ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Four-dimensional Printing of Liquid Crystal Elastomers

View Author Information
Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
Department of Industrial Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
Cite this: ACS Appl. Mater. Interfaces 2017, 9, 42, 37332–37339
Publication Date (Web):October 2, 2017
https://doi.org/10.1021/acsami.7b11851
Copyright © 2017 American Chemical Society
Article Views
8440
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (9 MB)
Supporting Info (3)»

Abstract

Abstract Image

Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b11851.

  • Additional characterization data, figures, and movies of the LC ink and LCE printed structures (PDF)

  • Combined Gaussian curvature LCE exhibiting reversible snap-through actuation in response to thermal stimulus (AVI)

  • Combined Gaussian curvature LCE producing work and catapulting a mass (AVI)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 250 publications.

  1. Lin Zheng, Xue-Jing Xu, Dong-Peng Sun, Kai-Yang Du, Xuan Zhou, Yi-Zhao Geng, Li Chen, Ji-Liang Zhu, Dong Chen, Wenming Han. Scalable Photonic Liquid Crystal Nanoscale-Thick Films for Deformation and Discoloration. ACS Applied Nano Materials 2022, 5 (9) , 12943-12950. https://doi.org/10.1021/acsanm.2c02771
  2. Mahjabeen Javed, Tyler Corazao, Mohand O. Saed, Cedric P. Ambulo, Yuzhan Li, Michael R. Kessler, Taylor H. Ware. Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers. ACS Applied Materials & Interfaces 2022, 14 (30) , 35087-35096. https://doi.org/10.1021/acsami.2c07533
  3. Sean J. D. Lugger, Ruth M. C. Verbroekken, Dirk J. Mulder, Albert P. H. J. Schenning. Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Letters 2022, 11 (7) , 935-940. https://doi.org/10.1021/acsmacrolett.2c00359
  4. Yaoyao Jiang, Xu Dong, Qi Wang, Shengping Dai, Lvzhou Li, Ningyi Yuan, Jianning Ding. A High-Fidelity Preparation Method for Liquid Crystal Elastomer Actuators. Langmuir 2022, 38 (23) , 7190-7197. https://doi.org/10.1021/acs.langmuir.2c00490
  5. Hang Zhang, Shu Huang, Jie Sheng, Lisha Fan, Jianzhong Zhou, Mingyuan Shan, Jie’an Wei, Cheng Wang, Hongwei Yang, Jinzhong Lu. 4D Printing of Ag Nanowire-Embedded Shape Memory Composites with Stable and Controllable Electrical Responsivity: Implications for Flexible Actuators. ACS Applied Nano Materials 2022, 5 (5) , 6221-6231. https://doi.org/10.1021/acsanm.2c00264
  6. Zhijian Wang, Yubing Guo, Shengqiang Cai, Jiping Yang. Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications. ACS Applied Polymer Materials 2022, 4 (5) , 3153-3168. https://doi.org/10.1021/acsapm.1c01598
  7. Zhaohan Yu, Yunming Wang, Jiaqi Zheng, Shuang Sun, Yue Fu, Dan Chen, Weihao Cai, Dong Wang, Huamin Zhou, Dequn Li. Fast-Response Bioinspired Near-Infrared Light-Driven Soft Robot Based on Two-Stage Deformation. ACS Applied Materials & Interfaces 2022, 14 (14) , 16649-16657. https://doi.org/10.1021/acsami.2c01109
  8. Yuzhan Li, Tuan Liu, Veronica Ambrogi, Orlando Rios, Min Xia, Wanli He, Zhou Yang. Liquid Crystalline Elastomers Based on Click Chemistry. ACS Applied Materials & Interfaces 2022, 14 (13) , 14842-14858. https://doi.org/10.1021/acsami.1c21096
  9. Mohand O. Saed, Alexandra Gablier, Eugene M. Terentjev. Exchangeable Liquid Crystalline Elastomers and Their Applications. Chemical Reviews 2022, 122 (5) , 4927-4945. https://doi.org/10.1021/acs.chemrev.0c01057
  10. Sean J. D. Lugger, Simon J. A. Houben, Yari Foelen, Michael G. Debije, Albert P. H. J. Schenning, Dirk J. Mulder. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews 2022, 122 (5) , 4946-4975. https://doi.org/10.1021/acs.chemrev.1c00330
  11. Hari Krishna Bisoyi, Quan Li. Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chemical Reviews 2022, 122 (5) , 4887-4926. https://doi.org/10.1021/acs.chemrev.1c00761
  12. Marc del Pozo, Jeroen A. H. P. Sol, Stefan H. P. van Uden, Akhil R. Peeketi, Sean J. D. Lugger, Ratna K. Annabattula, Albert P. H. J. Schenning, Michael G. Debije. Patterned Actuators via Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Interfaces 2021, 13 (49) , 59381-59391. https://doi.org/10.1021/acsami.1c20348
  13. Bin Ni, Gaoyu Liu, Mengxue Zhang, Michael Tatoulian, Patrick Keller, Min-Hui Li. Customizable Sophisticated Three-Dimensional Shape Changes of Large-Size Liquid Crystal Elastomer Actuators. ACS Applied Materials & Interfaces 2021, 13 (45) , 54439-54446. https://doi.org/10.1021/acsami.1c18424
  14. Lucia M. Korpas, Rui Yin, Hiromi Yasuda, Jordan R. Raney. Temperature-Responsive Multistable Metamaterials. ACS Applied Materials & Interfaces 2021, 13 (26) , 31163-31170. https://doi.org/10.1021/acsami.1c07327
  15. Ali Rouhollah Jalili, Alexandra Satalov, Sahar Nazari, Bryan Harry Rahmat Suryanto, Jing Sun, Mohammad Bagher Ghasemian, Mohannad Mayyas, Ahmad E. Kandjani, Ylias M. Sabri, Edwin Mayes, Suresh K. Bhargava, Jun Araki, Cécile Zakri, Philippe Poulin, Dorna Esrafilzadeh, Rose Amal. Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures. ACS Applied Materials & Interfaces 2021, 13 (24) , 28627-28638. https://doi.org/10.1021/acsami.1c05025
  16. Lei Chen, Yiru Zhang, Haitao Ye, Guihui Duan, Huigao Duan, Qi Ge, Zhaolong Wang. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Applied Materials & Interfaces 2021, 13 (15) , 18120-18127. https://doi.org/10.1021/acsami.1c02656
  17. Hongzhi Wu, Ouyangxu Wang, Yujia Tian, Mingzhe Wang, Bin Su, Chunze Yan, Kun Zhou, Yusheng Shi. Selective Laser Sintering-Based 4D Printing of Magnetism-Responsive Grippers. ACS Applied Materials & Interfaces 2021, 13 (11) , 12679-12688. https://doi.org/10.1021/acsami.0c17429
  18. Cedric P. Ambulo, Michael J. Ford, Kyle Searles, Carmel Majidi, Taylor H. Ware. 4D-Printable Liquid Metal–Liquid Crystal Elastomer Composites. ACS Applied Materials & Interfaces 2021, 13 (11) , 12805-12813. https://doi.org/10.1021/acsami.0c19051
  19. Matteo Gastaldi, Francesca Cardano, Marco Zanetti, Guido Viscardi, Claudia Barolo, Silvia Bordiga, Shlomo Magdassi, Andrea Fin, Ignazio Roppolo. Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. ACS Materials Letters 2021, 3 (1) , 1-17. https://doi.org/10.1021/acsmaterialslett.0c00455
  20. Alexandra Gablier, Mohand O. Saed, Eugene M. Terentjev. Transesterification in Epoxy–Thiol Exchangeable Liquid Crystalline Elastomers. Macromolecules 2020, 53 (19) , 8642-8649. https://doi.org/10.1021/acs.macromol.0c01757
  21. Lorena Ceamanos, Zehra Kahveci, María López-Valdeolivas, Danqing Liu, Dirk Jan Broer, Carlos Sánchez-Somolinos. Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Applied Materials & Interfaces 2020, 12 (39) , 44195-44204. https://doi.org/10.1021/acsami.0c13341
  22. Wenxian Zhou, Zhiguang Qiao, Ehsan Nazarzadeh Zare, Jinfeng Huang, Xuanqi Zheng, Xiaolei Sun, Minmin Shao, Hui Wang, Xiaoyan Wang, Dong Chen, Jing Zheng, Shan Fang, Yan Michael Li, Xiaolei Zhang, Lei Yang, Pooyan Makvandi, Aimin Wu. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. Journal of Medicinal Chemistry 2020, 63 (15) , 8003-8024. https://doi.org/10.1021/acs.jmedchem.9b02115
  23. Morgan Barnes, Seyed M. Sajadi, Shaan Parekh, Muhammad M. Rahman, Pulickel M. Ajayan, Rafael Verduzco. Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators. ACS Applied Materials & Interfaces 2020, 12 (25) , 28692-28699. https://doi.org/10.1021/acsami.0c07331
  24. Mohand O. Saed, Eugene M. Terentjev. Catalytic Control of Plastic Flow in Siloxane-Based Liquid Crystalline Elastomer Networks. ACS Macro Letters 2020, 9 (5) , 749-755. https://doi.org/10.1021/acsmacrolett.0c00265
  25. Dong Wang, Haipeng Xu, Jinqiang Wang, Chengru Jiang, Xiangyang Zhu, Qi Ge, Guoying Gu. Design of 3D Printed Programmable Horseshoe Lattice Structures Based on a Phase-Evolution Model. ACS Applied Materials & Interfaces 2020, 12 (19) , 22146-22156. https://doi.org/10.1021/acsami.0c04097
  26. Qiang Zhang, Xiao Kuang, Shayuan Weng, Zeang Zhao, Haosen Chen, Daining Fang, H. Jerry Qi. Rapid Volatilization Induced Mechanically Robust Shape-Morphing Structures toward 4D Printing. ACS Applied Materials & Interfaces 2020, 12 (15) , 17979-17987. https://doi.org/10.1021/acsami.0c02038
  27. Li Yu, Pengxiang Si, Lukas Bauman, Boxin Zhao. Synergetic Combination of Interfacial Engineering and Shape-Changing Modulation for Biomimetic Soft Robotic Devices. Langmuir 2020, 36 (13) , 3279-3291. https://doi.org/10.1021/acs.langmuir.9b03773
  28. Luquan Ren, Bingqian Li, Yulin He, Zhengyi Song, Xueli Zhou, Qingping Liu, Lei Ren. Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Interfaces 2020, 12 (13) , 15562-15572. https://doi.org/10.1021/acsami.0c00027
  29. Lu-yu Zhou, Jiang-hao Ye, Jian-zhong Fu, Qing Gao, Yong He. 4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers. ACS Applied Materials & Interfaces 2020, 12 (10) , 12068-12074. https://doi.org/10.1021/acsami.9b22433
  30. Wenxin Fan, Jincai Yin, Chenglin Yi, Yanzhi Xia, Zhihong Nie, Kunyan Sui. Nature-Inspired Sequential Shape Transformation of Energy-Patterned Hydrogel Sheets. ACS Applied Materials & Interfaces 2020, 12 (4) , 4878-4886. https://doi.org/10.1021/acsami.9b19342
  31. Chun Zhang, Xili Lu, Guoxia Fei, Zhanhua Wang, Hesheng Xia, Yue Zhao. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS Applied Materials & Interfaces 2019, 11 (47) , 44774-44782. https://doi.org/10.1021/acsami.9b18037
  32. Jia-Tao Miao, Meiying Ge, Shuqiang Peng, Jie Zhong, Yuewei Li, Zixiang Weng, Lixin Wu, Longhui Zheng. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing. ACS Applied Materials & Interfaces 2019, 11 (43) , 40642-40651. https://doi.org/10.1021/acsami.9b14145
  33. Burak Akdeniz, Emre Bukusoglu. Design Parameters and Principles of Liquid-Crystal-Templated Synthesis of Polymeric Materials via Photolithography. Langmuir 2019, 35 (40) , 13126-13134. https://doi.org/10.1021/acs.langmuir.9b02293
  34. Bangan Peng, Yunchong Yang, Kai Gu, Eric J. Amis, Kevin A. Cavicchi. Digital Light Processing 3D Printing of Triple Shape Memory Polymer for Sequential Shape Shifting. ACS Materials Letters 2019, 1 (4) , 410-417. https://doi.org/10.1021/acsmaterialslett.9b00262
  35. Yuanhang Guo, Jieun Lee, Jinha Son, Suk-kyun Ahn, Jan-Michael Y. Carrillo, Bobby G. Sumpter. Decoding Liquid Crystal Oligomer Phase Transitions: Toward Molecularly Engineered Shape Changing Materials. Macromolecules 2019, 52 (18) , 6878-6888. https://doi.org/10.1021/acs.macromol.9b01218
  36. Hai-Feng Lu, Meng Wang, Xu-Man Chen, Bao-Ping Lin, Hong Yang. Interpenetrating Liquid-Crystal Polyurethane/Polyacrylate Elastomer with Ultrastrong Mechanical Property. Journal of the American Chemical Society 2019, 141 (36) , 14364-14369. https://doi.org/10.1021/jacs.9b06757
  37. Mohsen Tabrizi, Taylor H. Ware, M. Ravi Shankar. Voxelated Molecular Patterning in Three-Dimensional Freeforms. ACS Applied Materials & Interfaces 2019, 11 (31) , 28236-28245. https://doi.org/10.1021/acsami.9b04480
  38. Daniel E. Hagaman, Steven Leist, Jack Zhou, Hai-Feng Ji. Photoactivated Polymeric Bilayer Actuators Fabricated via 3D Printing. ACS Applied Materials & Interfaces 2018, 10 (32) , 27308-27315. https://doi.org/10.1021/acsami.8b08503
  39. Arif M Abdullah, Yuchen Ding, Xu He, Martin Dunn, Kai Yu. Direct-write 3D printing of UV-curable composites with continuous carbon fiber. Journal of Composite Materials 2022, 66 , 002199832211271. https://doi.org/10.1177/00219983221127182
  40. Devin J. Roach, Xiaohao Sun, Xirui Peng, Frédéric Demoly, Kun Zhou, Hang Jerry Qi. 4D Printed Multifunctional Composites with Cooling‐Rate Mediated Tunable Shape Morphing. Advanced Functional Materials 2022, 32 (36) , 2203236. https://doi.org/10.1002/adfm.202203236
  41. Yi Li, Gina Parlato, Francis K. Masese, Rajeswari M. Kasi, Teng Zhang, Xueju Wang. Morphing of stiffness-heterogeneous liquid crystal elastomers via mechanical training and locally controlled photopolymerization. Matter 2022, 15 https://doi.org/10.1016/j.matt.2022.08.019
  42. Xiaoxing Xia, Christopher M. Spadaccini, Julia R. Greer. Responsive materials architected in space and time. Nature Reviews Materials 2022, 7 (9) , 683-701. https://doi.org/10.1038/s41578-022-00450-z
  43. Jifeng Zhang, Zhifu Yin, Luquan Ren, Qingping Liu, Lei Ren, Xue Yang, Xueli Zhou. Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications. Advanced Materials Technologies 2022, 7 (9) , 2101568. https://doi.org/10.1002/admt.202101568
  44. Xirui Peng, Shuai Wu, Xiaohao Sun, Liang Yue, S. Macrae Montgomery, Frédéric Demoly, Kun Zhou, Ruike Renee Zhao, H. Jerry Qi. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing. Advanced Materials 2022, 34 , 2204890. https://doi.org/10.1002/adma.202204890
  45. Carlo Greco, Parth Kotak, Leonardo Pagnotta, Caterina Lamuta. The evolution of mechanical actuation: from conventional actuators to artificial muscles. International Materials Reviews 2022, 67 (6) , 575-619. https://doi.org/10.1080/09506608.2021.1971428
  46. Yogveer S. Lamba, Sandeep K. Sood, Keshav S. Rawat, Mayank Chopra, Ashutosh K. Singh. Knowledge mapping of 4D printing technologies in computer engineering. Computer Applications in Engineering Education 2022, 9 https://doi.org/10.1002/cae.22561
  47. Yixiong Feng, Weiyu Yan, Hao Qiu, Zhaoxi Hong, Siyuan Zeng, Junjun Xu, Kaiyue Cui, Jianrong Tan. 4D printed self-helix structure based on internal stress reversibility. Smart Materials and Structures 2022, 31 (8) , 085001. https://doi.org/10.1088/1361-665X/ac775c
  48. Chun Lam Clement Chan, Jay Matthew Taylor, Emily Catherine Davidson. Design of soft matter for additive processing. Nature Synthesis 2022, 1 (8) , 592-600. https://doi.org/10.1038/s44160-022-00115-3
  49. Albert P. H. J. Schenning, Hong Yang, Sebastian Fredrich, Li Liu. Molecular Switches in Light‐Responsive Liquid‐Crystalline Polymer Actuators. 2022,,, 565-578. https://doi.org/10.1002/9783527827626.ch25
  50. Grace A. R. Rohaley, Elda Hegmann. The importance of structure property relationship for the designing of biomaterials using liquid crystal elastomers. Materials Advances 2022, 3 (14) , 5725-5734. https://doi.org/10.1039/D2MA00401A
  51. Morgan Barnes, Sueda Cetinkaya, Alec Ajnsztajn, Rafael Verduzco. Understanding the effect of liquid crystal content on the phase behavior and mechanical properties of liquid crystal elastomers. Soft Matter 2022, 18 (27) , 5074-5081. https://doi.org/10.1039/D2SM00480A
  52. Grant E. Bauman, Joselle M. McCracken, Timothy J. White. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angewandte Chemie 2022, 134 (28) https://doi.org/10.1002/ange.202202577
  53. Grant E. Bauman, Joselle M. McCracken, Timothy J. White. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angewandte Chemie International Edition 2022, 61 (28) https://doi.org/10.1002/anie.202202577
  54. Zhecun Guan, Ling Wang, Jinhye Bae. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Materials Horizons 2022, 9 (7) , 1825-1849. https://doi.org/10.1039/D2MH00232A
  55. Z. Siddiqui, J. Smay, A. Azoug. Highly tunable actuation and mechanical properties of 4D-printed nematic liquid crystal elastomers. Mechanics of Materials 2022, 170 , 104329. https://doi.org/10.1016/j.mechmat.2022.104329
  56. M. A. S. R. Saadi, Alianna Maguire, Neethu T. Pottackal, Md Shajedul Hoque Thakur, Maruf Md. Ikram, A. John Hart, Pulickel M. Ajayan, Muhammad M. Rahman. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials 2022, 34 (28) , 2108855. https://doi.org/10.1002/adma.202108855
  57. Guang Hu, Biao Zhang, Stephen M. Kelly, Jingjing Cui, Kailong Zhang, Weiwei Hu, Dandan Min, Shijie Ding, Wei Huang. Photopolymerisable liquid crystals for additive manufacturing. Additive Manufacturing 2022, 55 , 102861. https://doi.org/10.1016/j.addma.2022.102861
  58. Yuzhen Chen, Alexa S. Kuenstler, Ryan C. Hayward, Lihua Jin. Formation of rolls from liquid crystal elastomer bistrips. Soft Matter 2022, 18 (21) , 4077-4089. https://doi.org/10.1039/D1SM01830B
  59. Junya Uchida, Bartolome Soberats, Monika Gupta, Takashi Kato. Advanced Functional Liquid Crystals. Advanced Materials 2022, 34 (23) , 2109063. https://doi.org/10.1002/adma.202109063
  60. Mason Zadan, Dinesh K. Patel, Andrew P. Sabelhaus, Jiahe Liao, Anthony Wertz, Lining Yao, Carmel Majidi. Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. Advanced Materials 2022, 34 (23) , 2200857. https://doi.org/10.1002/adma.202200857
  61. Yue Wang, Haitao Cui, Timothy Esworthy, Deqing Mei, Yancheng Wang, Lijie Grace Zhang. Emerging 4D Printing Strategies for Next‐Generation Tissue Regeneration and Medical Devices. Advanced Materials 2022, 34 (20) , 2109198. https://doi.org/10.1002/adma.202109198
  62. Chao Yuan, Tongqing Lu, T.J. Wang. Mechanics-based design strategies for 4D printing: A review. Forces in Mechanics 2022, 7 , 100081. https://doi.org/10.1016/j.finmec.2022.100081
  63. Guancong Chen, Binjie Jin, Yunpeng Shi, Qian Zhao, Youqing Shen, Tao Xie. Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism. Advanced Materials 2022, 34 (21) , 2201679. https://doi.org/10.1002/adma.202201679
  64. Grant E. Bauman, Jeremy A. Koch, Timothy J. White. Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers. Soft Matter 2022, 18 (16) , 3168-3176. https://doi.org/10.1039/D2SM00166G
  65. Guifang Duan, Han Liu, Zhenyu Liu, Jianrong Tan. A 4D-Printed Structure With Reversible Deformation for the Soft Crawling Robot. Frontiers in Materials 2022, 9 https://doi.org/10.3389/fmats.2022.850722
  66. Mattia P. Cosma, Roberto Brighenti. Controlled morphing of architected liquid crystal elastomer elements: modeling and simulations. Mechanics Research Communications 2022, 121 , 103858. https://doi.org/10.1016/j.mechrescom.2022.103858
  67. Jay M. Taylor, Haiwen Luan, Jennifer A. Lewis, John A. Rogers, Ralph G. Nuzzo, Paul V. Braun. Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective. Advanced Materials 2022, 34 (16) , 2108391. https://doi.org/10.1002/adma.202108391
  68. Andrew Akerson, Blaise Bourdin, Kaushik Bhattacharya. Optimal design of responsive structures. Structural and Multidisciplinary Optimization 2022, 65 (4) https://doi.org/10.1007/s00158-022-03200-5
  69. Berfin Gurboga, Ebru B. Tuncgovde, Emine Kemiklioglu. Liquid crystal‐based elastomers in tissue engineering. Biotechnology and Bioengineering 2022, 119 (4) , 1047-1052. https://doi.org/10.1002/bit.28038
  70. Barclay Jumet, Marquise D. Bell, Vanessa Sanchez, Daniel J. Preston. A Data‐Driven Review of Soft Robotics. Advanced Intelligent Systems 2022, 4 (4) , 2100163. https://doi.org/10.1002/aisy.202100163
  71. Yuchen Wang, Jiaqi Liu, Shu Yang. Multi-functional liquid crystal elastomer composites. Applied Physics Reviews 2022, 9 (1) , 011301. https://doi.org/10.1063/5.0075471
  72. Zhe Liu, Hua Wang, Chuanjian Zhou. The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers 2022, 14 (5) , 903. https://doi.org/10.3390/polym14050903
  73. Lansong Yue, Xiuyi Shi, Guofu Zhou, Laurens T. de Haan. Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer. International Journal of Molecular Sciences 2022, 23 (6) , 3275. https://doi.org/10.3390/ijms23063275
  74. Chun Zhang, Xili Lu, Zhanhua Wang, Hesheng Xia. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self‐Healing, Shape Memory, and Liquid Crystal Polymers. Macromolecular Rapid Communications 2022, 43 (5) , 2100768. https://doi.org/10.1002/marc.202100768
  75. Jin‐Hyeong Lee, Jaehee Bae, Jae Hyuk Hwang, Moon‐Young Choi, Yong Seok Kim, Sungmin Park, Jun‐Hee Na, Dong‐Gyun Kim, Suk‐kyun Ahn. Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds. Advanced Functional Materials 2022, 32 (13) , 2110360. https://doi.org/10.1002/adfm.202110360
  76. Jiayou Zhao, Limei Zhang, Jian Hu. Varied Alignment Methods and Versatile Actuations for Liquid Crystal Elastomers: A Review. Advanced Intelligent Systems 2022, 4 (3) , 2100065. https://doi.org/10.1002/aisy.202100065
  77. Gaurav Balakrishnan, Jiwoo Song, Chenchen Mou, Christopher J. Bettinger. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced Materials 2022, 34 (10) , 2106787. https://doi.org/10.1002/adma.202106787
  78. Shaoyun Chen, Yalu Duan, Wenqiang Hua, Qilang Lin, Bo Qu, Rui Wang, Yanyu Zheng, Xiaoying Liu, Wenjie Li, Dongxian Zhuo. Synthesis of novel acrylic liquid-crystal resin and its in-situ enhancement in light-curing 3D printing performance. Journal of Materials Research and Technology 2022, 17 , 2158-2174. https://doi.org/10.1016/j.jmrt.2022.01.159
  79. Yuzhan Li, Veronica Ambrogi, Pierfrancesco Cerruti, Monojoy Goswami, Zhou Yang, Michael R. Kessler, Orlando Rios. Functional liquid crystalline epoxy networks and composites: from materials design to applications. International Materials Reviews 2022, 67 (2) , 201-229. https://doi.org/10.1080/09506608.2021.1937811
  80. Henriette Grellmann, Felix M Lohse, Vikram G Kamble, Hans Winger, Andreas Nocke, Rico Hickmann, Sven Wießner, Chokri Cherif. Fundamentals and working mechanisms of artificial muscles with textile application in the loop. Smart Materials and Structures 2022, 31 (2) , 023001. https://doi.org/10.1088/1361-665X/ac3d9d
  81. Jennifer M. Boothby, Jarod C. Gagnon, Emil McDowell, Tessa Van Volkenburg, Luke Currano, Zhiyong Xia. An Untethered Soft Robot Based on Liquid Crystal Elastomers. Soft Robotics 2022, 9 (1) , 154-162. https://doi.org/10.1089/soro.2020.0135
  82. Qi Ge, Bingcong Jian, Honggeng Li. Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics 2022, 6 , 100074. https://doi.org/10.1016/j.finmec.2022.100074
  83. Hoon Yeub Jeong, Soo-Chan An, Young Chul Jun. Light activation of 3D-printed structures: from millimeter to sub-micrometer scale. Nanophotonics 2022, 11 (3) , 461-486. https://doi.org/10.1515/nanoph-2021-0652
  84. Michael J. Ford, Yunsik Ohm, Keene Chin, Carmel Majidi. Composites of functional polymers: Toward physical intelligence using flexible and soft materials. Journal of Materials Research 2022, 37 (1) , 2-24. https://doi.org/10.1557/s43578-021-00381-5
  85. Qiao-e Wang, Hongyan Niu, Yawu Wang, Chensha Li. Carbon nanotubes modified nanocomposites based on liquid crystalline elastomers. Molecular Crystals and Liquid Crystals 2022, 732 (1) , 11-49. https://doi.org/10.1080/15421406.2021.1962488
  86. Ming Cheng, Hao Zeng, Yifei Li, Jianxun Liu, Dan Luo, Arri Priimagi, Yan Jun Liu. Light‐Fueled Polymer Film Capable of Directional Crawling, Friction‐Controlled Climbing, and Self‐Sustained Motion on a Human Hair. Advanced Science 2022, 9 (1) , 2103090. https://doi.org/10.1002/advs.202103090
  87. Alexander Münchinger, Vincent Hahn, Dominik Beutel, Simon Woska, Joël Monti, Carsten Rockstuhl, Eva Blasco, Martin Wegener. Multi‐Photon 4D Printing of Complex Liquid Crystalline Microstructures by In Situ Alignment Using Electric Fields. Advanced Materials Technologies 2022, 7 (1) , 2100944. https://doi.org/10.1002/admt.202100944
  88. Katie M. Herbert, Hayden E. Fowler, Joselle M. McCracken, Kyle R. Schlafmann, Jeremy A. Koch, Timothy J. White. Synthesis and alignment of liquid crystalline elastomers. Nature Reviews Materials 2022, 7 (1) , 23-38. https://doi.org/10.1038/s41578-021-00359-z
  89. Zhengyuan Zhang, Hongyu Yan, Zejun Yin, Yuechuan Wang. Photopolymerized and acetylene-functionlized polyacrylates for photoclickable elastomers. Polymer 2022, 238 , 124415. https://doi.org/10.1016/j.polymer.2021.124415
  90. Marc del Pozo, Jeroen A. H. P. Sol, Albert P. H. J. Schenning, Michael G. Debije. 4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials 2022, 34 (3) , 2104390. https://doi.org/10.1002/adma.202104390
  91. Kumkum Ahmed, MD Nahin Islam Shiblee. 4D printing of gels and soft materials. 2022,,, 265-295. https://doi.org/10.1016/B978-0-12-824082-3.00004-0
  92. Zhongying Ji, Pan Jiang, Rui Guo, Khan Rajib Hossain, Xiaolong Wang. 4D-printed light-responsive structures. 2022,,, 55-105. https://doi.org/10.1016/B978-0-12-824082-3.00017-9
  93. LaShanda T. J. Korley, Taylor H. Ware. Introduction to Special Topic: Programmable liquid crystal elastomers. Journal of Applied Physics 2021, 130 (22) , 220401. https://doi.org/10.1063/5.0078455
  94. Patrick Imrie, Jianyong Jin. Polymer 4D printing: Advanced shape‐change and beyond. Journal of Polymer Science 2021, 5 https://doi.org/10.1002/pol.20210718
  95. Teunis van Manen, Shahram Janbaz, Kaspar M. B. Jansen, Amir A. Zadpoor. 4D printing of reconfigurable metamaterials and devices. Communications Materials 2021, 2 (1) https://doi.org/10.1038/s43246-021-00165-8
  96. Yubing Guo, Jiachen Zhang, Wenqi Hu, Muhammad Turab Ali Khan, Metin Sitti. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26136-8
  97. D. Mistry, N. A. Traugutt, B. Sanborn, R. H. Volpe, L. S. Chatham, R. Zhou, B. Song, K. Yu, K. N. Long, C. M. Yakacki. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27013-0
  98. D. Duffy, M. Javed, M. K. Abdelrahman, T. H. Ware, M. Warner, J. S. Biggins. Metric mechanics with nontrivial topology: Actuating irises, cylinders, and evertors. Physical Review E 2021, 104 (6) https://doi.org/10.1103/PhysRevE.104.065004
  99. Jungho Joe, Jeehae Shin, Yong‐Seok Choi, Jae Hyuk Hwang, Sang Hwa Kim, Jiseok Han, Bumsoo Park, Woohwa Lee, Sungmin Park, Yong Seok Kim, Dong‐Gyun Kim. A 4D Printable Shape Memory Vitrimer with Repairability and Recyclability through Network Architecture Tailoring from Commercial Poly( ε ‐caprolactone). Advanced Science 2021, 8 (24) , 2103682. https://doi.org/10.1002/advs.202103682
  100. Silvan Gantenbein, Chiara Mascolo, Caroline Houriet, Robert Zboray, Antonia Neels, Kunal Masania, André R. Studart. Spin‐Printing of Liquid Crystal Polymer into Recyclable and Strong All‐Fiber Materials. Advanced Functional Materials 2021, 31 (52) , 2104574. https://doi.org/10.1002/adfm.202104574
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE