monolayer MoS 2 /metal contact. Journal of Materials Chemistry C 2019, 7 (12) , 3607-3616. https://doi.org/10.1039/C8TC04341H
    64. Jun Zhao, Zheng‐Hang Qi, Yong Xu, Jun Dai, Xiao Cheng Zeng, Wanlin Guo, Jing Ma. Theoretical studies on tunable electronic structures and potential applications of two‐dimensional arsenene‐based materials. WIREs Computational Molecular Science 2019, 9 (2) https://doi.org/10.1002/wcms.1387
    65. Andrey A. Kistanov, Salavat Kh. Khadiullin, Sergey V. Dmitriev, Elena A. Korznikova. A First‐Principles Study on the Adsorption of Small Molecules on Arsenene: Comparison of Oxidation Kinetics in Arsenene, Antimonene, Phosphorene, and InSe. ChemPhysChem 2019, 20 (4) , 575-580. https://doi.org/10.1002/cphc.201801070
    66. Seyyed Mohsen Beladi‐Mousavi, Amir Masoud Pourrahimi, Zdeněk Sofer, Martin Pumera. Atomically Thin 2D‐Arsenene by Liquid‐Phased Exfoliation: Toward Selective Vapor Sensing. Advanced Functional Materials 2019, 29 (5) https://doi.org/10.1002/adfm.201807004
    67. Jie Su, Zhengtang Liu, Rui Guo, Jingjing Chang, Zhenhua Lin, Yue Hao. Understanding the transport and contact properties of metal/BN-MoS2 interfaces to realize high performance MoS2 FETs. Journal of Alloys and Compounds 2019, 771 , 1052-1061. https://doi.org/10.1016/j.jallcom.2018.09.026
    68. Yonghong Hu, Ting Shu, Caixia Mao, Li Xue, Zhong Yan, Yunyi Wu. Arsenene and antimonene doped by group-VA atoms: First-principles studies of the geometric structures, electronic properties and STM images. Physica B: Condensed Matter 2019, 553 , 195-201. https://doi.org/10.1016/j.physb.2018.08.022
    69. Wenhan Zhou, Jiayi Chen, Pengxiang Bai, Shiying Guo, Shengli Zhang, Xiufeng Song, Li Tao, Haibo Zeng. Two-Dimensional Pnictogen for Field-Effect Transistors. Research 2019, 2019 https://doi.org/10.34133/2019/1046329
    70. Pooja Jamdagni, Anil Thakur, Ashok Kumar, P. K. Ahluwalia, Ravindra Pandey. Two dimensional allotropes of arsenene with a wide range of high and anisotropic carrier mobility. Physical Chemistry Chemical Physics 2018, 20 (47) , 29939-29950. https://doi.org/10.1039/C8CP06162A
    71. Heping Cui, Kai Zheng, Houcai Luo, Huaiyu Ye, Xianping Chen. Graphene-like Monolayer Yttrium Nitride: A Moderate Semiconductor and Pronounced Electronic Insensitivity to Strain. 2018, 1657-1660. https://doi.org/10.1109/ICEPT.2018.8480665
    72. M Mushtaq, Y G Zhou, X Xiang. Exploring the effect of nanoholes on arsenene: a density functional theory study. Journal of Physics: Condensed Matter 2018, 30 (19) , 195305. https://doi.org/10.1088/1361-648X/aab6c5
    73. Jingzhen Li, Xiaotian Sun, Chengyong Xu, Xiuying Zhang, Yuanyuan Pan, Meng Ye, Zhigang Song, Ruge Quhe, Yangyang Wang, Han Zhang, Ying Guo, Jinbo Yang, Feng Pan, Jing Lu. Electrical contacts in monolayer blue phosphorene devices. Nano Research 2018, 11 (4) , 1834-1849. https://doi.org/10.1007/s12274-017-1801-2
    74. Hui Zeng, Jun Zhao, Ai-Qiang Cheng, Lei Zhang, Zi He, Ru-Shan Chen. Tuning electronic and optical properties of arsenene/C 3 N van der Waals heterostructure by vertical strain and external electric field. Nanotechnology 2018, 29 (7) , 075201. https://doi.org/10.1088/1361-6528/aaa2e8
    75. Bowen Shi, Yangyang Wang, Jingzhen Li, Xiuying Zhang, Jiahuan Yan, Shiqi Liu, Jie Yang, Yuanyuan Pan, Han Zhang, Jinbo Yang, Feng Pan, Jing Lu. n-Type Ohmic contact and p-type Schottky contact of monolayer InSe transistors. Physical Chemistry Chemical Physics 2018, 20 (38) , 24641-24651. https://doi.org/10.1039/C8CP04615H
    76. Ying Guo, Feng Pan, Yajie Ren, Binbin Yao, Chuanghua Yang, Meng Ye, Yangyang Wang, Jingzhen Li, Xiuying Zhang, Jiahuan Yan, Jinbo Yang, Jing Lu. n- and p-type ohmic contacts at monolayer gallium nitride–metal interfaces. Physical Chemistry Chemical Physics 2018, 20 (37) , 24239-24249. https://doi.org/10.1039/C8CP04759F
    77. Seyyed Mohsen Beladi-Mousavi, Martin Pumera. 2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews 2018, 47 (18) , 6964-6989. https://doi.org/10.1039/C8CS00425K
    78. Jiahuan Yan, Xiuying Zhang, Yuanyuan Pan, Jingzhen Li, Bowen Shi, Shiqi Liu, Jie Yang, Zhigang Song, Han Zhang, Meng Ye, Ruge Quhe, Yangyang Wang, Jinbo Yang, Feng Pan, Jing Lu. Monolayer tellurene–metal contacts. Journal of Materials Chemistry C 2018, 6 (23) , 6153-6163. https://doi.org/10.1039/C8TC01421C
    79. Nan Gao, Si Zhou, Nanshu Liu, Yizhen Bai, Jijun Zhao. Selecting electrode materials for monolayer ReS 2 with an Ohmic contact. Journal of Materials Chemistry C 2018, 6 (25) , 6764-6770. https://doi.org/10.1039/C8TC02116C

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2017, 9, 34, 29273–29284
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.7b08513
    Published August 7, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    1668

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.