ACS Publications. Most Trusted. Most Cited. Most Read
Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li+ Solvation Structure and Li–S Battery Performance
My Activity

Figure 1Loading Img
    Research Article

    Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li+ Solvation Structure and Li–S Battery Performance
    Click to copy article linkArticle link copied!

    View Author Information
    Joint Center for Energy Storage Research, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
    Department of Chemistry and §Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
    Materials Science Division and Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2017, 9, 45, 39357–39370
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.7b11566
    Published October 18, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li–S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li–S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN)2–LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li+ at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b11566.

    • Electrochemical performance of Li–S cells cycled in solvate:HFE (1:1) electrolytes, physicochemical properties of solvate:HFE (1:1) electrolytes, assignments of Raman modes in (MeCN)2–LiTFSI/HFE electrolytes, low-wavenumber region Raman spectra of (MeCN)2–LiTFSI/HFE, high-wavenumber region Raman spectra of (MeCN)2–LiTFSI/HFE with Gaussian fits, 15N NMR spectra of neat MeCN and (MeCN)2–LiTFSI solutions, atomic partial charges of HFEs, voltage profiles of Li metal plating/stripping in symmetric Li–Li cells with (MeCN)2–LiTFSI:HFE (2:1) electrolytes, and UV–vis spectra of HFE-only solutions saturated with “Li2S8” (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 62 publications.

    1. Zixiong Shi, Simil Thomas, Dong Guo, Zhengnan Tian, Zhiming Zhao, Yizhou Wang, Abdul-Hamid Emwas, Nimer Wehbe, Georgian Melinte, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef. Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries. ACS Energy Letters 2024, 9 (11) , 5391-5402. https://doi.org/10.1021/acsenergylett.4c02049
    2. Chi-Cheung Su, Khalil Amine, Mei Cai, Meinan He. Selecting the Optimal Fluorinated Ether Co-Solvent for Lithium Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (2) , 2804-2811. https://doi.org/10.1021/acsami.2c13034
    3. Yanzhou Wu, Aiping Wang, Qiao Hu, Hongmei Liang, Hong Xu, Li Wang, Xiangming He. Significance of Antisolvents on Solvation Structures Enhancing Interfacial Chemistry in Localized High-Concentration Electrolytes. ACS Central Science 2022, 8 (9) , 1290-1298. https://doi.org/10.1021/acscentsci.2c00791
    4. Sheng Lei, Ziqi Zeng, Yuanke Wu, Zeyang Long, Xiaohang Li, Mengchuang Liu, Shijie Cheng, Jia Xie. Cosolvent Engineered Phosphaphenanthrene-Based Self-Extinguishing Electrolyte for Safer Lithium-Ion Batteries. ACS Applied Energy Materials 2022, 5 (9) , 10465-10472. https://doi.org/10.1021/acsaem.2c01007
    5. Zhen Jiang, Andrew M. Rappe. Structure, Diffusion, and Stability of Lithium Salts in Aprotic Dimethyl Sulfoxide and Acetonitrile Electrolytes. The Journal of Physical Chemistry C 2022, 126 (25) , 10266-10272. https://doi.org/10.1021/acs.jpcc.2c02174
    6. Qian Wu, Yan Qian, Xin Tang, Jinhan Teng, Haiyang Ding, Haomiao Zhao, Jing Li. Stable Cycling of Lithium-Metal Batteries in Hydrofluoroether-Based Localized High-Concentration Electrolytes with 2-Fluoropyridine Additive. ACS Applied Energy Materials 2022, 5 (5) , 5742-5749. https://doi.org/10.1021/acsaem.2c00037
    7. Eric S. Thornburg, Richard T. Haasch, Andrew A. Gewirth. Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents. ACS Applied Energy Materials 2022, 5 (3) , 2768-2779. https://doi.org/10.1021/acsaem.1c03336
    8. Sujong Chae, Won-Jin Kwak, Kee Sung Han, Shuang Li, Mark H. Engelhard, Jiangtao Hu, Chongmin Wang, Xiaolin Li, Ji-Guang Zhang. Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters 2021, 6 (2) , 387-394. https://doi.org/10.1021/acsenergylett.0c02214
    9. Ruixian Zhang, Anne Marie Esposito, Eric S. Thornburg, Xinyi Chen, Xueyong Zhang, Maria A. Philip, Alexis Magana, Andrew A. Gewirth. Conversion of Co Nanoparticles to CoS in Metal–Organic Framework-Derived Porous Carbon during Cycling Facilitates Na2S Reactivity in a Na–S Battery. ACS Applied Materials & Interfaces 2020, 12 (26) , 29285-29295. https://doi.org/10.1021/acsami.0c05370
    10. Azusa Nakanishi, Kazuhide Ueno, Daiki Watanabe, Yosuke Ugata, Yoshiharu Matsumae, Jiali Liu, Morgan L. Thomas, Kaoru Dokko, Masayoshi Watanabe. Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance. The Journal of Physical Chemistry C 2019, 123 (23) , 14229-14238. https://doi.org/10.1021/acs.jpcc.9b02625
    11. Ethan P. Kamphaus, Perla B. Balbuena. Effects of Dimethyl Disulfide Cosolvent on Li–S Battery Chemistry and Performance. Chemistry of Materials 2019, 31 (7) , 2377-2389. https://doi.org/10.1021/acs.chemmater.8b04821
    12. Maria A. Philip, Patrick T. Sullivan, Ruixian Zhang, Griffin A. Wooley, Stephanie A. Kohn, Andrew A. Gewirth. Improving Cell Resistance and Cycle Life with Solvate-Coated Thiophosphate Solid Electrolytes in Lithium Batteries. ACS Applied Materials & Interfaces 2019, 11 (2) , 2014-2021. https://doi.org/10.1021/acsami.8b16116
    13. Seungjun Han, Ju Hyun Lee, Jinuk Kim, Jinwoo Lee. Recent advances in li metal anode protection for high performance lithium-sulfur batteries. Discover Chemical Engineering 2024, 4 (1) https://doi.org/10.1007/s43938-024-00045-w
    14. Toru Ishikawa, Shohei Haga, Keisuke Shigenobu, Taku Sudoh, Seiji Tsuzuki, Wataru Shinoda, Kaoru Dokko, Masayoshi Watanabe, Kazuhide Ueno. Linear ether-based highly concentrated electrolytes for Li–sulfur batteries. Faraday Discussions 2024, 253 , 385-406. https://doi.org/10.1039/D4FD00024B
    15. Thomas A. Yersak, Yubin Zhang, Hasnain Hafiz, Nicholas P. W. Pieczonka, Hernando J. Gonzalez Malabet, Hayden Cunningham, Mei Cai. Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte. Journal of The Electrochemical Society 2024, 171 (7) , 070529. https://doi.org/10.1149/1945-7111/ad6292
    16. Yun‐Wei Song, Liang Shen, Nan Yao, Shuai Feng, Qian Cheng, Jin Ma, Xiang Chen, Bo‐Quan Li, Qiang Zhang. Anion‐Involved Solvation Structure of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2024, 63 (19) https://doi.org/10.1002/anie.202400343
    17. Yun‐Wei Song, Liang Shen, Nan Yao, Shuai Feng, Qian Cheng, Jin Ma, Xiang Chen, Bo‐Quan Li, Qiang Zhang. Anion‐Involved Solvation Structure of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie 2024, 136 (19) https://doi.org/10.1002/ange.202400343
    18. Yongfeng Bu, Hongyu Zhang, Qin Kang, Jinzhi Hu, Wenya Jiang, Yan Zhou, Weimin Li, Hongyu Liang. Phosphonate-based supercapacitor electrolyte integrating the advantages of flame retardancy, extreme temperature adaptability, and anti-supergravity. Chemical Engineering Journal 2024, 485 , 149973. https://doi.org/10.1016/j.cej.2024.149973
    19. Minglei Mao, Lei Gong, Xiaobo Wang, Qiyu Wang, Guoqun Zhang, Haoxiang Wang, Wei Xie, Liumin Suo, Chengliang Wang. Electrolyte design combining fluoro- with cyano-substitution solvents for anode-free Li metal batteries. Proceedings of the National Academy of Sciences 2024, 121 (5) https://doi.org/10.1073/pnas.2316212121
    20. Yatao Liu, Linhan Xu, Yongquan Yu, MengXue He, Han Zhang, Yanqun Tang, Feng Xiong, Song Gao, Aijun Li, Jianhui Wang, Shenzhen Xu, Doron Aurbach, Ruqiang Zou, Quanquan Pang. Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction. Joule 2023, 7 (9) , 2074-2091. https://doi.org/10.1016/j.joule.2023.07.013
    21. Cong Kang, Jiaming Zhu, Yijie Wang, Shanshan Ye, Yueping Xiong, Fanpeng Kong, Geping Yin. Concentration induced modulation of solvation structure for efficient lithium metal battery by regulating energy level of LUMO orbital. Energy Storage Materials 2023, 61 , 102898. https://doi.org/10.1016/j.ensm.2023.102898
    22. Peitao Xiao, Xiaoru Yun, Yufang Chen, Xiaowei Guo, Peng Gao, Guangmin Zhou, Chunman Zheng. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chemical Society Reviews 2023, 52 (15) , 5255-5316. https://doi.org/10.1039/D3CS00151B
    23. Carla C. Fraenza, Steve G. Greenbaum, Sophia N. Suarez. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. International Journal of Molecular Sciences 2023, 24 (12) , 10373. https://doi.org/10.3390/ijms241210373
    24. Yoshifumi Watanabe, Yosuke Ugata, Kazuhide Ueno, Masayoshi Watanabe, Kaoru Dokko. Does Li-ion transport occur rapidly in localized high-concentration electrolytes?. Physical Chemistry Chemical Physics 2023, 25 (4) , 3092-3099. https://doi.org/10.1039/D2CP05319E
    25. Robert Dominko, Sara Drvarič Talian, Alen Vizintin. Lithium sulfur batteries: Electrochemistry and mechanistic research. 2023, 430-455. https://doi.org/10.1016/B978-0-12-823144-9.00056-X
    26. Yikun Yi, Feng Hai, Jingyu Guo, Xiaolu Tian, Shentuo Zheng, Zhendi Wu, Tao Wang, Mingtao Li. Progress and Prospect of Practical Lithium-Sulfur Batteries Based on Solid-Phase Conversion. Batteries 2023, 9 (1) , 27. https://doi.org/10.3390/batteries9010027
    27. Florian Schmidt, Sebastian Kirchhoff, Karin Jägle, Ankita De, Sebastian Ehrling, Paul Härtel, Susanne Dörfler, Thomas Abendroth, Benjamin Schumm, Holger Althues, Stefan Kaskel. Sustainable Protein‐Based Binder for Lithium‐Sulfur Cathodes Processed by a Solvent‐Free Dry‐Coating Method. ChemSusChem 2022, 15 (22) https://doi.org/10.1002/cssc.202201320
    28. Yun-Wei Song, Liang Shen, Nan Yao, Xi-Yao Li, Chen-Xi Bi, Zheng Li, Ming-Yue Zhou, Xue-Qiang Zhang, Xiang Chen, Bo-Quan Li, Jia-Qi Huang, Qiang Zhang. Cationic lithium polysulfides in lithium–sulfur batteries. Chem 2022, 8 (11) , 3031-3050. https://doi.org/10.1016/j.chempr.2022.07.004
    29. Weiwei Huang, Shuai Liu, Chaobo Li, Yilin Lin, Pandeng Hu, Zhaopeng Sun, Qichun Zhang. Calix[8]quinone: A new promising macrocyclic molecule as an efficient organic cathode in lithium ion batteries with a highly‐concentrated electrolyte. EcoMat 2022, 4 (5) https://doi.org/10.1002/eom2.12214
    30. Wesley A. Henderson, Monte L. Helm, Daniel M. Seo, Paul C. Trulove, Hugh C. De Long, Oleg Borodin. Electrolyte Solvation and Ionic Association: VIII. Reassessing Raman Spectroscopic Studies of Ion Coordination for LiTFSI. Journal of The Electrochemical Society 2022, 169 (6) , 060515. https://doi.org/10.1149/1945-7111/ac71d4
    31. Chao Xing, Hao Chen, Shangshu Qian, Zhenzhen Wu, Ameer Nizami, Xia Li, Shanqing Zhang, Chao Lai. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li–S batteries. Chem 2022, 8 (5) , 1201-1230. https://doi.org/10.1016/j.chempr.2022.01.002
    32. Haytham E. M. Hussein, Richard Beanland, Ana M. Sànchez, David Walker, Marc Walker, Yisong Han, Julie V. Macpherson. Atomic-scale investigation of the reversible α- to ω-phase lithium ion charge – discharge characteristics of electrodeposited vanadium pentoxide nanobelts. Journal of Materials Chemistry A 2022, 10 (15) , 8515-8527. https://doi.org/10.1039/D1TA10208G
    33. Xiaoqun Qi, Fengyi Yang, Long Qie. L i–Sulfur Battery. 2022, 87-123. https://doi.org/10.1002/9783527830053.ch3
    34. Badri Narayanan. Computational Modeling of Battery Materials. 2022, 278-290. https://doi.org/10.1016/B978-0-12-819723-3.00156-6
    35. Li-Peng Hou, Xue-Qiang Zhang, Qiang Zhang. Lithium Metal and Other Anodes. 2022, 225-246. https://doi.org/10.1007/978-3-030-90899-7_6
    36. Georgios Nikiforidis, Mariam El Yagoubi, Mérièm Anouti. Polarizable cesium cations for energy storage from electrolyte characterization to-EDLC application. Electrochimica Acta 2022, 402 , 139529. https://doi.org/10.1016/j.electacta.2021.139529
    37. Weisheng Zhang, Huimin Sun, Pandeng Hu, Weiwei Huang, Qichun Zhang. Double‐effect of highly concentrated acetonitrile‐based electrolyte in organic lithium‐ion battery. EcoMat 2021, 3 (5) https://doi.org/10.1002/eom2.12128
    38. Yatao Liu, Yuval Elias, Jiashen Meng, Doron Aurbach, Ruqiang Zou, Dingguo Xia, Quanquan Pang. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5 (9) , 2323-2364. https://doi.org/10.1016/j.joule.2021.06.009
    39. Li-Peng Hou, Xue-Qiang Zhang, Bo-Quan Li, Qiang Zhang. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Materials Today 2021, 45 , 62-76. https://doi.org/10.1016/j.mattod.2020.10.021
    40. Long Kong, Lihong Yin, Fei Xu, Juncao Bian, Huimin Yuan, Zhouguang Lu, Yusheng Zhao. Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry 2021, 55 , 80-91. https://doi.org/10.1016/j.jechem.2020.06.054
    41. Weilin Liu, Xiaojing Fan, Bin Xu, Peng Chen, Dejian Tang, Fancheng Meng, Rulong Zhou, Jiehua Liu. MnO‐Inlaid hierarchically porous carbon hybrid for lithium‐sulfur batteries. Nano Select 2021, 2 (3) , 573-580. https://doi.org/10.1002/nano.202000157
    42. Maria A. Philip, Richard T. Haasch, Jutae Kim, Jianzhong Yang, Rachel Yang, Ivan R. Kochetkov, Linda F. Nazar, Andrew A. Gewirth. Enabling High Capacity and Coulombic Efficiency for Li‐NCM811 Cells Using a Highly Concentrated Electrolyte. Batteries & Supercaps 2021, 4 (2) , 294-303. https://doi.org/10.1002/batt.202000192
    43. Amine Bouibes, Soumen Saha, Masataka Nagaoka. Theoretically predicting the feasibility of highly-fluorinated ethers as promising diluents for non-flammable concentrated electrolytes. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-79038-y
    44. Kenneth E. Madsen, Kimberly L. Bassett, Kim Ta, Brandon A. Sforzo, Katarzyna E. Matusik, Alan L. Kastengren, Andrew A. Gewirth. Direct Observation of Interfacial Mechanical Failure in Thiophosphate Solid Electrolytes with Operando X‐Ray Tomography. Advanced Materials Interfaces 2020, 7 (19) , 2000751. https://doi.org/10.1002/admi.202000751
    45. Xiaoqun Qi, Ying Yang, Qiang Jin, Fengyi Yang, Yong Xie, Pengfei Sang, Kun Liu, Wenbin Zhao, Xiaobin Xu, Yongzhu Fu, Jian Zhou, Long Qie, Yunhui Huang. Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie 2020, 132 (33) , 14012-14018. https://doi.org/10.1002/ange.202004424
    46. Xiaoqun Qi, Ying Yang, Qiang Jin, Fengyi Yang, Yong Xie, Pengfei Sang, Kun Liu, Wenbin Zhao, Xiaobin Xu, Yongzhu Fu, Jian Zhou, Long Qie, Yunhui Huang. Two‐Plateau Li‐Se Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie International Edition 2020, 59 (33) , 13908-13914. https://doi.org/10.1002/anie.202004424
    47. Lynn Trahey, Fikile R. Brushett, Nitash P. Balsara, Gerbrand Ceder, Lei Cheng, Yet-Ming Chiang, Nathan T. Hahn, Brian J. Ingram, Shelley D. Minteer, Jeffrey S. Moore, Karl T. Mueller, Linda F. Nazar, Kristin A. Persson, Donald J. Siegel, Kang Xu, Kevin R. Zavadil, Venkat Srinivasan, George W. Crabtree. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences 2020, 117 (23) , 12550-12557. https://doi.org/10.1073/pnas.1821672117
    48. Xiang-Qian Zhang, Chen Liu, Yue Gao, Jin-Mei Zhang, Ya-Qin Wang. Research Progress of Sulfur/Carbon Composite Cathode Materials and the Corresponding Safe Electrolytes for Advanced Li-S Batteries. Nano 2020, 15 (05) , 2030002. https://doi.org/10.1142/S1793292020300029
    49. Xiwen Wang, Yuqing Tan, Guohong Shen, Shiguo Zhang. Recent progress in fluorinated electrolytes for improving the performance of Li–S batteries. Journal of Energy Chemistry 2020, 41 , 149-170. https://doi.org/10.1016/j.jechem.2019.05.010
    50. Chi‐Cheung Su, Meinan He, Rachid Amine, Khalil Amine. A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Free‐Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie 2019, 131 (31) , 10701-10705. https://doi.org/10.1002/ange.201904240
    51. Chi‐Cheung Su, Meinan He, Rachid Amine, Khalil Amine. A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Free‐Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2019, 58 (31) , 10591-10595. https://doi.org/10.1002/anie.201904240
    52. Minjeong Shin, Andrew A. Gewirth. Incorporating Solvate and Solid Electrolytes for All‐Solid‐State Li 2 S Batteries with High Capacity and Long Cycle Life. Advanced Energy Materials 2019, 9 (26) https://doi.org/10.1002/aenm.201900938
    53. Qiannan Zhao, Jie Wen, Kaiqi Zhao, Guipeng Ji, Ronghua Wang, Xiao Liang, Ning Hu, Li Lu, Janina Molenda, Jianhui Qiu, Chaohe Xu. Deposition of thin δ-MnO2 functional layers on carbon foam/sulfur composites for synergistically inhibiting polysulfides shuttling and increasing sulfur utilization. Electrochimica Acta 2019, 305 , 247-255. https://doi.org/10.1016/j.electacta.2019.03.061
    54. Xianwen Cao, Nan Gong, Hongliang Zhao, Zuowei Li, Chenglin Sun, Zhiwei Men. Raman spectroscopic study of nonlinear modulation on Fermi resonance of acetonitrile by hydrogen-bonding network. Journal of Molecular Liquids 2019, 279 , 625-631. https://doi.org/10.1016/j.molliq.2019.02.016
    55. Jing Zheng, Guangbin Ji, Xiulin Fan, Ji Chen, Qin Li, Haiyang Wang, Yong Yang, Kerry C. DeMella, Srinivasa R. Raghavan, Chunsheng Wang. High‐Fluorinated Electrolytes for Li–S Batteries. Advanced Energy Materials 2019, 9 (16) https://doi.org/10.1002/aenm.201803774
    56. Wenping Yang, Xiaxia Li, Yan Li, Rongmei Zhu, Huan Pang. Applications of Metal–Organic‐Framework‐Derived Carbon Materials. Advanced Materials 2019, 31 (6) https://doi.org/10.1002/adma.201804740
    57. Sui Gu, Changzhi Sun, Dong Xu, Yang Lu, Jun Jin, Zhaoyin Wen. Recent Progress in Liquid Electrolyte-Based Li–S Batteries: Shuttle Problem and Solutions. Electrochemical Energy Reviews 2018, 1 (4) , 599-624. https://doi.org/10.1007/s41918-018-0021-0
    58. Min‐Suk Lee, Victor Roev, Changhoon Jung, Ji‐Rae Kim, Sangil Han, Hyo‐Rang Kang, Dongmin Im, Il‐Seok Kim. An Aggregate Cluster‐Dispersed Electrolyte Guides the Uniform Nucleation and Growth of Lithium at Lithium Metal Anodes. ChemistrySelect 2018, 3 (41) , 11527-11534. https://doi.org/10.1002/slct.201800757
    59. Chi‐Cheung Su, Meinan He, Rachid Amine, Zonghai Chen, Khalil Amine. The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie 2018, 130 (37) , 12209-12212. https://doi.org/10.1002/ange.201807367
    60. Chi‐Cheung Su, Meinan He, Rachid Amine, Zonghai Chen, Khalil Amine. The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2018, 57 (37) , 12033-12036. https://doi.org/10.1002/anie.201807367
    61. Lili Wang, Yusheng Ye, Nan Chen, Yongxin Huang, Li Li, Feng Wu, Renjie Chen. Development and Challenges of Functional Electrolytes for High‐Performance Lithium–Sulfur Batteries. Advanced Functional Materials 2018, 28 (38) https://doi.org/10.1002/adfm.201800919
    62. Yazhen Chen, Zhengliang Gong, Yong Yang. Enhanced Electrochemical Performance of High-Energy Lithium-Sulfur Batteries Using an Electrolyte with 1,1,2,2-Tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane. Journal of The Electrochemical Society 2018, 165 (9) , A1915-A1919. https://doi.org/10.1149/2.1531809jes

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2017, 9, 45, 39357–39370
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.7b11566
    Published October 18, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    4723

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.