Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Magnetic and Electric Resonances in Particle-to-Film-Coupled Functional Nanostructures

View Author Information
Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
§ Department of Physical Chemistry 1, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
*E-mail: [email protected] (T.A.F.K.).
*E-mail: [email protected] (A.F.).
Cite this: ACS Appl. Mater. Interfaces 2018, 10, 3, 3133–3141
Publication Date (Web):December 19, 2017
https://doi.org/10.1021/acsami.7b16941
Copyright © 2017 American Chemical Society

    Article Views

    1311

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We investigate the plasmonic coupling of metallic nanoparticles with continuous metal films by studying the effect of the particle-to-film distance, cavity geometry, and particle size. To efficiently screen these parameters, we fabricated a particle-to-film-coupled functional nanostructure for which the particle size and distance vary. We use gold-core/poly(N-isopropylacrylamide)-shell nanoparticles to self-assemble a monolayer of well-separated plasmonic particles, introduce a gradient in the nanoparticle size by an overgrowth process, and finally add a coupling metal film by evaporation. These assemblies are characterized using surface probing and optical methods to show localized magnetic and electric field enhancement. The results are in agreement with finite-difference time-domain modeling methods and calculations of the effective permeability and permittivity. Finally, we provide a proof of concept for dynamic tuning of the cavity size by swelling of the hydrogel layer. Thus, the tunability of the coupled resonance and the macroscopic self-assembly technique provides access to a cost-efficient library for magnetic and electric resonances.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b16941.

    • TEM on the particle system; atomic force microscopy on spin-coated samples; spectroscopic ellipsometry for determination of the gold layer thickness; AFM investigation for gold-layer thickness determination; center-to-center distance determination via fast Fourier transform; calculation of gold core sizes; determination of the refractive index for PNIPAM; additional FDTD setup information; simulation with variable particle-to-film distances; FDTD simulations for comparison of curved/flat the gold film geometry; effective permittivity using the S-parameter method; large scale microscopy image in the swelling region; simulation of the LSPR peak position in dependence of the refractive index; UV/vis spectroscopy of the functional nanostructure at different humidities; UV/vis spectroscopy and AFM cross-sections in water at different temperatures; and comparison of the swelling behavior without and with the gold film (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 36 publications.

    1. Ben Tadgell, Ekaterina Ponomareva, Matthias Karg, Paul Mulvaney. Scattering of Visible Light by Au–PNIPAM Core–Shell Microgels. The Journal of Physical Chemistry C 2022, 126 (36) , 15336-15347. https://doi.org/10.1021/acs.jpcc.2c03086
    2. Dipa Ghindani, Ibrahim Issah, Semyon Chervinskii, Markus Lahikainen, Kim Kuntze, Arri Priimagi, Humeyra Caglayan. Humidity-Controlled Tunable Emission in a Dye-Incorporated Metal–Hydrogel–Metal Cavity. ACS Photonics 2022, 9 (7) , 2287-2294. https://doi.org/10.1021/acsphotonics.2c00202
    3. Christian Kuttner, Valentina Piotto, Luis M. Liz-Marzán. Plasmonic Gradient Arrays for Rapid Screening of Surface-Enhanced Raman Scattering Efficiency: Particle Libraries of Gold Nanostars. Chemistry of Materials 2021, 33 (22) , 8904-8914. https://doi.org/10.1021/acs.chemmater.1c03223
    4. Semyon Chervinskii, Ibrahim Issah, Markus Lahikainen, Alireza R. Rashed, Kim Kuntze, Arri Priimagi, Humeyra Caglayan. Humidity- and Temperature-Tunable Metal–Hydrogel–Metal Reflective Filters. ACS Applied Materials & Interfaces 2021, 13 (42) , 50564-50572. https://doi.org/10.1021/acsami.1c15616
    5. Ekaterina Ponomareva, Kirsten Volk, Paul Mulvaney, Matthias Karg. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality. Langmuir 2020, 36 (45) , 13601-13612. https://doi.org/10.1021/acs.langmuir.0c02430
    6. Michele Magnozzi, Yannic Brasse, Tobias A. F. König, Francesco Bisio, Eva Bittrich, Andreas Fery, Maurizio Canepa. Plasmonics of Au/Polymer Core/Shell Nanocomposites for Thermoresponsive Hybrid Metasurfaces. ACS Applied Nano Materials 2020, 3 (2) , 1674-1682. https://doi.org/10.1021/acsanm.9b02403
    7. Ye Yu, Charlene Ng, Tobias A. F. König, Andreas Fery. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly. Langmuir 2019, 35 (26) , 8629-8645. https://doi.org/10.1021/acs.langmuir.8b04279
    8. Kirsten Volk, Joseph P. S. Fitzgerald, Matthias Karg. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films. ACS Applied Materials & Interfaces 2019, 11 (17) , 16096-16106. https://doi.org/10.1021/acsami.9b03197
    9. Fabian R. Goßler, Anja Maria Steiner, Oleksandr Stroyuk, Alexandra Raevskaya, Tobias A. F. König. Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light–Matter Interactions. The Journal of Physical Chemistry C 2019, 123 (11) , 6745-6752. https://doi.org/10.1021/acs.jpcc.8b12566
    10. Mikhail N. Polyanskiy. Refractiveindex.info database of optical constants. Scientific Data 2024, 11 (1) https://doi.org/10.1038/s41597-023-02898-2
    11. Alberto Mariani, Giulio Malucelli. Transparent wood-based materials: A new step toward sustainability and circularity. Next Materials 2024, 5 , 100255. https://doi.org/10.1016/j.nxmate.2024.100255
    12. Ylli Conti, Naihao Chiang, Leonardo Scarabelli. Colloidal Plasmonic Metasurfaces for the Enhancement of Non‐Linear Optical Processes and Molecular Spectroscopies. ChemNanoMat 2024, 10 (4) https://doi.org/10.1002/cnma.202300566
    13. Yevhenii M. Morozov, Fiona Wiesner (née Diehl), Jonas J. Grün, Matthias Pertiller, Stefan Fossati, Katharina Schmidt, Nestor Gisbert Quilis, Claudia Gusenbauer, Barbara Zbiral, Jose Luis Toca‐Herrera, Sven Klees, Clinton Richard Victor Thiagarajan, Ulrich Jonas, Jakub Dostalek. Microstructuring of Thermoresponsive Biofunctional Hydrogels by Multiphoton Photocrosslinking. Advanced Functional Materials 2024, 12145 https://doi.org/10.1002/adfm.202315578
    14. Adolfo Sepúlveda, Déborah Feller, Matthias Karg, Denis Boudreau. A Simple and Fast Compression‐Based Method to Fabricate Responsive Gold‐pNIPAM Hybrid Materials: From Thin Films to Anisotropic Microgels. Advanced Materials Interfaces 2023, 10 (32) https://doi.org/10.1002/admi.202300453
    15. Muskan Kularia, Olha Aftenieva, Swagato Sarkar, Anja M. Steiner, Vaibhav Gupta, Andreas Fery, Joby Joseph, Markus A. Schmidt, Tobias A. F. König. Self‐assembly of plasmonic nanoparticles on optical fiber end face. Journal of Polymer Science 2023, 61 (16) , 1893-1901. https://doi.org/10.1002/pol.20230024
    16. M. G. Garzon Altamirano, M. G. Abebe, J. Lejeune, A. Cayla, B. Maes, J. Odent, J. M. Raquez, C. Campagne, E. Devaux. Design of silica coated polyamide fabrics for thermo‐regulating textiles. Journal of Applied Polymer Science 2023, 140 (27) https://doi.org/10.1002/app.54004
    17. Dajie Xie, Wei Li, Corey A. Richards, Haibo Gao, Chen Chen, Nenad Miljkovic, Shanhui Fan, Jae Lee, Shailesh N. Joshi, Paul V. Braun. Thermally Responsive Hydrogels for Passive Temperature Regulation under Direct Sunlight. Advanced Photonics Research 2023, 4 (4) https://doi.org/10.1002/adpr.202200253
    18. Gregor Rudolph-Schöpping, Herje Schagerlöf, Ann-Sofi Jönsson, Frank Lipnizki. Comparison of membrane fouling during ultrafiltration with adsorption studied by quartz crystal microbalance with dissipation monitoring (QCM-D). Journal of Membrane Science 2023, 672 , 121313. https://doi.org/10.1016/j.memsci.2022.121313
    19. Sophie Jancke, Chen Liu, Ruosong Wang, Swagato Sarkar, Quinn A. Besford, Tobias A. F. König, Jürgen Popp, Dana Cialla-May, Christian Rossner. Turning on hotspots: supracolloidal SERS probes made brilliant by an external activation mechanism. Nanoscale 2023, 44 https://doi.org/10.1039/D3NR05121H
    20. Getachew Tizazu, . Investigation of the Effect of Molecular Weight, Density, and Initiator Structure Size on the Repulsive Force between a PNIPAM Polymer Brush and Protein. Advances in Polymer Technology 2022, 2022 , 1-20. https://doi.org/10.1155/2022/9741080
    21. Keumkyung Kuk, Lukas Gregel, Vahan Abgarjan, Caspar Croonenbrock, Sebastian Hänsch, Matthias Karg. Micron-Sized Silica-PNIPAM Core-Shell Microgels with Tunable Shell-To-Core Ratio. Gels 2022, 8 (8) , 516. https://doi.org/10.3390/gels8080516
    22. Gema Marcelo, Noemi Salardón, Carlos Pecharromán, Francisco Mendicuti, Isabel Trabado, Belen Batanero. Tuneable fluorescence and structural colour in PNIPAM microgel assemblies. European Polymer Journal 2022, 173 , 111319. https://doi.org/10.1016/j.eurpolymj.2022.111319
    23. Eshanee Chowdhury, Ahmed Zubair. Triangular gold nanoplates integrated microgel-based sensor for urinary tract infection and glucosuria detection. Optical Materials Express 2022, 12 (6) , 2212. https://doi.org/10.1364/OME.456759
    24. ZhiJie Lei, XiaoShi Qian, Kun Jiang, Guang Meng. Highly band-selective meta-surfaces exhibiting perfect near infrared absorption and concurrent visible band sensing: A numerical study. Science China Technological Sciences 2022, 65 (4) , 809-816. https://doi.org/10.1007/s11431-021-1982-y
    25. Alberto Alvarez‐Fernandez, Cian Cummins, Matthias Saba, Ullrich Steiner, Guillaume Fleury, Virginie Ponsinet, Stefan Guldin. Block Copolymer Directed Metamaterials and Metasurfaces for Novel Optical Devices. Advanced Optical Materials 2021, 9 (16) https://doi.org/10.1002/adom.202100175
    26. Víctor Bonal, José A. Quintana, José M. Villalvilla, Rafael Muñoz-Mármol, Jose C. Mira-Martínez, Pedro G. Boj, María E. Cruz, Yolanda Castro, María A. Díaz-García. Simultaneous Determination of Refractive Index and Thickness of Submicron Optical Polymer Films from Transmission Spectra. Polymers 2021, 13 (15) , 2545. https://doi.org/10.3390/polym13152545
    27. Kirsten Volk, Tobias Honold, Déborah Feller, Matthias Karg. Surface Lattice Resonances in Self‐Templated Plasmonic Honeycomb and Moiré Lattices. Advanced Materials Interfaces 2021, 8 (13) https://doi.org/10.1002/admi.202100317
    28. Christian Rossner, Tobias A. F. König, Andreas Fery. Plasmonic Properties of Colloidal Assemblies. Advanced Optical Materials 2021, 9 (8) https://doi.org/10.1002/adom.202001869
    29. Ke Wang, Seong Hun Park, Jintao Zhu, Jung Kyu Kim, Lianbin Zhang, Gi‐Ra Yi. Self‐Assembled Colloidal Nanopatterns toward Unnatural Optical Meta‐Materials. Advanced Functional Materials 2021, 31 (12) https://doi.org/10.1002/adfm.202008246
    30. Tao Ding, Jeremy J. Baumberg. Thermo-responsive plasmonic systems: old materials with new applications. Nanoscale Advances 2020, 2 (4) , 1410-1416. https://doi.org/10.1039/C9NA00800D
    31. Chunfang Li, Qihao Xue, Zhaoyang Ji, Yaxia Li, Hongyan Zhang, Dongxiang Li. Construction of photonic crystals with thermally adjustable pseudo-gaps. Soft Matter 2020, 16 (12) , 3063-3068. https://doi.org/10.1039/C9SM02449B
    32. Pasquale Di Palma, Lucia Sansone, Chiara Taddei, Stefania Campopiano, Agostino Iadicicco, Michele Giordano. Fiber Optic Probe Based on Self-Assembled Photonic Crystal for Relative Humidity Sensing. Journal of Lightwave Technology 2019, 37 (18) , 4610-4618. https://doi.org/10.1109/JLT.2019.2914354
    33. R. Grangeat, M. Girard, C. Lupi, D. Leduc, F. Jacquemin. Revealing of interphases in bonded joints with a fiber optic sensor based on Fresnel reflection. International Journal of Adhesion and Adhesives 2019, 91 , 12-18. https://doi.org/10.1016/j.ijadhadh.2019.02.009
    34. M Magnozzi, M Ferrera, M Canepa, F Bisio. Monitoring the solid-state dewetting of densely packed arrays of Au nanoparticles. Journal of Physics: Conference Series 2019, 1226 (1) , 012014. https://doi.org/10.1088/1742-6596/1226/1/012014
    35. Martin Mayer, Max J. Schnepf, Tobias A. F. König, Andreas Fery. Colloidal Self‐Assembly Concepts for Plasmonic Metasurfaces. Advanced Optical Materials 2019, 7 (1) https://doi.org/10.1002/adom.201800564
    36. Max J. Schnepf, Yannic Brasse, Fabian R. Goßler, Anja Maria Steiner, Julian Obermeier, Markus Lippitz, Andreas Fery, Tobias A.F. König. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas. Zeitschrift für Physikalische Chemie 2018, 232 (9-11) , 1593-1606. https://doi.org/10.1515/zpch-2018-1109