ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Hybrid Decorated Core@Shell Janus Nanoparticles as a Flexible Platform for Targeted Multimodal Molecular Bioimaging of Cancer

  • Alfredo Sánchez
    Alfredo Sánchez
    Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
  • Karina Ovejero Paredes
    Karina Ovejero Paredes
    Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
    Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain
  • Jesús Ruiz-Cabello
    Jesús Ruiz-Cabello
    Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy⊥, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain
    CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
    CIC biomaGUNE, Paseo Miramón 182, 20014 Donostia/San Sebastián, Gipuzkoa, Spain
    IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
  • Paloma Martínez-Ruíz
    Paloma Martínez-Ruíz
    Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry  and  Department of Organic Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
  • José Manuel Pingarrón
    José Manuel Pingarrón
    Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
  • Reynaldo Villalonga*
    Reynaldo Villalonga
    Nanosensors & Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
    *E-mail: [email protected] (R.V.).
  • , and 
  • Marco Filice*
    Marco Filice
    Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
    Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain
    CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
    *E-mail: [email protected] (M.F.).
    More by Marco Filice
Cite this: ACS Appl. Mater. Interfaces 2018, 10, 37, 31032–31043
Publication Date (Web):August 24, 2018
https://doi.org/10.1021/acsami.8b10452
Copyright © 2018 American Chemical Society

    Article Views

    2004

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In the recent years, targeted cancer theranosis, the concomitant therapeutic treatment and selective visualization of cancerous tissue, has become a powerful strategy to improve patient prognosis. In this context, targeted multimodal molecular imaging, the combination of different imaging modalities overcoming their individual limitations, has attracted great attention. Due to their unique properties, advanced nanomaterials have taken center stage in the development of theranostics. In this work, we report a novel Janus nanoplatform by combining an Fe3O4 NPs/mesoporous silica core@shell face together with an Au nanoparticle face. Due to its anisotropy, this hybrid nanomaterial enabled the orthogonal site-selective modification of each face permitting the incorporation of a targeting peptide for cancer detection (cRGD) and a fluorescent dye. Due to the intrinsic characteristics of this Janus nanoplatform together with those selectively generated on their surfaces, the resulting hybrid nanocarrier successfully promoted the in vivo tumor-targeted multimodal imaging by magnetic resonance (Fe3O4 core), computed tomography (AuNP face), and fluorescent tracking (fluorescent dye loading) in a fibrosarcoma-bearing mouse model. The achieved results endorse these hybrid Janus nanoparticles as a powerful and flexible platform with integrated imaging and carrier functionalities to be equipped with therapeutic features to generate an advanced multifunctional nanocarrier for targeted cancer theranosis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b10452.

    • TEM micrographs of Mag 320, Mag 320@MS, and Au-Mag 320@MS; size distribution analysis of Mag 320; HRTEM micrograph of Mag 320, fluorescence spectra of Janus Au-Mag 320@MS before and after modification with Alexa Fluor 647; FTIR spectra of Mag 320, Mag 320@MS, Au-Mag 320@MS, and RAM nanoparticles; cytotoxicity assay of RAM using different cell lines at various concentrations; mouse MRI images acquired at different time points after injection of RAM and after blocking experiment with soluble cRGD; biodistribution of RAM in mice; DLS and ICP-AES values from the RAM nanoparticle analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Sourav Bhattacharjee. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacology & Translational Science 2022, 5 (5) , 278-298. https://doi.org/10.1021/acsptsci.2c00033
    2. Xuan Zhang, Qinrui Fu, Hongwei Duan, Jibin Song, Huanghao Yang. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano 2021, 15 (4) , 6147-6191. https://doi.org/10.1021/acsnano.1c01146
    3. Mathilde Bouché, Jessica C. Hsu, Yuxi C. Dong, Johoon Kim, Kimberly Taing, David P. Cormode. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjugate Chemistry 2020, 31 (2) , 303-314. https://doi.org/10.1021/acs.bioconjchem.9b00669
    4. Francesca Biscaglia, Giorgio Ripani, Senthilkumar Rajendran, Clara Benna, Simone Mocellin, Gianfranco Bocchinfuso, Moreno Meneghetti, Antonio Palleschi, Marina Gobbo. Gold Nanoparticle Aggregates Functionalized with Cyclic RGD Peptides for Targeting and Imaging of Colorectal Cancer Cells. ACS Applied Nano Materials 2019, 2 (10) , 6436-6444. https://doi.org/10.1021/acsanm.9b01392
    5. Farouk Nouizi, Maha Algarawi, Hakan Erkol, Gultekin Gulsen. Gold nanoparticle-mediated photothermal therapy guidance with multi-wavelength photomagnetic imaging. Photodiagnosis and Photodynamic Therapy 2024, 45 , 103956. https://doi.org/10.1016/j.pdpdt.2023.103956
    6. Cornelia Lanz, Yaşar Krysiak, Xu Liu, Manuel Hohgardt, Peter Jomo Walla, Sebastian Polarz. Non‐Classical Self‐Assembly of Anisotropic Magneto‐Organosilica Janus Particles Possessing Surfactant Properties and the Field‐Triggered Breakdown of Surface Activity and Amphiphilic Properties. Small 2023, 19 (52) https://doi.org/10.1002/smll.202304380
    7. Mozhdeh Madadi, Sepideh Khoee. Magnetite‐based Janus nanoparticles, their synthesis and biomedical applications. WIREs Nanomedicine and Nanobiotechnology 2023, 15 (6) https://doi.org/10.1002/wnan.1908
    8. I. Jénnifer Gómez, Karina Ovejero‐Paredes, José Manuel Méndez‐Arriaga, Naděžda Pizúrová, Marco Filice, Lenka Zajíčková, Sanjiv Prashar, Santiago Gómez‐Ruiz. Organotin(IV)‐Decorated Graphene Quantum Dots as Dual Platform for Molecular Imaging and Treatment of Triple Negative Breast Cancer. Chemistry – A European Journal 2023, 29 (60) https://doi.org/10.1002/chem.202301845
    9. Yanio E. Milian, Martha Claros, Svetlana Ushak, Stella Vallejos. Silica based Janus nanoparticles: Synthesis methods, characterization, and applications. Applied Materials Today 2023, 34 , 101901. https://doi.org/10.1016/j.apmt.2023.101901
    10. Ana Vujačić Nikezić, Jasmina Grbović Novaković. Nano/Microcarriers in Drug Delivery: Moving the Timeline to Contemporary. Current Medicinal Chemistry 2023, 30 (26) , 2996-3023. https://doi.org/10.2174/0929867329666220821193938
    11. Wei Wan, Xiangling Ren, Junrui Tan, Longfei Tan, Changhui Fu, Qiong Wu, Zengzhen Chen, Jun Ren, Zhongbing Huang, Xianwei Meng. Preparation of Janus fluorescent probe based on an asymmetrical silica and its application in glucose and alpha-fetoprotein detection. Journal of Materials Chemistry B 2023, 11 (28) , 6664-6670. https://doi.org/10.1039/D3TB00964E
    12. Katharinne S.N.T. Soares, Steffane Q. Nascimento, Selma E. Mazzetto, Viviane G.P. Ribeiro, Giuseppe Mele, Luigi Carbone, Roberto A.S. Luz, Everson Thiago S. Gerôncio, Welter Cantanhêde. Structural, photoluminescent and electrochemical properties of self-assembled Co3[Co(CN)6]2/ZnO nanocomposite. Inorganica Chimica Acta 2023, 551 , 121473. https://doi.org/10.1016/j.ica.2023.121473
    13. Tatyana I. Shabatina, Olga I. Vernaya, Nikolay L. Shimanovskiy, Mikhail Ya. Melnikov. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023, 15 (4) , 1181. https://doi.org/10.3390/pharmaceutics15041181
    14. Voichita Mihali, Michal Skowicki, Daniel Messmer, Cornelia G. Palivan. Clusters of polymersomes and Janus nanoparticles hierarchically self-organized and controlled by DNA hybridization. Nano Today 2023, 48 , 101741. https://doi.org/10.1016/j.nantod.2022.101741
    15. Beatriz B. Oliveira, Daniela Ferreira, Alexandra R. Fernandes, Pedro Viana Baptista. Engineering gold nanoparticles for molecular diagnostics and biosensing. WIREs Nanomedicine and Nanobiotechnology 2023, 15 (1) https://doi.org/10.1002/wnan.1836
    16. Deepika Radhakrishnan, Shan Mohanan, Goeun Choi, Jin-Ho Choy, Steffi Tiburcius, Hoang Trung Trinh, Shankar Bolan, Nikki Verrills, Pradeep Tanwar, Ajay Karakoti, Ajayan Vinu. The emergence of nanoporous materials in lung cancer therapy. Science and Technology of Advanced Materials 2022, 23 (1) , 225-274. https://doi.org/10.1080/14686996.2022.2052181
    17. Cristina de la Encarnación, Dorleta Jimenez de Aberasturi, Luis M. Liz-Marzán. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Advanced Drug Delivery Reviews 2022, 189 , 114484. https://doi.org/10.1016/j.addr.2022.114484
    18. Zheyi Li, Zhiqiang Gao, Cong Wang, Danqing Zou, Huan Zhou, Yang Yi, Jun Wang, Lei Wang. Recent progress on bioimaging strategies based on Janus nanoparticles. Nanoscale 2022, 14 (35) , 12560-12568. https://doi.org/10.1039/D2NR03186H
    19. Shanshan Yuan, Jing Wang, Yi Xiang, Shanshan Zheng, Yihan Wu, Jinliang Liu, Xiaohui Zhu, Yong Zhang. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. Small 2022, 18 (24) https://doi.org/10.1002/smll.202200020
    20. Karina Ovejero-Paredes, Diana Díaz-García, Irene Mena-Palomo, Marzia Marciello, Laura Lozano-Chamizo, Yurena Luengo Morato, Sanjiv Prashar, Santiago Gómez-Ruiz, Marco Filice. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. Biomaterials Advances 2022, 137 , 212823. https://doi.org/10.1016/j.bioadv.2022.212823
    21. Rubiya Khursheed, Kamal Dua, Sukriti Vishwas, Monica Gulati, Niraj Kumar Jha, Ghalib Mohammed Aldhafeeri, Fayez Ghadeer Alanazi, Bey Hing Goh, Gaurav Gupta, Keshav Raj Paudel, Philip M. Hansbro, Dinesh Kumar Chellappan, Sachin Kumar Singh. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomedicine & Pharmacotherapy 2022, 150 , 112951. https://doi.org/10.1016/j.biopha.2022.112951
    22. Xinxin Li, Yiwei Zhang, GuangKuo Liu, Ziyi luo, Lu Zhou, Yanan Xue, Min Liu. Recent progress in the applications of gold-based nanoparticles towards tumor-targeted imaging and therapy. RSC Advances 2022, 12 (13) , 7635-7651. https://doi.org/10.1039/D2RA00566B
    23. Xiaoshuang Li, Ligang Chen, Di Cui, Wei Jiang, Lixia Han, Na Niu. Preparation and application of Janus nanoparticles: Recent development and prospects. Coordination Chemistry Reviews 2022, 454 , 214318. https://doi.org/10.1016/j.ccr.2021.214318
    24. Marzia Marciello, Yurena Luengo Morato, Karina Ovejero Paredes, Laura Lozano Chamizo, Marco Filice. Enzyme-metal nanobiohybrids in chemobiocatalytic cascade processes. 2022, 189-210. https://doi.org/10.1016/B978-0-12-824436-4.00014-9
    25. Alexis Alvear-Jiménez, Irene Zabala Gutierrez, Yingli Shen, Gonzalo Villaverde, Laura Lozano-Chamizo, Pablo Guardia, Miguel Tinoco, Beatriz Garcia-Pinel, José Prados, Consolación Melguizo, Manuel López-Romero, Daniel Jaque, Marco Filice, Rafael Contreras-Cáceres. Electrospraying as a Technique for the Controlled Synthesis of Biocompatible PLGA@Ag2S and PLGA@Ag2S@SPION Nanocarriers with Drug Release Capability. Pharmaceutics 2022, 14 (1) , 214. https://doi.org/10.3390/pharmaceutics14010214
    26. Pengcheng Xu, Ru Wang, Wenqian Yang, Yanyan Liu, Dongsheng He, Zixuan Ye, Daquan Chen, Yuan Ding, Jiasheng Tu, Yan Shen. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. Journal of Nanobiotechnology 2021, 19 (1) https://doi.org/10.1186/s12951-021-00824-5
    27. Laura Lozano Chamizo, Yurena Luengo Morato, Karina Ovejero Paredes, Rafael Contreras Caceres, Marco Filice, Marzia Marciello. Ionotropic Gelation-Based Synthesis of Chitosan-Metal Hybrid Nanoparticles Showing Combined Antimicrobial and Tissue Regenerative Activities. Polymers 2021, 13 (22) , 3910. https://doi.org/10.3390/polym13223910
    28. Yaqi Chen, Yan Liang, Li Wang, Mengdan Guan, Yameng Zhu, Xiaoping Yue, Xiao Huang, Gang Lu. Preparation and applications of freestanding Janus nanosheets. Nanoscale 2021, 13 (36) , 15151-15176. https://doi.org/10.1039/D1NR04284J
    29. Yurena Luengo Morato, Karina Ovejero Paredes, Laura Lozano Chamizo, Marzia Marciello, Marco Filice. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers 2021, 13 (17) , 2989. https://doi.org/10.3390/polym13172989
    30. Elham Rastegari, Yu-Jer Hsiao, Wei-Yi Lai, Yun-Hsien Lai, Tien-Chun Yang, Shih-Jen Chen, Pin-I Huang, Shih-Hwa Chiou, Chung-Yuan Mou, Yueh Chien. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021, 13 (7) , 1067. https://doi.org/10.3390/pharmaceutics13071067
    31. Stefanos Mourdikoudis, Athanasia Kostopoulou, Alec P. LaGrow. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Advanced Science 2021, 8 (12) https://doi.org/10.1002/advs.202004951
    32. H. Esra Oguzturk, Yigit Sozen, Cansu Akyol, Dilce Ozkendir Inanc, Umit Hakan Yildiz, Hasan Sahin. Toward single-layer Janus crystals: Off-balance materials from synthesis to nanotechnology applications. Journal of Applied Physics 2021, 129 (16) https://doi.org/10.1063/5.0041054
    33. Goeun Choi, N. Sanoj Rejinold, Huiyan Piao, Jin-Ho Choy. Inorganic–inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chemical Science 2021, 12 (14) , 5044-5063. https://doi.org/10.1039/D0SC06724E
    34. Miao Qin, Mengjie Xu, Lulu Niu, Yizhu Cheng, Xiaolian Niu, Jinlong Kong, Xiumei Zhang, Yan Wei, Di Huang. Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: A review. Frontiers of Materials Science 2021, 15 (1) , 36-53. https://doi.org/10.1007/s11706-021-0543-y
    35. Anabel Villalonga, Reynaldo Villalonga, Diana Vilela. Hybrid magnetic nanoparticles for electrochemical biosensors. 2021, 679-720. https://doi.org/10.1016/B978-0-12-823688-8.00004-1
    36. Yurena Luengo Morato, Marzia Marciello, Laura Lozano Chamizo, Karina Ovejero Paredes, Marco Filice. Hybrid magnetic nanoparticles for multimodal molecular imaging of cancer. 2021, 343-386. https://doi.org/10.1016/B978-0-12-823688-8.00008-9
    37. Yue Hu, Dan Yu, Xiaoxia Zhang. 9-amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochemistry 2021, 100 , 140-148. https://doi.org/10.1016/j.procbio.2020.09.021
    38. Hongcai Li, Shuanqiang Yang, David Hui, Ruoyu Hong. Progress in magnetic Fe 3 O 4 nanomaterials in magnetic resonance imaging. Nanotechnology Reviews 2020, 9 (1) , 1265-1283. https://doi.org/10.1515/ntrev-2020-0095
    39. Jonas G. Croissant, Kimberly S. Butler, Jeffrey I. Zink, C. Jeffrey Brinker. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials 2020, 5 (12) , 886-909. https://doi.org/10.1038/s41578-020-0230-0
    40. Daohe Yuan, Connor M. Ellis, Jason J. Davis. Mesoporous Silica Nanoparticles in Bioimaging. Materials 2020, 13 (17) , 3795. https://doi.org/10.3390/ma13173795
    41. Qianyi Zhang, Jieying Liang, Sung Lai Jimmy Yun, Kang Liang, Dayong Yang, Zi Gu. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomaterials Science 2020, 8 (15) , 4129-4146. https://doi.org/10.1039/D0BM00761G
    42. Zahra Vatankhah, Elham Dehghani, Mehdi Salami-Kalajahi, Hossein Roghani-Mamaqani. Seed's morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery. Colloids and Surfaces B: Biointerfaces 2020, 191 , 111008. https://doi.org/10.1016/j.colsurfb.2020.111008
    43. Ashish Avasthi, Carlos Caro, Esther Pozo-Torres, Manuel Pernia Leal, María Luisa García-Martín. Magnetic Nanoparticles as MRI Contrast Agents. Topics in Current Chemistry 2020, 378 (3) https://doi.org/10.1007/s41061-020-00302-w
    44. Niloofar Safaie, Robert C. Ferrier. Janus nanoparticle synthesis: Overview, recent developments, and applications. Journal of Applied Physics 2020, 127 (17) https://doi.org/10.1063/5.0003329
    45. Zahra Rahiminezhad, Ali Mohammad Tamaddon, Sedigheh Borandeh, Samira Sadat Abolmaali. Janus nanoparticles: New generation of multifunctional nanocarriers in drug delivery, bioimaging and theranostics. Applied Materials Today 2020, 18 , 100513. https://doi.org/10.1016/j.apmt.2019.100513
    46. Ana Lazaro-Carrillo, Marco Filice, María José Guillén, Rebeca Amaro, Mario Viñambres, Andrea Tabero, Karina Ovejero Paredes, Angeles Villanueva, Pilar Calvo, Maria del Puerto Morales, Marzia Marciello. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Materials Science and Engineering: C 2020, 107 , 110262. https://doi.org/10.1016/j.msec.2019.110262
    47. Karina Ovejero Paredes, Diana Díaz-García, Victoria García-Almodóvar, Laura Lozano Chamizo, Marzia Marciello, Miguel Díaz-Sánchez, Sanjiv Prashar, Santiago Gómez-Ruiz, Marco Filice. Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer. Cancers 2020, 12 (1) , 187. https://doi.org/10.3390/cancers12010187
    48. Shengnan Li, Lingyu Zhang, Xin Liang, Tingting Wang, Xiangjun Chen, Cuimei Liu, Lu Li, Chungang Wang. Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy. Chemical Engineering Journal 2019, 378 , 122175. https://doi.org/10.1016/j.cej.2019.122175
    49. Susana Campuzano, Maria Gamella, Verónica Serafín, María Pedrero, Paloma Yáñez-Sedeño, José Manuel Pingarrón. Magnetic Janus Particles for Static and Dynamic (Bio)Sensing. Magnetochemistry 2019, 5 (3) , 47. https://doi.org/10.3390/magnetochemistry5030047
    50. H. Su, C.-A. Hurd Price, L. Jing, Q. Tian, J. Liu, K. Qian. Janus particles: design, preparation, and biomedical applications. Materials Today Bio 2019, 4 , 100033. https://doi.org/10.1016/j.mtbio.2019.100033
    51. Gohar Ijaz Dar, M. Zubair Iqbal, AiguoWu. Multifunctional biocompatible Janus nanostructures for biomedical applications. Current Opinion in Biomedical Engineering 2019, 10 , 79-88. https://doi.org/10.1016/j.cobme.2019.04.001
    52. Natália Vilaça, Juan Gallo, Rui Fernandes, Francisco Figueiredo, António M. Fonseca, Fátima Baltazar, Isabel C. Neves, Manuel Bañobre-López. Synthesis, characterization and in vitro validation of a magnetic zeolite nanocomposite with T 2 -MRI properties towards theranostic applications. Journal of Materials Chemistry B 2019, 7 (21) , 3351-3361. https://doi.org/10.1039/C9TB00078J
    53. Lufeng Chen, Hongshan Zhong, Xun Qi, Haibo Shao, Ke Xu. Modified core–shell magnetic mesoporous zirconia nanoparticles formed through a facile “outside-to-inside” way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy. RSC Advances 2019, 9 (23) , 13220-13233. https://doi.org/10.1039/C9RA01063G
    54. Yifan Zhang, Kai Huang, Jing Lin, Peng Huang. Janus nanoparticles in cancer diagnosis, therapy and theranostics. Biomaterials Science 2019, 7 (4) , 1262-1275. https://doi.org/10.1039/C8BM01523F
    55. Marina Santana Vega, Andrés Guerrero Martínez, Fabio Cucinotta. Facile Strategy for the Synthesis of Gold@Silica Hybrid Nanoparticles with Controlled Porosity and Janus Morphology. Nanomaterials 2019, 9 (3) , 348. https://doi.org/10.3390/nano9030348
    56. Rafael R. Castillo, María Vallet-Regí. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety.. International Journal of Molecular Sciences 2019, 20 (4) , 929. https://doi.org/10.3390/ijms20040929
    57. Karina Ovejero Paredes, Jesús Ruiz-Cabello, David Izquierdo Alarcón, Marco Filice. The State of the Art of Investigational and Approved Nanomedicine Products for Nucleic Acid Delivery. 2019, 421-456. https://doi.org/10.1016/B978-0-12-814470-1.00015-0
    58. Susana Carregal-Romero, Sandra Plaza-García, Rafael Piñol, José Murillo, Jesús Ruiz-Cabello, Daniel Padro, Angel Millán, Pedro Ramos-Cabrer. MRI Study of the Influence of Surface Coating Aging on the In Vivo Biodistribution of Iron Oxide Nanoparticles. Biosensors 2018, 8 (4) , 127. https://doi.org/10.3390/bios8040127

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect