ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Revisiting Cr3+-Doped Bi2Ga4O9 Spectroscopy: Crystal Field Effect and Optical Thermometric Behavior of Near-Infrared-Emitting Singly-Activated Phosphors

Cite this: ACS Appl. Mater. Interfaces 2018, 10, 48, 41512–41524
Publication Date (Web):October 31, 2018
https://doi.org/10.1021/acsami.8b15607
Copyright © 2018 American Chemical Society

    Article Views

    2510

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The increasing interest in the development of ratiometric optical thermal sensors has led to a wide variety of new systems with promising properties. Among them, singly-doped ratiometric thermometers were recently demonstrated to be particularly reliable. With the aim to discuss the development of an ideal optical thermal sensor, a combined experimental and theoretical insight into the spectroscopy of the Bi2Ga4O9:Cr3+ system is reported showing the importance of an insightful analysis in a wide temperature range. Low-temperature photoluminescence analysis (from 10 K) and the temperature dependence of the lifetime investigation, together with the crystal field analysis and the modeling of the thermal quenching process, allow the estimation of key parameters such as the Debye temperature (cutoff frequency), the Huang–Rhys parameter, and the energy barrier between 2Eg and 4T2g. Additionally, by considering the reliable class of singly-doped ratiometric thermometers based on a couple of excited states obeying the Boltzmann law, the important role played by the absolute sensitivity was discussed and the great potential of Cr3+ singly-activated systems was demonstrated. The results may provide new guidelines for the design of reliable optical thermometers with outstanding and robust performances.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b15607.

    • Additional details on the CF calculation; experimental details such as XRPD patterns, PLE spectrum deconvolution analysis, and PL spectrum collected at 10 K; and supporting data summarizing the Judd–Ofelt parameters, the radiative rate ratio, and the estimated D parameters for a series of Er3+-, Nd3+-, and Cr3+-activated phosphors (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 125 publications.

    1. Hiroyuki Kurahashi, Masakazu Umezawa, Kyohei Okubo, Kohei Soga. Pixel Screening in Lifetime-Based Temperature Mapping Using β-NaYF4:Nd3+,Yb3+ by Time-Gated Near-Infrared Fluorescence Imaging on Deep Tissue in Live Mice. ACS Applied Bio Materials 2024, Article ASAP.
    2. Natalia Majewska, Yi-Ting Tsai, Xiang-Yun Zeng, Mu-Huai Fang, Sebastian Mahlik. Advancing Near-Infrared Light Sources: Enhancing Chromium Emission through Cation Substitution in Ultra-Broadband Near-Infrared Phosphors. Chemistry of Materials 2023, 35 (23) , 10228-10237. https://doi.org/10.1021/acs.chemmater.3c02466
    3. Natalia Majewska, Alfonso Muñoz, Ru-Shi Liu, Sebastian Mahlik. Influence of Chemical and Mechanical Pressure on the Luminescence Properties of Near-Infrared Phosphors. Chemistry of Materials 2023, 35 (12) , 4680-4690. https://doi.org/10.1021/acs.chemmater.3c00203
    4. Veeramani Rajendran, Wen-Tse Huang, Kuan-Chun Chen, Da-Hua Wei, Ho Chang, Ru-Shi Liu. Shortwave Infrared Luminescence of Tetravalent Chromium and Divalent Nickel: Phosphor Design Principles and Applications. ACS Applied Optical Materials 2023, 1 (6) , 1063-1079. https://doi.org/10.1021/acsaom.2c00182
    5. Liwen Zheng, Jianlong Kuang, Jiangxu Shen, Huajun Wu, Hao Wu, Yongshi Luo, Guo-Hui Pan, Zhendong Hao, Liangliang Zhang, Jiahua Zhang. Spectral Broadening in Cr3+-Doped Sr0.92Mg0.91Al10.1O17 NIR Phosphor Realized by Multi-crystallographic Site Occupation. ACS Applied Optical Materials 2023, 1 (6) , 1150-1155. https://doi.org/10.1021/acsaom.3c00086
    6. Michele Back, Jian Xu, Jumpei Ueda, Alvise Benedetti, Setsuhisa Tanabe. Thermochromic Narrow Band Gap Phosphors for Multimodal Optical Thermometry: The Case of Y3+-Stabilized β-Bi2O3:Nd3+. Chemistry of Materials 2022, 34 (18) , 8198-8206. https://doi.org/10.1021/acs.chemmater.2c01262
    7. Tao Tan, Shangwei Wang, Jiangyue Su, Weihong Yuan, Haiyan Wu, Ran Pang, Jiutian Wang, Chengyu Li, Hongjie Zhang. Design of a Novel Near-Infrared Luminescence Material Li2Mg3TiO6:Cr3+ with an Ultrawide Tuning Range Applied to Near-Infrared Light-Emitting Diodes. ACS Sustainable Chemistry & Engineering 2022, 10 (12) , 3839-3850. https://doi.org/10.1021/acssuschemeng.1c07054
    8. Michele Back, Jumpei Ueda, Hansen Hua, Setsuhisa Tanabe. Predicting the Optical Pressure Sensitivity of 2E → 4A2 Spin-Flip Transition in Cr3+-Doped Crystals. Chemistry of Materials 2021, 33 (9) , 3379-3385. https://doi.org/10.1021/acs.chemmater.1c00678
    9. Michele Back, Elisa Casagrande, Enrico Trave, Davide Cristofori, Emmanuele Ambrosi, Federico Dallo, Marco Roman, Jumpei Ueda, Jian Xu, Setsuhisa Tanabe, Alvise Benedetti, Pietro Riello. Confined-Melting-Assisted Synthesis of Bismuth Silicate Glass-Ceramic Nanoparticles: Formation and Optical Thermometry Investigation. ACS Applied Materials & Interfaces 2020, 12 (49) , 55195-55204. https://doi.org/10.1021/acsami.0c17897
    10. Michele Back, Jumpei Ueda, Mikhail G. Brik, Setsuhisa Tanabe. Pushing the Limit of Boltzmann Distribution in Cr3+-Doped CaHfO3 for Cryogenic Thermometry. ACS Applied Materials & Interfaces 2020, 12 (34) , 38325-38332. https://doi.org/10.1021/acsami.0c08965
    11. Peipei Dang, Dongjie Liu, Yi Wei, Guogang Li, Hongzhou Lian, Mengmeng Shang, Jun Lin. Highly Efficient Cyan-Green Emission in Self-Activated Rb3RV2O8 (R = Y, Lu) Vanadate Phosphors for Full-Spectrum White Light-Emitting Diodes (LEDs). Inorganic Chemistry 2020, 59 (9) , 6026-6038. https://doi.org/10.1021/acs.inorgchem.0c00015
    12. Dongjie Liu, Xiaohan Yun, Peipei Dang, Hongzhou Lian, Mengmeng Shang, Guogang Li, Jun Lin. Yellow/Orange-Emitting ABZn2Ga2O7:Bi3+(A = Ca, Sr; B = Ba, Sr) Phosphors: Optical Temperature Sensing and White Light-Emitting Diode Applications. Chemistry of Materials 2020, 32 (7) , 3065-3077. https://doi.org/10.1021/acs.chemmater.0c00054
    13. Michele Back, Elisa Casagrande, Carlo A. Brondin, Emmanuele Ambrosi, Davide Cristofori, Jumpei Ueda, Setsuhisa Tanabe, Enrico Trave, Pietro Riello. Lanthanide-Doped Bi2SiO5@SiO2 Core–Shell Upconverting Nanoparticles for Stable Ratiometric Optical Thermometry. ACS Applied Nano Materials 2020, 3 (3) , 2594-2604. https://doi.org/10.1021/acsanm.0c00003
    14. Yibo Chen, Jin He, Xinguo Zhang, Mingcong Rong, Zhiguo Xia, Jing Wang, Zhao-Qing Liu. Dual-Mode Optical Thermometry Design in Lu3Al5O12:Ce3+/Mn4+ Phosphor. Inorganic Chemistry 2020, 59 (2) , 1383-1392. https://doi.org/10.1021/acs.inorgchem.9b03107
    15. Michele Back, Jumpei Ueda, Jian Xu, Daisuke Murata, Mikhail G. Brik, Setsuhisa Tanabe. Ratiometric Luminescent Thermometers with a Customized Phase-Transition-Driven Fingerprint in Perovskite Oxides. ACS Applied Materials & Interfaces 2019, 11 (42) , 38937-38945. https://doi.org/10.1021/acsami.9b13010
    16. Michele Back, Jumpei Ueda, Emmanuele Ambrosi, Lorenzo Cassandro, Davide Cristofori, Riccardo Ottini, Pietro Riello, Gabriele Sponchia, Kazuki Asami, Setsuhisa Tanabe, Enrico Trave. Lanthanide-Doped Bismuth-Based Fluoride Nanocrystalline Particles: Formation, Spectroscopic Investigation, and Chemical Stability. Chemistry of Materials 2019, 31 (20) , 8504-8514. https://doi.org/10.1021/acs.chemmater.9b03164
    17. Michele Back, Jumpei Ueda, Jian Xu, Kazuki Asami, Lucia Amidani, Enrico Trave, Setsuhisa Tanabe. Uncovering the Origin of the Emitting States in Bi3+-Activated CaMO3 (M = Zr, Sn, Ti) Perovskites: Metal-To-Metal Charge Transfer Versus s–p Transitions. The Journal of Physical Chemistry C 2019, 123 (23) , 14677-14688. https://doi.org/10.1021/acs.jpcc.9b03940
    18. Aleksandar Ćirić, Milica Maričić, Zoran Ristić, Tamara Gavrilović, Mina Medić, Miroslav D. Dramićanin. Remote optical thermometry by two-dimensional LiAl5O8:Cr3+ luminescence sensor probe. Current Applied Physics 2024, 64 , 48-56. https://doi.org/10.1016/j.cap.2024.05.013
    19. Ligan Ma, Rongfei Wei, Qingqing Yu, Peican Dai, Xiangling Tian, Fangfang Hu, Hai Guo. Improved broadband luminescence in Gd2GaSb1-Ta O7:Cr3+,Yb3+ pyrochlore phosphors: Near-infrared spectroscopic applications and dual-mode optical thermometry. Materials Today Chemistry 2024, 38 , 102090. https://doi.org/10.1016/j.mtchem.2024.102090
    20. L. Marciniak, W.M. Piotrowski, M. Szymczak, M. Drozd, V. Kinzhybalo, M. Back. Customizing thermometry: Optimizing the operating temperature range of phase transition-based ratiometric luminescence thermometers. Chemical Engineering Journal 2024, 487 , 150363. https://doi.org/10.1016/j.cej.2024.150363
    21. Xin Xie, Wanyin Ge, Qian Zhang, Peng He, Honglei Yin, Zhifu Liu. High external quantum yield in near-infrared phosphor Bi2Ga4O9:Cr3+ excited by near-ultraviolet or blue light. Journal of Luminescence 2024, 268 , 120426. https://doi.org/10.1016/j.jlumin.2023.120426
    22. Shuo Yang, Wenzhi Sun, Zhifei He, Qinfeng Xu, Shufang Zhang, Chuanlu Yang, Mengmeng Jiao. Photoluminescence property, energy transfer mechanism, and optical thermometric behavior of bismuth-europium codoped disordered melilite-type phosphor. Journal of Alloys and Compounds 2024, 980 , 173622. https://doi.org/10.1016/j.jallcom.2024.173622
    23. Mohit Kumar, Mukesh K. Sahu, Sumandeep Kaur, Aman Prasad, Rajat Bajaj, Rupesh A. Talewar, Yasha Tayal, K. Swapna, A. S. Rao. Visible and NIR spectral analysis of Er3+ doped LiBiAlBSi glasses for laser applications. Journal of Materials Science: Materials in Electronics 2024, 35 (7) https://doi.org/10.1007/s10854-024-12281-5
    24. Yingying Ma, Ting Wen, Ke Liu, Chen Li, Dequan Jiang, En Chen, Tianyao Pei, Chuanlong Lin, Yonggang Wang. Crystal-field regulation enables broadband-to-line emission switching in Cr 3+ -activated pyroxenes. Journal of Materials Chemistry C 2024, 12 (7) , 2379-2390. https://doi.org/10.1039/D3TC04124G
    25. Xujun Qiu, Teng Zheng, Marcin Runowski, Przemysław Woźny, Inocencio R. Martín, Kevin Soler‐Carracedo, Claudia Espinosa Piñero, Sergei Lebedkin, Olaf Fuhr, Stefan Bräse. Constructing [2.2]Paracyclophane‐Based Ultrasensitive Optical Fluorescent‐Phosphorescent Thermometer with Cucurbit[8]uril Supramolecular Assembly. Advanced Functional Materials 2024, 415 https://doi.org/10.1002/adfm.202313517
    26. S.W. Wi, Y.S. Lee. Effect of Eu3+, Bi3+, and Li+ doping on luminescent property of GdNbO4. Journal of Rare Earths 2024, 42 (1) , 66-75. https://doi.org/10.1016/j.jre.2022.10.008
    27. Yuki Kamada, Ryusei Hayasaka, Kento Uchida, Taisei Suzuki, Takahiro Takei, Mamoru Kitaura, Hiroko Kominami, Kazuhiko Hara, Yuta Matsushima. Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials 2024, 17 (2) , 338. https://doi.org/10.3390/ma17020338
    28. Wojciech M. Piotrowski, Łukasz Marciniak. Advanced Luminescence Applications of 3d3 Transition Metal Ions. 2024https://doi.org/10.2139/ssrn.4803195
    29. Xiangyi Dai, Xikun Zou, Mengqi Lyu, Mingkai Wei, Ziyi Wang, Xiaoyu Shuang, Xuejie Zhang, Bin Dong, Xinming Li, Yan Cong, Mingtao Zheng, Maxim Molokeev, Bingfu Lei. Efficient and Thermally Stable Cr3+-Doped Phosphor Achieved by Cation Substitution: Plant Lighting Application. 2024https://doi.org/10.2139/ssrn.4820511
    30. Guohui Wei, Panlai Li, Rui Li, Ye Wang, Shaoxuan He, Jiehong Li, Yawei Shi, Hao Suo, Yuanbo Yang, Zhijun Wang. How to Achieve Excellent Luminescence Properties of Cr Ion‐Doped Near‐Infrared Phosphors. Advanced Optical Materials 2023, 11 (24) https://doi.org/10.1002/adom.202301794
    31. K. Elzbieciak-Piecka, M. Sójka, F. Tian, J. Li, E. Zych, L. Marciniak. The comparison of the thermometric performance of optical ceramics, microcrystals and nanocrystals of Cr3+- doped Gd3Ga5O12 garnets. Journal of Alloys and Compounds 2023, 963 , 171284. https://doi.org/10.1016/j.jallcom.2023.171284
    32. Ganggang Guo, Qiong Xi, Tao Yin, Jianju Nie, Yayuan Zhang, Li Guan, Zhenyang Liu, Fenghe Wang, Xu Li. Ultra-broadband near-infrared phosphor La2CaTa Zr(1-)O6:Cr3+ for phosphor-converted light-emitting diodes. Journal of Alloys and Compounds 2023, 965 , 171459. https://doi.org/10.1016/j.jallcom.2023.171459
    33. Xiaomeng Yin, Ming Qiang, Hui Lin, Dawei Zhang, Ruijin Hong, Zhaoxia Han. Effect of Ga 3+ ion doping on emission thermal stability and efficiency of MgAl 2 O 4 :Cr 3+ phosphor. Journal of the American Ceramic Society 2023, 106 (11) , 7069-7077. https://doi.org/10.1111/jace.19292
    34. Xuemei Hu, Xianggui Li, Qilin Yang, Yanqing Ye, Zhengliang Wang, Qiang Zhou, Huaijun Tang, Qin Wang. A highly thermo-stable far-red LiMgAlF6:Cr3+ phosphor for plant-growth lighting. Journal of Luminescence 2023, 263 , 120095. https://doi.org/10.1016/j.jlumin.2023.120095
    35. Gaoqiang Li, Xu Chen, Meng Wang, Shanshan Cheng, Dongwen Yang, Di Wu, Yanbing Han, Mochen Jia, Xinjian Li, Yu Zhang, Chongxin Shan, Zhifeng Shi. Regulating Exciton De‐Trapping of Te 4+ ‐Doped Zero‐Dimensional Scandium‐Halide Perovskite for Fluorescence Thermometry with Record High Time‐Resolved Thermal Sensitivity. Advanced Materials 2023, 35 (44) https://doi.org/10.1002/adma.202305495
    36. Shuaiqi Liu, Jumpei Ueda, Setsuhisa Tanabe. Ratiometric luminescent thermometry for the third bioimaging window by Er3 + doped garnet with large Stark splitting. Applied Physics Letters 2023, 123 (16) https://doi.org/10.1063/5.0168845
    37. Ana Martinović, Bojana Milićević, Jovana Periša, Zoran Ristić, Stevan Stojadinović, Miroslav D. Dramićanin, Aleksandar Ćirić. Thermometric Judd-Ofelt model for Dy3+ ion tested in CaYAlO4 host and evaluation of its sensing performances for luminescence thermometry. Physica B: Condensed Matter 2023, 666 , 415096. https://doi.org/10.1016/j.physb.2023.415096
    38. Xiao Zhu, Lei Wang, Qiufeng Shi, Haijie Guo, Jianwei Qiao, Cai’e Cui, Konstantin V. Ivanovskikh, Ping Huang. High sensitivity dual-mode ratiometric optical thermometry based on Bi3+/Mn4+ co-doped Ba2LaTaO6. Journal of Luminescence 2023, 262 , 119949. https://doi.org/10.1016/j.jlumin.2023.119949
    39. Guanyu Cai, Luidgi Giordano, Cyrille Richard, Bruno Viana. Effect of the Elaboration Method on Structural and Optical Properties of Zn1.33Ga1.335Sn0.33O4:0.5%Cr3+ Persistent Luminescent Nanomaterials. Nanomaterials 2023, 13 (15) , 2175. https://doi.org/10.3390/nano13152175
    40. Shuyang Chen, Jianhua Lin, Mingxiao Han, Jie Li, Qihao Zhang, YanLing Chen, Yinuo Wen, Jie Fu, Degang Deng, Liang Chen. Broadband near-infrared emitting Cr3+-activated InGaO3(ZnO)4 phosphor and its application in pc-LEDs. Materials Research Bulletin 2023, 164 , 112280. https://doi.org/10.1016/j.materresbull.2023.112280
    41. Weitao Ying, Jingyi He, Xuemei Fan, Shiqing Xu, Jianmin Gu, Shimin Liu. Ultrahigh sensitivity upconversion low temperature sensors via manipulating the non-thermally coupled levels of Er 3+ ions. Journal of Materials Chemistry C 2023, 11 (26) , 8758-8766. https://doi.org/10.1039/D3TC01062G
    42. Xihui Shan, Michele Back, Dongxun Chen, Shihai Miao, Ruiqi Shi, Yanjie Liang. A reliable and stable ratiometric luminescence thermometer based on dual near-infrared emission in a Cr 3+ -doped LaSr 2 Ga 11 O 20 phosphor. Journal of Materials Chemistry C 2023, 11 (26) , 8952-8960. https://doi.org/10.1039/D3TC01232H
    43. Qiuhong Zhang, Xiang Wei, Jianbang Zhou, Bojana Milićević, Litian Lin, Jiansheng Huo, Junhao Li, Haiyong Ni, Zhiguo Xia. Thermal Stability Improvement of Cr 3+ ‐Activated Broadband Near‐Infrared Phosphors via State Population Optimization. Advanced Optical Materials 2023, 11 (14) https://doi.org/10.1002/adom.202300310
    44. Juling Long, Yamin Xu, Kang Cheng, Xinyue Liu, Weichao Huang, Chaoyong Deng. A novel multifunctional double perovskite structure phosphor La2MgTiO6:Mn4+, Eu3+. Optical Materials 2023, 141 , 113967. https://doi.org/10.1016/j.optmat.2023.113967
    45. Xiao-Xuan Wu, Min Cheng. Analyses of the R 1 -line thermal shifts for Bi 2 Al 4 O 9 : Cr 3+ and Bi 2 Ga 4 O 9 : Cr 3+ crystals with a complete equation. Philosophical Magazine 2023, 103 (12) , 1191-1197. https://doi.org/10.1080/14786435.2023.2189320
    46. Wen‐Tse Huang, Veeramani Rajendran, Ming‐Hsien Chan, Michael Hsiao, Ho Chang, Ru‐Shi Liu. Near‐Infrared Windows I and II Phosphors for Theranostic Applications: Spectroscopy, Bioimaging, and Light‐Emitting Diode Photobiomodulation. Advanced Optical Materials 2023, 11 (11) https://doi.org/10.1002/adom.202202061
    47. Quansheng Wu, Xufeng Zhou, Shanshan Ye, Jianyan Ding. Visual ratiometric optical thermometer with high sensitivity and excellent signal discriminability based on LiScSiO4:Ce3+, Tb3+ thermochromic phosphor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 294 , 122534. https://doi.org/10.1016/j.saa.2023.122534
    48. Yuefang Qin, Jiyou Zhong, Fu Du, Jun Wen, Zhiru Lin, Weiren Zhao. Tunable broadband near-infrared emission in LiScO2:Cr3+ phosphor induced by the variation of chromium ion concentration. Journal of Luminescence 2023, 257 , 119758. https://doi.org/10.1016/j.jlumin.2023.119758
    49. Rui Li, Guohui Wei, Zhijun Wang, Ye Wang, Jiehong Li, Shaoxuan He, Leipeng Li, Hao Suo, Wenge Ding, Panlai Li. Cr 3+ ‐Facilitated Ultra‐Sensitive Luminescence Ratiometric Thermometry at Cryogenic Temperature. Laser & Photonics Reviews 2023, 17 (3) https://doi.org/10.1002/lpor.202200589
    50. Guoyi Dong, Kexin Zhang, Mengrui Dong, Xiangxiang Li, Zhenyang Liu, Lei Zhang, Nian Fu, Li Guan, Xu Li, Fenghe Wang. Effect of Sr 2+ ions on the structure, up-conversion emission and thermal sensing of Er 3+ , Yb 3+ co-doped double perovskite Ba (2− x ) Sr x MgWO 6 phosphors. Physical Chemistry Chemical Physics 2023, 25 (8) , 6214-6224. https://doi.org/10.1039/D2CP05190G
    51. Peipei Dang, Yi Wei, Dongjie Liu, Guogang Li, Jun Lin. Recent Advances in Chromium‐Doped Near‐Infrared Luminescent Materials: Fundamentals, Optimization Strategies, and Applications. Advanced Optical Materials 2023, 11 (3) https://doi.org/10.1002/adom.202201739
    52. Wojciech M. Piotrowski, Riccardo Marin, Maja Szymczak, Emma Martín Rodríguez, Dirk H. Ortgies, Paloma Rodríguez‐Sevilla, Miroslav D. Dramićanin, Daniel Jaque, Lukasz Marciniak. Mn 5+ Lifetime‐Based Thermal Imaging in the Optical Transparency Windows Through Skin‐Mimicking Tissue Phantom. Advanced Optical Materials 2023, 11 (3) https://doi.org/10.1002/adom.202202366
    53. Masakazu Umezawa, Hiroyuki Kurahashi, Karina Nigoghossian, Kyohei Okubo, Kohei Soga. Designing Er3+/Ho3+-Doped Near-Infrared (NIR-II) Fluorescent Ceramic Particles for Avoiding Optical Absorption by Water. Journal of Photopolymer Science and Technology 2022, 35 (1) , 9-16. https://doi.org/10.2494/photopolymer.35.9
    54. S.J. Gai, C. Zhou, L. Peng, M.H. Wu, P.X. Gao, L.J. Su, M.S. Molokeev, Z. Zhou, M. Xia. A novel Cr3+-doped stannate far red phosphor for plant lighting: structure evolution, broad-narrow spectrum tuning and application prospect. Materials Today Chemistry 2022, 26 , 101107. https://doi.org/10.1016/j.mtchem.2022.101107
    55. K. Elzbieciak-Piecka, L. Marciniak. Optical heating and luminescence thermometry combined in a Cr3+-doped YAl3(BO3)4. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-20821-4
    56. Fangyi Zhao, Zhen Song, Quanlin Liu. Advances in Chromium‐Activated Phosphors for Near‐Infrared Light Sources. Laser & Photonics Reviews 2022, 16 (11) https://doi.org/10.1002/lpor.202200380
    57. Thorsten M. Gesing, M. Mangir Murshed, Selina Schuh, Oliver Thüringer, Konrad Krämer, Tim Neudecker, Cecilia B. Mendive, Lars Robben. Nano-crystalline precursor formation, stability, and transformation to mullite-type visible-light photocatalysts. Journal of Materials Science 2022, 57 (41) , 19280-19299. https://doi.org/10.1007/s10853-022-07854-w
    58. L. Marciniak, K. Kniec, K. Elżbieciak-Piecka, K. Trejgis, J. Stefanska, M. Dramićanin. Luminescence thermometry with transition metal ions. A review. Coordination Chemistry Reviews 2022, 469 , 214671. https://doi.org/10.1016/j.ccr.2022.214671
    59. Qingyi Lv, Xiaoxi Ma, Yujuan Dong, Ying Li, Bohuai Shao, Chuqi Wang, Shuo Yang, Chuang Wang. Ratiometric optical thermometer with high-sensitive temperature sensing based on tunable luminescence of Ce3+-Eu2+ in KSr4B3O9 phosphors. Advanced Powder Technology 2022, 33 (10) , 103769. https://doi.org/10.1016/j.apt.2022.103769
    60. Song Qing, Xi Zhang, Tao Yang, Lingxiang Chu, Yayun Zhou, Jing Wan, Zhengliang Wang, Huaijun Tang, Qiang Zhou. Luminescence properties of Cr 3+ -doped near-infrared emissive fluoroyttrates for light-emitting diodes. Dalton Transactions 2022, 51 (37) , 14214-14220. https://doi.org/10.1039/D2DT02096C
    61. Shala Bi, Zutao Fan, Hyo Jin Seo. Energy transfer and temperature sensing properties of Dy3+-doped Gd10V2O20 phosphors. Materials Research Bulletin 2022, 153 , 111898. https://doi.org/10.1016/j.materresbull.2022.111898
    62. Wen Zhang, Hongda Xu, Shan Wang, Hairui Fang, Tianyi Li, Yumei Zhang, Dongfei Li, Xiangdong Meng, Changmin Hou, Long Yuan. Chromaticity coordinate vector principle for charge-transfer-type thermochromic material design: case of Fe/Cr-(co)doped α-Al 2 O 3 host. Journal of Materials Chemistry C 2022, 10 (31) , 11354-11370. https://doi.org/10.1039/D2TC02287G
    63. Shiliang Kang, Wenlong Wang, Jianrong Qiu, Zhongmin Yang, Guoping Dong. Intense continuous‐wave laser and mode‐locked pulse operation from Yb 3+ ‐doped oxyfluoride glass–ceramic fibers. Journal of the American Ceramic Society 2022, 105 (8) , 5203-5212. https://doi.org/10.1111/jace.18505
    64. Kai Sun, Xiaomeng Yin, Zhenqing Li, Hui Lin, Ruijin Hong, Dawei Zhang, Zhijun Zhang, Guanhaojie Zheng, Yuchong Ding. Far-red emitting MgAl 2 O 4 :Cr 3+ ceramic phosphors with luminescence thermal stability for plant lighting LEDs. Optical Materials Express 2022, 12 (8) , 2942. https://doi.org/10.1364/OME.463147
    65. Alexey Ryadun, Mariana I. Rakhmanova, Vyacheslav A. Trifonov, Anatoly A. Pavluk. Energy transfer in Tb 3+ - Yb 3+ doubly doped CsGd(MoO 4 ) 2 single crystals for contactless thermometry, solid-state lighting and solar cells. Materials Technology 2022, 37 (9) , 1001-1007. https://doi.org/10.1080/10667857.2021.1915055
    66. Abbi L. Mullins, Aleksandar Ćirić, Ivana Zeković, J. A. Gareth Williams, Miroslav D. Dramićanin, Ivana Radosavljević Evans. Dual-emission luminescence thermometry using LaGaO 3 :Cr 3+ , Nd 3+ phosphors. Journal of Materials Chemistry C 2022, 10 (28) , 10396-10403. https://doi.org/10.1039/D2TC02011D
    67. Lulu Lou, Shuang Zhao, Shuwen Yuan, Daoyun Zhu, Fugen Wu, Zhongfei Mu. Efficient broadband near-infrared emission induced by Nb 5+ substitution for Ta 5+ in GaTa 1− y Nb y O 4 :Cr 3+ phosphor. Inorganic Chemistry Frontiers 2022, 9 (14) , 3522-3531. https://doi.org/10.1039/D2QI00711H
    68. Q. Zhang, J. X. Deng, R. D. Li, J. X. Luo, L. Kong, J. H. Meng, H. L. Gao, Q. Q. Yang, G. S. Wang, X. L. Wang, J. Y. Wang. Study on the structure and properties of gallium bismuth oxide alloy thin films prepared by sol-gel method. Journal of Sol-Gel Science and Technology 2022, 103 (1) , 280-289. https://doi.org/10.1007/s10971-022-05784-2
    69. Mantas Norkus, Ramūnas Skaudžius. Enhanced NIR region emission of chromium by changing the chromium concentration in yttrium aluminum garnet (YAG) host matrix. Journal of Alloys and Compounds 2022, 908 , 164601. https://doi.org/10.1016/j.jallcom.2022.164601
    70. Shuai He, Liangliang Zhang, Jingnan Zhang, Zhendong Hao, Hao Wu, Huajun Wu, Yongshi Luo, Guohui Pan, Feng Liu, Jiahua Zhang. Cr3+ and Nd3+ co-activated garnet phosphor for NIR super broadband pc-LED application. Materials Research Bulletin 2022, 151 , 111797. https://doi.org/10.1016/j.materresbull.2022.111797
    71. Karamjyoti Panigrahi, Kalyan Kumar Chattopadhyay. Ratiometric temperature sensing and molecular logic AND gate execution via Eu3+ doped BaWO4 nanophosphor. Journal of Luminescence 2022, 247 , 118883. https://doi.org/10.1016/j.jlumin.2022.118883
    72. W.M. Piotrowski, Z. Ristic, M.D. Dramićanin, Ł. Marciniak. Modification of the thermometric performance of the lifetime-based luminescent thermometer exploiting Ti3+ emission in SrTiO3 and CaTiO3 by doping with lanthanide ions. Journal of Alloys and Compounds 2022, 906 , 164398. https://doi.org/10.1016/j.jallcom.2022.164398
    73. Abbi L. Mullins, Aleksandar Ćirić, Zoran Ristić, J.A. Gareth Williams, Ivana Radosavljević Evans, Miroslav D. Dramićanin. Double-deconvolution method for the separation of thermalised emissions from chromium-doped lanthanum gallate and its potential in luminescence-based thermometry. Journal of Luminescence 2022, 246 , 118847. https://doi.org/10.1016/j.jlumin.2022.118847
    74. Lukasz Marciniak, Wojciech Michal Piotrowski, Marek Drozd, Vasyl Kinzhybalo, Artur Bednarkiewicz, Miroslav Dramicanin. Phase Transition‐Driven Highly Sensitive, NIR–NIR Band‐Shape Luminescent Thermometer Based on LiYO 2 :Nd 3+. Advanced Optical Materials 2022, 10 (9) https://doi.org/10.1002/adom.202102856
    75. Langping Dong, Jingshan Hou, Baiqi Shao, Shuang Zhao, Yongzheng Fang. Cr3+/Yb3+/Nd3+-doped Ba2LaGa11O20 broadband NIR phosphors for NIR pc-LED and c-Si solar cells. Optical Materials 2022, 127 , 112290. https://doi.org/10.1016/j.optmat.2022.112290
    76. Shunsuke Kozuka, Jumpei Ueda, Setsuhisa Tanabe. Multimodal deep red luminescent ratiometric thermometer of LaAlO3 doped with Mn4+. Physica B: Condensed Matter 2022, 633 , 413492. https://doi.org/10.1016/j.physb.2021.413492
    77. Cheng Zhou, Lu Peng, Zihui Kong, Meihan Wu, Maxim S. Molokeev, Zhi Zhou, Jing Wang, Mao Xia. A high thermal stability Cr 3+ -doped gallate far red phosphor for plant lighting: structure, luminescence enhancement and application prospect. Journal of Materials Chemistry C 2022, 10 (15) , 5829-5839. https://doi.org/10.1039/D2TC00614F
    78. Chuanlong Wang, Yahong Jin, Ruiting Zhang, Qing Yao, Yihua Hu. A review and outlook of ratiometric optical thermometer based on thermally coupled levels and non-thermally coupled levels. Journal of Alloys and Compounds 2022, 894 , 162494. https://doi.org/10.1016/j.jallcom.2021.162494
    79. Ehsan Elahi, Ghulam Dastgeer, Abdul Subhan Siddiqui, Supriya A. Patil, Muhammad Waqas Iqbal, Pradeep Raj Sharma. A review on two-dimensional (2D) perovskite material-based solar cells to enhance the power conversion efficiency. Dalton Transactions 2022, 51 (3) , 797-816. https://doi.org/10.1039/D1DT02991F
    80. Meiling Shi, Leqi Yao, Shijie Yu, Yan Dong, Qiyue Shao. Enhancing the temperature sensitivity of Cr 3+ emissions by modification of the host's composition for fluorescence thermometry applications. Dalton Transactions 2022, 51 (2) , 587-593. https://doi.org/10.1039/D1DT03480D
    81. Manuel Alonso‐Orts, Daniel Carrasco, José M. San Juan, María Luisa Nó, Alicia de Andrés, Emilio Nogales, Bianchi Méndez. Wide Dynamic Range Thermometer Based on Luminescent Optical Cavities in Ga 2 O 3 :Cr Nanowires. Small 2022, 18 (1) https://doi.org/10.1002/smll.202105355
    82. Aleksandar Ćirić, Zoran Ristić, Željka Antić, Miroslav D. Dramićanin. An approximate deconvolution method for the luminescence intensity ratio calculations from overlapping emissions. Physica B: Condensed Matter 2022, 624 , 413454. https://doi.org/10.1016/j.physb.2021.413454
    83. Alexey Ryadun, Mariana Rakhmanova, Veronika Grigorieva. Effect of Cu doping on properties of PbMoO 4 single crystals as materials for luminescence thermometry. Materials Technology 2021, 36 (13) , 805-810. https://doi.org/10.1080/10667857.2020.1797325
    84. Teng Zheng, Małgorzata Sójka, Marcin Runowski, Przemysław Woźny, Stefan Lis, Eugeniusz Zych. Tm 2+ Activated SrB 4 O 7 Bifunctional Sensor of Temperature and Pressure—Highly Sensitive, Multi‐Parameter Luminescence Thermometry and Manometry. Advanced Optical Materials 2021, 9 (22) https://doi.org/10.1002/adom.202101507
    85. Aleksandar Ćirić, Jovana Periša, Mina Medić, Sanja Kuzman, Zoran Ristić, Željka Antić, Miroslav D. Dramićanin. Sensitive temperature reading from intensity ratio of Cr3+ and defects’ emissions in MgTiO3:Cr3+. Ceramics International 2021, 47 (22) , 31915-31919. https://doi.org/10.1016/j.ceramint.2021.08.077
    86. X. H. Chen, E. H. Song, Y. Y. Zhou, F. Q. He, J. Q. Yang, Q. Y. Zhang. Distorted octahedral site occupation-induced high-efficiency broadband near-infrared emission in LiScGe 2 O 6 :Cr 3+ phosphor. Journal of Materials Chemistry C 2021, 9 (39) , 13640-13646. https://doi.org/10.1039/D1TC03057D
    87. K. Elzbieciak-Piecka, M. Suta, L. Marciniak. Structurally induced tuning of the relative sensitivity of LaScO3:Cr3+ luminescent thermometers by co-doping lanthanide ions. Chemical Engineering Journal 2021, 421 , 129757. https://doi.org/10.1016/j.cej.2021.129757
    88. Paulina Bolek, Justyna Zeler, Carlos D.S. Brites, Joanna Trojan-Piegza, Luís D. Carlos, Eugeniusz Zych. Ga-modified YAG:Pr3+ dual-mode tunable luminescence thermometers. Chemical Engineering Journal 2021, 421 , 129764. https://doi.org/10.1016/j.cej.2021.129764
    89. Aleksandar Ćirić, Zoran Ristić, Jovana Periša, Željka Antić, Miroslav D. Dramićanin. MgAl2O4:Cr3+ luminescence thermometry probe in the physiological temperatures range. Ceramics International 2021, 47 (19) , 27151-27156. https://doi.org/10.1016/j.ceramint.2021.06.131
    90. Jovana Periša, Zoran Ristić, Vesna Đorđević, Milica Sekulić, Tatjana Dramićanin, Željka Antić, Miroslav D. Dramićanin. Multiparametric luminescence thermometry from Dy3+, Cr3+ double activated YAG. Journal of Luminescence 2021, 238 , 118306. https://doi.org/10.1016/j.jlumin.2021.118306
    91. Mohit Kumar, A.S. Rao. Influence of Tb3+ ions concentration and temperature on lithium bismuth alumino borosilicate glasses for green photonic device applications. Optical Materials 2021, 120 , 111439. https://doi.org/10.1016/j.optmat.2021.111439
    92. Zoran Ristić, Vesna Đorđević, Mina Medić, Sanja Kuzman, Mikhail G. Brik, Željka Antić, Miroslav D. Dramićanin. Temperature dependence of the Cr3+-DOPED Mg2TiO4 near-infrared emission. Optical Materials 2021, 120 , 111468. https://doi.org/10.1016/j.optmat.2021.111468
    93. Zhibin Yang, Zhijun Wang, Mingjie Zheng, Xuejiao Wang, Jia Cui, Yao Yao, Lingwei Cao, Mengya Zhang, Hao Suo, Panlai Li. Excitation selective thermal characteristics of Mg28Ge7.55−xGaxO32F15.04: Mn4+ and application in single/dual-mode optical thermometry. Materials Today Communications 2021, 28 , 102660. https://doi.org/10.1016/j.mtcomm.2021.102660
    94. Tianyao Liu, Hao Cai, Ning Mao, Zhen Song, Quanlin Liu. Efficient near‐infrared pyroxene phosphor LiInGe 2 O 6 :Cr 3+ for NIR spectroscopy application. Journal of the American Ceramic Society 2021, 104 (9) , 4577-4584. https://doi.org/10.1111/jace.17856
    95. Shenghui Zheng, Junpeng Shi, Xiaodan Wang, Xiaoyan Fu, Hongyong Fan, Hongwu Zhang. Flexible thermosensitive films based on shallow-trap persistent luminescence for high-resolution texture imaging of fingerprints even through latex gloves. Journal of Materials Chemistry C 2021, 9 (30) , 9619-9626. https://doi.org/10.1039/D1TC01888D
    96. K. Kniec, W. Piotrowski, K. Ledwa, M. Suta, L. D. Carlos, L. Marciniak. From quencher to potent activator – Multimodal luminescence thermometry with Fe 3+ in the oxides MAl 4 O 7 (M = Ca, Sr, Ba). Journal of Materials Chemistry C 2021, 9 (19) , 6268-6276. https://doi.org/10.1039/D1TC01272J
    97. Michele Back, Jumpei Ueda, Hiroshi Nambu, Masami Fujita, Akira Yamamoto, Hisao Yoshida, Hiromitsu Tanaka, Mikhail G. Brik, Setsuhisa Tanabe. Boltzmann Thermometry in Cr 3+ ‐Doped Ga 2 O 3 Polymorphs: The Structure Matters!. Advanced Optical Materials 2021, 9 (9) https://doi.org/10.1002/adom.202100033
    98. Ning Mao, Shengqiang Liu, Zhen Song, Yi Yu, Quanlin Liu. A broadband near-infrared phosphor Ca3Y2Ge3O12:Cr3+ with garnet structure. Journal of Alloys and Compounds 2021, 863 , 158699. https://doi.org/10.1016/j.jallcom.2021.158699
    99. Zoran Ristić, Vesna Đorđević, Mina Medić, Sanja Kuzman, Milica Sekulić, Željka Antić, Miroslav D Dramićanin. Triple-temperature readout in luminescence thermometry with Cr 3+ -doped Mg 2 SiO 4 operating from cryogenic to physiologically relevant temperatures. Measurement Science and Technology 2021, 32 (5) , 054004. https://doi.org/10.1088/1361-6501/abdc9a
    100. Li Jinlei, Guo Jiaqing, Li Hao, Qu Junle, Song Jun. Simultaneous realization of persistent luminescence and CT dual-mode imaging by x-ray recharged Bi2Ga4O9:Cr nanoprobes in depth-independent tumors. Chemical Engineering Journal 2021, 406 , 126008. https://doi.org/10.1016/j.cej.2020.126008
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect