ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Photovoltaic Field-Effect Transistors Using a MoS2 and Organic Rubrene van der Waals Hybrid

  • Cheol-Joon Park
    Cheol-Joon Park
    Department of Physics, Korea University, Seoul 02841, Republic of Korea
  • Hyeon Jung Park
    Hyeon Jung Park
    Department of Physics, Korea University, Seoul 02841, Republic of Korea
  • Jae Yoon Lee
    Jae Yoon Lee
    KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
    More by Jae Yoon Lee
  • Jeongyong Kim
    Jeongyong Kim
    Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
  • Chul-Ho Lee
    Chul-Ho Lee
    KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
    More by Chul-Ho Lee
  • , and 
  • Jinsoo Joo*
    Jinsoo Joo
    Department of Physics, Korea University, Seoul 02841, Republic of Korea
    *E-mail: [email protected]
    More by Jinsoo Joo
Cite this: ACS Appl. Mater. Interfaces 2018, 10, 35, 29848–29856
Publication Date (Web):August 9, 2018
https://doi.org/10.1021/acsami.8b11559
Copyright © 2018 American Chemical Society

    Article Views

    2064

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A several-layer n-type MoS2 was partially hybridized with an organic crystalline p-type rubrene nanosheet through van der Waals interactions to fabricate a two-dimensional (2-D) lateral-type n–p heterojunction optoelectronic device. The field-effect transistors (FETs) using lateral-type MoS2/rubrene hybrids exhibited both gate-tunable diode and anti-ambipolar transistor characteristics. The FET devices show the coexistence of n-type states, p-type states, and off-states controlled by the gate bias. From the photocurrent mapping experiments, the gate-bias-dependent photovoltaic effect was observed from the heterojunction regions of the MoS2/rubrene FETs. Furthermore, the photovoltaic FETs were successfully operated by light irradiation without applying source–drain bias and controlled using gate bias. These devices represent new solar-energy-driven 2-D multifunctional electronic devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b11559.

    • UV/vis absorption spectra of rubrene NS and solution, X-ray diffraction patterns of rubrene NS, confocal optical absorption spectra of MoS2 layers, optical microscopy images of the fabrication process of the MoS2/rubrene FETs, Raman spectra of MoS2, AFM profile and surface morphology of the MoS2/rubrene FETs, 3-D surface plot of IDVDVG characteristic curves of different batches of MoS2/rubrene FETs, and photocurrent mapping image and photovoltaic characteristic curves of a different batch of MoS2/rubrene FETs (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 47 publications.

    1. Christy Roshini Paul Inbaraj, Roshan Jesus Mathew, Rajesh Kumar Ulaganathan, Raman Sankar, Monika Kataria, Hsia Yu Lin, Yit-Tsong Chen, Mario Hofmann, Chih-Hao Lee, Yang-Fang Chen. A Bi-Anti-Ambipolar Field Effect Transistor. ACS Nano 2021, 15 (5) , 8686-8693. https://doi.org/10.1021/acsnano.1c00762
    2. Jun Young Kim, Hyeon Jung Park, Sang-hun Lee, Changwon Seo, Jeongyong Kim, Jinsoo Joo. Distinctive Field-Effect Transistors and Ternary Inverters Using Cross-Type WSe2/MoS2 Heterojunctions Treated with Polymer Acid. ACS Applied Materials & Interfaces 2020, 12 (32) , 36530-36539. https://doi.org/10.1021/acsami.0c09706
    3. Megan E. Beck, Mark C. Hersam. Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS Nano 2020, 14 (6) , 6498-6518. https://doi.org/10.1021/acsnano.0c03299
    4. Juchan Lee, Ngoc Thanh Duong, Seungho Bang, Chulho Park, Duc Anh Nguyen, Hobeom Jeon, Jiseong Jang, Hye Min Oh, Mun Seok Jeong. Modulation of Junction Modes in SnSe2/MoTe2 Broken-Gap van der Waals Heterostructure for Multifunctional Devices. Nano Letters 2020, 20 (4) , 2370-2377. https://doi.org/10.1021/acs.nanolett.9b04926
    5. Xiao-Ying Xie, Xiang-Yang Liu, Qiu Fang, Wei-Hai Fang, Ganglong Cui. Photoinduced Carrier Dynamics at the Interface of Pentacene and Molybdenum Disulfide. The Journal of Physical Chemistry A 2019, 123 (36) , 7693-7703. https://doi.org/10.1021/acs.jpca.9b04728
    6. You Meng, Weijun Wang, Wei Wang, Bowen Li, Yuxuan Zhang, Johnny Ho. Anti‐Ambipolar Heterojunctions: Materials, Devices, and Circuits. Advanced Materials 2024, 36 (17) https://doi.org/10.1002/adma.202306290
    7. Ruofei Xing, Ziqing Li, Wenxiao Zhao, Dong Wang, Ranran Xie, Yanxue Chen, Limin Wu, Xiaosheng Fang. Waterproof and Flexible Perovskite Photodetector Enabled By P‐type Organic Molecular Rubrene with High Moisture and Mechanical Stability. Advanced Materials 2024, 36 (13) https://doi.org/10.1002/adma.202310248
    8. Youngmin Han, Subin Lee, Minseo Kim, Wonjun Shin, Ho kyung Lee, Ryun‐Han Koo, Sung‐Tae Lee, Chang‐Hyun Kim, Hocheon Yoo. Charge Transport Advancement in Anti‐Ambipolar Transistors: Spatially Separating Layer Sandwiched between N‐Type Metal Oxides and P‐Type Small Molecules. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202316217
    9. Haiwa Zhang, Guozhao Zhang, Shouxin Cui, Haocheng Feng, Lin Chen, Qinglin Wang, Qian Li, Yinwei Li, Cailong Liu. Pressure‐Induced Enhancement of Photoluminescence and Photocurrent in Organic Semiconductor Rubrene. Advanced Optical Materials 2024, 139 https://doi.org/10.1002/adom.202302970
    10. Sk Md Obaidulla, Antonio Supina, Sherif Kamal, Yahya Khan, Marko Kralj. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. Nanoscale Horizons 2023, 9 (1) , 44-92. https://doi.org/10.1039/D3NH00310H
    11. Sang-hun Lee, Taek Joon Kim, Eunji Lee, Dayeong Kwon, Jeongyong Kim, Jinsoo Joo. Observation of aligned dipoles and angular chromism of exciplexes in organic molecular heterostructures. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42976-y
    12. Muhammad Abubakr, Ehsan Elahi, Shania Rehman, A. Dahshan, Muhammad Asghar Khan, Muhammad Rabeel, Zeesham Abbas, Muhammad Faheem Maqsood, Malik Abdul Rehman, Jonghwa Eom, Sungho Kim, Deok-kee Kim, Muhammad Farooq Khan. Innovations in self-powered nano-photonics of emerging and flexible two-dimensional materials. Materials Today Physics 2023, 39 , 101285. https://doi.org/10.1016/j.mtphys.2023.101285
    13. Youngmin Han, Chang-Hyun Kim, Hocheon Yoo. Charge transport in organic heterojunction transistors using small-molecule P-type-to-P-type semiconductors: An experimental and theoretical analysis. Organic Electronics 2023, 122 , 106921. https://doi.org/10.1016/j.orgel.2023.106921
    14. Kyu Hyun Choi, Sang-hun Lee, Taek Joon Kim, Su Hong Park, Jeongyong Kim, Dong Hoon Choi, Jinsoo Joo. Dual functions of light-emission and light-harvesting using organic donor and acceptor co-deposition. Organic Electronics 2023, 121 , 106876. https://doi.org/10.1016/j.orgel.2023.106876
    15. Xiaotong Zhao, Yinxiao Du, Wei Li, Zebi Zhao, Ming Lei. Organic/inorganic hybrids for intelligent sensing and wearable clean energy applications. Advanced Composites and Hybrid Materials 2023, 6 (5) https://doi.org/10.1007/s42114-023-00751-z
    16. Simran Shahi, Asma Ahmed, Ruizhe Yang, Anthony Cabanillas, Anindita Chakravarty, Maomao Liu, Hemendra Nath Jaiswal, Yu Fu, Yutong Guo, Satyajeetsinh Shaileshsin Jadeja, Hariharan Murugesan, Anthony Butler, Chu Te Chen, Joel Muhigirwa, Mohamed Enaitalla, Jun Liu, Fei Yao, Huamin Li. Plasma-induced energy band evolution for two-dimensional heterogeneous anti-ambipolar transistors. Journal of Vacuum Science & Technology B 2023, 41 (5) https://doi.org/10.1116/6.0002888
    17. Roshan Jesus Mathew, Kai‐Hsiang Cheng, Christy Roshini Paul Inbaraj, Raman Sankar, Xuan P.A. Gao, Yit‐Tsong Chen. An Anti‐Ambipolar Cryo‐Phototransistor. Advanced Electronic Materials 2023, 9 (8) https://doi.org/10.1002/aelm.202300095
    18. Yongsu Lee, Hyeon Jun Hwang, Byoung Hun Lee. Demonstration of frequency doubler application using ZnO-DNTT anti-ambipolar switch device. 2023, 1-4. https://doi.org/10.1109/ICMTS55420.2023.10094079
    19. Jenna A. Tan, Jordan T. Dull, Steven E. Zeltmann, Jakhangirkhodja A. Tulyagankhodjaev, Holly M. Johnson, Alex Liebman‐Peláez, Brendan D. Folie, Sven A. Dönges, Omar Khatib, Jonathan G. Raybin, Trevor D. Roberts, Leo M. Hamerlynck, Christian P. N. Tanner, Jina Lee, Colin Ophus, Karen C. Bustillo, Markus B. Raschke, Hendrik Ohldag, Andrew M. Minor, Barry P. Rand, Naomi S. Ginsberg. Multimodal Characterization of Crystal Structure and Formation in Rubrene Thin Films Reveals Erasure of Orientational Discontinuities. Advanced Functional Materials 2023, 33 (13) https://doi.org/10.1002/adfm.202207867
    20. Baoyu Wang, Jr-Hau He, Bin Yu, Xin He, Fei Xue. Piezoelectricity-modulated optical recombination dynamics of monolayer-MoS 2 /GaN-film heterostructures. Nanoscale 2023, 15 (5) , 2036-2043. https://doi.org/10.1039/D2NR05850B
    21. Joshua J. P. Thompson, Victoria Lumsargis, Maja Feierabend, Quichen Zhao, Kang Wang, Letian Dou, Libai Huang, Ermin Malic. Interlayer exciton landscape in WS 2 /tetracene heterostructures. Nanoscale 2023, 15 (4) , 1730-1738. https://doi.org/10.1039/D2NR02055F
    22. Liang-Rui Zou, Dan-Dan Sang, Yu Yao, Xue-Ting Wang, Yuan-Yuan Zheng, Nai-Zhou Wang, Cong Wang, Qing-Lin Wang. Research progress of optoelectronic devices based on two-dimensional MoS2 materials. Rare Metals 2023, 42 (1) , 17-38. https://doi.org/10.1007/s12598-022-02113-y
    23. Yoshitaka Shingaya, Amir Zulkefli, Takuya Iwasaki, Ryoma Hayakawa, Shu Nakaharai, Kenji Watanabe, Takashi Taniguchi, Yutaka Wakayama. Dual‐Gate Anti‐Ambipolar Transistor with Van der Waals ReS 2 /WSe 2 Heterojunction for Reconfigurable Logic Operations. Advanced Electronic Materials 2023, 9 (1) https://doi.org/10.1002/aelm.202200704
    24. Junyi Zhu, Takehiko Mori. Output and Negative‐Region Characteristics in Organic Anti‐Ambipolar Transistors. Advanced Electronic Materials 2023, 9 (1) https://doi.org/10.1002/aelm.202200783
    25. Yutaka Wakayama, Chang-Hyun Kim, Debdatta Panigrahi, Ryoma Hayakawa. Recent progress in organic antiambipolar transistor development: fundamentals and applications. Materials Advances 2022, 3 (13) , 5260-5273. https://doi.org/10.1039/D1MA01206A
    26. Yuhan Kong, Sk Md Obaidulla, Mohammad Rezwan Habib, Zukun Wang, Rong Wang, Yahya Khan, Haiming Zhu, Mingsheng Xu, Deren Yang. Interlayer exciton emission in a MoS 2 /VOPc inorganic/organic van der Waals heterostructure. Materials Horizons 2022, 9 (4) , 1253-1263. https://doi.org/10.1039/D1MH01622A
    27. Pravinraj Selvaraj, Po-Yin Li, Mareena Antony, Yu-Wu Wang, Jyh-Pin Chou, Zhi-Hao Chen, Che-Ju Hsu, Chi-Yen Huang. Rubbing-free liquid crystal electro-optic device based on organic single-crystal rubrene. Optics Express 2022, 30 (6) , 9521. https://doi.org/10.1364/OE.454130
    28. Yu-Han Kong, Rong Wang, Ming-Sheng Xu, , . Photoluminescence properties of CuPc/MoS<sub>2</sub> van der Waals heterostructure. Acta Physica Sinica 2022, 71 (12) , 128103. https://doi.org/10.7498/aps.71.20220132
    29. Sang-Hoo Cho, Hanbyeol Jang, Heungsoon Im, Donghyeon Lee, Je-Ho Lee, Kenji Watanabe, Takashi Taniguchi, Maeng-Je Seong, Byoung Hun Lee, Kayoung Lee. Bias-controlled multi-functional transport properties of InSe/BP van der Waals heterostructures. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-87442-1
    30. Samira Naserian, Mohammad Izadyar, Foroogh Arkan. Insight into the semiconducting performance of tetraphenyldipyranylidene derivatives in organic field‐effect transistors. International Journal of Quantum Chemistry 2021, 121 (16) https://doi.org/10.1002/qua.26678
    31. Chang‐Hyun Kim, Hocheon Yoo. Identifying Key Transport Mechanisms in Organic Antiambipolar Transistors. Advanced Electronic Materials 2021, 7 (8) https://doi.org/10.1002/aelm.202100167
    32. Si Liu, Hongnan Wu, Xiaotao Zhang, Wenping Hu. Research progress of rubrene as an excellent multifunctional organic semiconductor. Frontiers of Physics 2021, 16 (1) https://doi.org/10.1007/s11467-020-0993-1
    33. A. Y. Avdizhiyan, S. D. Lavrov, D. A. Abdullaev, A. P. Shestakova, L. L. Kulyuk, E. D. Mishina. Tunable Spectral Properties of Photodetectors Based on Quaternary Transition Metal Dichalcogenide Alloys Mo x W (1-x) Se 2y S 2(1-y). IEEE Sensors Journal 2021, 21 (1) , 325-330. https://doi.org/10.1109/JSEN.2020.3012876
    34. Fengjing Liu, Yiwei Zhang, Jiawei Wang, Yiyi Chen, Liang Wang, Gongtang Wang, Ji Dong, Chao Jiang. MoS 2 /pentacene hybrid complementary inverter based photodetector with amplified voltage–output. Nanotechnology 2021, 32 (1) , 015203. https://doi.org/10.1088/1361-6528/abb9da
    35. Debdatta Panigrahi, Ryoma Hayakawa, Kota Fuchii, Yoichi Yamada, Yutaka Wakayama. Optically Controlled Ternary Logic Circuits Based on Organic Antiambipolar Transistors. Advanced Electronic Materials 2021, 7 (1) https://doi.org/10.1002/aelm.202000940
    36. Zi Wang, Lizhen Huang, Lifeng Chi. Organic Semiconductor Field-Effect Transistors Based on Organic-2D Heterostructures. Frontiers in Materials 2020, 7 https://doi.org/10.3389/fmats.2020.00295
    37. Ke Pei, Fakun Wang, Wei Han, Sanjun Yang, Kailang Liu, Kewei Liu, Huiqiao Li, Tianyou Zhai. Suppression of Persistent Photoconductivity of Rubrene Crystals using Gate‐Tunable Rubrene/Bi 2 Se 3 Diodes with Photoinduced Negative Differential Resistance. Small 2020, 16 (32) https://doi.org/10.1002/smll.202002312
    38. Qilin Cheng, Jinbo Pang, Dehui Sun, Jingang Wang, Shu Zhang, Fan Liu, Yuke Chen, Ruiqi Yang, Na Liang, Xiheng Lu, Yanchen Ji, Jian Wang, Congcong Zhang, Yuanhua Sang, Hong Liu, Weijia Zhou. WSe 2 2D p‐type semiconductor‐based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2 (4) , 656-697. https://doi.org/10.1002/inf2.12093
    39. Cheol-Joon Park, Hyeon Jung Park, Jun Young Kim, Sang-Hun Lee, Yongjun Lee, Jeongyong Kim, Jinsoo Joo. Photo-responsive MoS 2 /organic-rubrene heterojunction field-effect-transistor: application to photo-triggered ternary inverter. Semiconductor Science and Technology 2020, 35 (6) , 065020. https://doi.org/10.1088/1361-6641/ab843a
    40. Yutaka Wakayama, Ryoma Hayakawa. Antiambipolar Transistor: A Newcomer for Future Flexible Electronics. Advanced Functional Materials 2020, 30 (20) https://doi.org/10.1002/adfm.201903724
    41. Jianghong Liu, Jie Liu, Jing Zhang, Chunlei Li, Qiuhong Cui, Feng Teng, Hongxiang Li, Lang Jiang. High-performance n- and p-type organic single-crystal field-effect transistors with an air-gap dielectric towards anti-ambipolar transport. Journal of Materials Chemistry C 2020, 8 (13) , 4303-4308. https://doi.org/10.1039/D0TC00546K
    42. Pratik M. Pataniya, Chetan K. Zankat, Mohit Tannarana, Abhishek Patel, Som Narayan, G.K. Solanki, K.D. Patel, Prafulla K. Jha, V.M. Pathak. Photovoltaic activity of WSe2/Si hetero junction. Materials Research Bulletin 2019, 120 , 110602. https://doi.org/10.1016/j.materresbull.2019.110602
    43. Jiangtao Liu, Menghui Fan, Kun Luo, Qin Yang, Jun Li, Zhenhua Wu. Two-Dimensional Heterojunction Photovoltaic Cells with Low Spontaneous-Radiation Loss and High Efficiency Limit. Physical Review Applied 2019, 12 (3) https://doi.org/10.1103/PhysRevApplied.12.034023
    44. Jia Sun, Yongsuk Choi, Young Jin Choi, Seongchan Kim, Jin‐Hong Park, Sungjoo Lee, Jeong Ho Cho. 2D–Organic Hybrid Heterostructures for Optoelectronic Applications. Advanced Materials 2019, 31 (34) https://doi.org/10.1002/adma.201803831
    45. Jiwon Shin, Kyungjune Cho, Tae-Young Kim, Jinsu Pak, Jae-Keun Kim, Woocheol Lee, Jaeyoung Kim, Seungjun Chung, Woong-Ki Hong, Takhee Lee. Dose-dependent effect of proton irradiation on electrical properties of WSe 2 ambipolar field effect transistors. Nanoscale 2019, 11 (29) , 13961-13967. https://doi.org/10.1039/C9NR03345A
    46. Rongjie Zhang, Xinli Ma, Chunhua An, Daihua Zhang, Dong Sun, Xiaodong Hu, Jing Liu. Self-powered photodetector based on vertical MoO 3 /MoS 2 hetero-structure with gate tunable photo-response. 2D Materials 2019, 6 (3) , 035033. https://doi.org/10.1088/2053-1583/ab1ce7
    47. Jinsoo Joo, Cheol-Joon Park, Hyeon Jung Park, Taeho Noh, Kwang-Sup Lee, Jeongyong Kim. Optical Characteristics of Hybrid-Nanostructures Using 2D Semiconductors and Applications to Photo-Triggered Field-Effect-Transistors and Sensitive Photodetectors. 2019, NoW2B.5. https://doi.org/10.1364/NOMA.2019.NoW2B.5

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect