ACS Publications. Most Trusted. Most Cited. Most Read
Interfacing a Potential Purely Organic Molecular Quantum Bit with a Real-Life Surface
My Activity

Figure 1Loading Img
    Research Article

    Interfacing a Potential Purely Organic Molecular Quantum Bit with a Real-Life Surface
    Click to copy article linkArticle link copied!

    • Francesca Ciccullo
      Francesca Ciccullo
      Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
    • Arrigo Calzolari
      Arrigo Calzolari
      CNR-NANO Istituto Nanoscienze, Centro S3, 41125 Modena, Italy
    • Katharina Bader
      Katharina Bader
      Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
    • Petr Neugebauer
      Petr Neugebauer
      Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61600 Brno, Czech Republic
      Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
    • Nolan M. Gallagher
      Nolan M. Gallagher
      Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0304, United States
    • Andrzej Rajca
      Andrzej Rajca
      Department of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0304, United States
    • Joris van Slageren
      Joris van Slageren
      Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
    • Maria Benedetta Casu*
      Maria Benedetta Casu
      Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2019, 11, 1, 1571–1578
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.8b16061
    Published December 6, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    By using a multidisciplinary and multitechnique approach, we have addressed the issue of attaching a molecular quantum bit to a real surface. First, we demonstrate that an organic derivative of the pyrene–Blatter radical is a potential molecular quantum bit. Our study of the interface of the pyrene–Blatter radical with a copper-based surface reveals that the spin of the interface layer is not canceled by the interaction with the surface and that the Blatter radical is resistant in presence of molecular water. Although the measured pyrene–Blatter derivative quantum coherence time is not the highest value known, this molecule is known as a “super stable” radical. Conversely, other potential qubits show poor thin film stability upon air exposure. Therefore, we discuss strategies to make molecular systems candidates as qubits competitive, bridging the gap between potential and real applications.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b16061.

    • Stoichiometric and experimental elemental ratios for a thicker film and fit results for energy position and relative intensities of the photoemission lines in the C 1s and N 1s spectra for a 78 and 14 Å nominally thick film, respectively, as shown in Figure 2. Relaxed atomic positions of molecule/surface interface resulting from total-energy-and-force optimization (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 53 publications.

    1. Dmitry Gulyaev, Andrey Serykh, Dmitry Gorbunov, Nina Gritsan, Anna Akyeva, Mikhail Syroeshkin, Galina Romanenko, Evgeny Tretyakov. Polyfluorophenyl-Substituted Blatter Radicals: Synthesis and Structure–Property Correlations. Crystal Growth & Design 2024, 24 (13) , 5764-5774. https://doi.org/10.1021/acs.cgd.4c00537
    2. Patrycja Szamweber, Anna Pietrzak, Georgia A. Zissimou, Piotr Kaszyński. Toward N-peri-Annulated Planar Blatter Radical through aza-Pschorr and Photocyclization. The Journal of Organic Chemistry 2023, 88 (24) , 17197-17205. https://doi.org/10.1021/acs.joc.3c02051
    3. Nicolas Chrysochos, Christos P. Constantinides, Gregory M. Leitus, Andreas Kourtellaris, Daniel B. Lawson, Mercè Deumal, Jordi Ribas-Ariño, Maria Àngels Carvajal, Georgia A. Zissimou, Constantinos Nicolaides, Theodossis Trypiniotis, Panayiotis A. Koutentis. Temperature-Dependent Antiferromagnetic Exchange along 1D Linear Regular Chains of the Phthalonitrile Blatter Radical. Crystal Growth & Design 2023, 23 (12) , 8939-8952. https://doi.org/10.1021/acs.cgd.3c00999
    4. Chan Shu, Zhimin Yang, Andrzej Rajca. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chemical Reviews 2023, 123 (20) , 11954-12003. https://doi.org/10.1021/acs.chemrev.3c00406
    5. Ewa Malgorzata Nowik-Boltyk, Tobias Junghoefer, Mathias Glaser, Erika Giangrisostomi, Ruslan Ovsyannikov, Shuyang Zhang, Chan Shu, Andrzej Rajca, Arrigo Calzolari, M. Benedetta Casu. Long-Term Degradation Mechanisms in Application-Implemented Radical Thin Films. ACS Applied Materials & Interfaces 2023, 15 (25) , 30935-30943. https://doi.org/10.1021/acsami.3c02057
    6. Zhimin Yang, Maren Pink, Ewa Malgorzata Nowik-Boltyk, Shutian Lu, Tobias Junghoefer, Suchada Rajca, Stefan Stoll, Maria Benedetta Casu, Andrzej Rajca. Thermally Ultrarobust S = 1/2 Tetrazolinyl Radicals: Synthesis, Electronic Structure, Magnetism, and Nanoneedle Assemblies on Silicon Surface. Journal of the American Chemical Society 2023, 145 (24) , 13335-13346. https://doi.org/10.1021/jacs.3c03402
    7. Constantinos Nicolaides, Fadwat Bazzi, Evangelos Vouros, Dragos F. Flesariu, Nicolas Chrysochos, Panayiotis A. Koutentis, Christos P. Constantinides, Theodossis Trypiniotis. Metal-Free Organic Radical Spin Source. Nano Letters 2023, 23 (10) , 4579-4586. https://doi.org/10.1021/acs.nanolett.3c01044
    8. Dominika Pomikło, Agnieszka Bodzioch, Piotr Kaszyński. 3-Substituted Blatter Radicals: Cyclization of N-Arylguanidines and N-Arylamidines to Benzo[e][1,2,4]triazines and PhLi Addition. The Journal of Organic Chemistry 2023, 88 (5) , 2999-3011. https://doi.org/10.1021/acs.joc.2c02703
    9. Artem S. Poryvaev, Eva Gjuzi, Anastasiya A. Yazikova, Daniil M. Polyukhov, Yana N. Albrekht, Aleksandr A. Efremov, Nikita A. Kudriavykh, Vadim V. Yanshole, Frank Hoffmann, Michael Fröba, Matvey V. Fedin. Blatter Radical-Decorated Silica as a Prospective Adsorbent for Selective NO Capture from Air. ACS Applied Materials & Interfaces 2023, 15 (4) , 5191-5197. https://doi.org/10.1021/acsami.2c19183
    10. Adrian Saal, Lada Elbinger, Kristin Schreyer, Xhesilda Fataj, Christian Friebe, Ulrich S. Schubert. Structural Improvement of the Blatter Radical for High-Current Organic Batteries. ACS Applied Energy Materials 2022, 5 (12) , 15019-15028. https://doi.org/10.1021/acsaem.2c02559
    11. Hayoung Song, Ewa Pietrasiak, Eunsung Lee. Persistent Radicals Derived from N-Heterocyclic Carbenes for Material Applications. Accounts of Chemical Research 2022, 55 (16) , 2213-2223. https://doi.org/10.1021/acs.accounts.2c00222
    12. Georgia A. Zissimou, Paulina Bartos, Anna Pietrzak, Piotr Kaszyński. “Upper” Ring Expansion of the Planar Blatter Radical via Photocyclization: Limitations and Impact on the Electronic Structure. The Journal of Organic Chemistry 2022, 87 (7) , 4829-4837. https://doi.org/10.1021/acs.joc.2c00178
    13. Chan Shu, Maren Pink, Tobias Junghoefer, Elke Nadler, Suchada Rajca, Maria Benedetta Casu, Andrzej Rajca. Synthesis and Thin Films of Thermally Robust Quartet (S = 3/2) Ground State Triradical. Journal of the American Chemical Society 2021, 143 (14) , 5508-5518. https://doi.org/10.1021/jacs.1c01305
    14. Tobias Junghoefer, Nolan M. Gallagher, Kubandiran Kolanji, Erika Giangrisostomi, Ruslan Ovsyannikov, Thomas Chassé, Martin Baumgarten, Andrzej Rajca, Arrigo Calzolari, Maria Benedetta Casu. Challenges in Controlled Thermal Deposition of Organic Diradicals. Chemistry of Materials 2021, 33 (6) , 2019-2028. https://doi.org/10.1021/acs.chemmater.0c03880
    15. Aniket A. Hande, Patrick Baylère, Piotr Kaszyński, Anna Chrostowska. Effect of π-System Extension on the Ionization Energy of the Planar Blatter Radical: Experimental and Theoretical Studies. The Journal of Physical Chemistry A 2020, 124 (47) , 9777-9782. https://doi.org/10.1021/acs.jpca.0c07900
    16. Paulina Bartos, Victor G. Young, Jr., Piotr Kaszyński. Ring-Fused 1,4-Dihydro[1,2,4]triazin-4-yls through Photocyclization. Organic Letters 2020, 22 (10) , 3835-3840. https://doi.org/10.1021/acs.orglett.0c01074
    17. Paulina Bartos, Bindushree Anand, Anna Pietrzak, Piotr Kaszyński. Functional Planar Blatter Radical through Pschorr-Type Cyclization. Organic Letters 2020, 22 (1) , 180-184. https://doi.org/10.1021/acs.orglett.9b04130
    18. Nolan Gallagher, Hui Zhang, Tobias Junghoefer, Erika Giangrisostomi, Ruslan Ovsyannikov, Maren Pink, Suchada Rajca, Maria Benedetta Casu, Andrzej Rajca. Thermally and Magnetically Robust Triplet Ground State Diradical. Journal of the American Chemical Society 2019, 141 (11) , 4764-4774. https://doi.org/10.1021/jacs.9b00558
    19. Hemant K. Singh, Agnieszka Bodzioch, Anna Pietrzak, Piotr Kaszyński. π-Curved Blatter radicals: Blatter helicenes. Chemical Communications 2025, 15 https://doi.org/10.1039/D4CC05704J
    20. Ewa Malgorzata Nowik‐Boltyk, Tobias Junghoefer, Erika Giangrisostomi, Ruslan Ovsyannikov, Chan Shu, Andrzej Rajca, Andrea Droghetti, Maria Benedetta Casu. Radical‐Induced Changes in Transition Metal Interfacial Magnetic Properties: A Blatter Derivative on Polycrystalline Cobalt. Angewandte Chemie 2024, 136 (42) https://doi.org/10.1002/ange.202403495
    21. Maximilian Schaal, Anu Baby, Marco Gruenewald, Felix Otto, Roman Forker, Guido Fratesi, Torsten Fritz. Triggered integer charge transfer: energy-level alignment at an organic-2D material interface. Nanoscale Advances 2024, 6 (19) , 4932-4943. https://doi.org/10.1039/D4NA00462K
    22. Ewa Malgorzata Nowik‐Boltyk, Tobias Junghoefer, Erika Giangrisostomi, Ruslan Ovsyannikov, Chan Shu, Andrzej Rajca, Andrea Droghetti, M. Benedetta Casu. Radical‐Induced Changes in Transition Metal Interfacial Magnetic Properties: A Blatter Derivative on Polycrystalline Cobalt. Angewandte Chemie International Edition 2024, 7 https://doi.org/10.1002/anie.202403495
    23. Dmitry Gulyaev, Andrey Serykh, Nurlan Gadimov, Pavel Shangin, Mikhail Syroeshkin, Egor Sosunov, Evgeny Tretyakov. Synthesis, Structure, and Properties of 1,3‐Diaryl‐7‐imino‐1,7‐dihydrobenzo[e][1,2,4]triazines: Products of Unexpected Conversion of Polyfluorinated Blatter Radicals. European Journal of Organic Chemistry 2024, https://doi.org/10.1002/ejoc.202400494
    24. Ahmed A. Al-Amiery, Mohammed A. Fayad, Hasanain A. Abdul Wahhab, Waleed K. Al-Azzawi, Jabbar K. Mohammed, Hassan Sh. Majdi. Interfacial Engineering for Advanced Functional Materials: Surfaces, Interfaces, and Applications. Results in Engineering 2024, 22 , 102125. https://doi.org/10.1016/j.rineng.2024.102125
    25. Bruno Camargo, Irina Zajcewa, Anna Pietrzak, Emilia Obijalska, Jacek Szczytko, Piotr Kaszyński. Thermally induced dimensionality changes in derivatives of a “super stable” Blatter radical. Physical Chemistry Chemical Physics 2023, 25 (34) , 22813-22818. https://doi.org/10.1039/D3CP01298K
    26. Dmitry Gulyaev, Andrey Serykh, Evgeny Tretyakov, Anna Akyeva, Mikhail Syroeshkin, Dmitry E. Gorbunov, Svetlana V. Maltseva, Nina P. Gritsan, Galina Romanenko, Artem Bogomyakov. Effects of Difluorophenyl Substituents on Structural, Redox, and Magnetic Properties of Blatter Radicals. Catalysts 2023, 13 (8) , 1206. https://doi.org/10.3390/catal13081206
    27. Chun-Xu Tong, Peng Zhao, Gang Chen. High-performance spin-filtering and spin-rectifying effects in Blatter radical-based molecular spintronic device. Chinese Physics B 2023, 32 (6) , 067202. https://doi.org/10.1088/1674-1056/acc16d
    28. Athanassios K. Boudalis, Christos P. Constantinides, Nicolas Chrysochos, Raanan Carmieli, Gregory Leitus, Andreas Kourtellaris, Daniel B. Lawson, Panayiotis A. Koutentis. Deciphering the ground state of a C3-symmetrical Blatter-type triradical by CW and pulse EPR spectroscopy. Journal of Magnetic Resonance 2023, 349 , 107406. https://doi.org/10.1016/j.jmr.2023.107406
    29. Emilia Obijalska, Anna Pietrzak, Christos P. Constantinides, Roger D. Sommer, Piotr Kaszyński. “Super stable” Blatter radicals through ArLi addition: surprising chemistry of 7-(trifluoromethyl)benzo[ e ][1,2,4]triazine. Chemical Communications 2023, 59 (27) , 4008-4011. https://doi.org/10.1039/D3CC00832K
    30. Martin Lambov, Philipp Maier, Marcin Jasiński, Jacek Szczytko, Piotr Kaszyński, Matthias Lehmann. Paramagnetic supramolecular mesogens: A new paradigm in self-assembled magnetic materials. Journal of Materials Chemistry C 2022, 10 (22) , 8728-8739. https://doi.org/10.1039/D2TC00015F
    31. Liuxia Ruan, Junwei Tong, Feifei Luo, Yanzhao Wu, Gaowu Qin, Xuechen Jiao, Xianmin Zhang. The magnetic anisotropy of Tb-phthalocyanine films effected by molecular orientation. Applied Surface Science 2022, 585 , 152445. https://doi.org/10.1016/j.apsusc.2022.152445
    32. Tobias Junghoefer, Arrigo Calzolari, Ivan Baev, Mathias Glaser, Francesca Ciccullo, Erika Giangrisostomi, Ruslan Ovsyannikov, Fridtjof Kielgast, Matz Nissen, Julius Schwarz, Nolan M. Gallagher, Andrzej Rajca, Michael Martins, Maria Benedetta Casu. Magnetic behavior in metal-free radical thin films. Chem 2022, 8 (3) , 801-814. https://doi.org/10.1016/j.chempr.2021.11.021
    33. Adrian Saal, Christian Friebe, Ulrich S. Schubert. Blatter radical as a polymeric active material in organic batteries. Journal of Power Sources 2022, 524 , 231061. https://doi.org/10.1016/j.jpowsour.2022.231061
    34. Paulina Bartos, Małgorzata Celeda, Anna Pietrzak, Piotr Kaszyński. Planar Blatter radicals through Bu 3 SnH- and TMS 3 SiH-assisted cyclization of aryl iodides: azaphilic radical addition. Organic Chemistry Frontiers 2022, 9 (4) , 929-938. https://doi.org/10.1039/D1QO01742J
    35. Szymon Kapuściński, Bindushree Anand, Paulina Bartos, Jose M. Garcia Fernandez, Piotr Kaszyński. Tethered Blatter Radical for Molecular Grafting: Synthesis of 6-Hydroxyhexyloxy, Hydroxymethyl, and Bis(hydroxymethyl) Derivatives and Their Functionalization. Molecules 2022, 27 (4) , 1176. https://doi.org/10.3390/molecules27041176
    36. Paulina Bartos, Aniket A. Hande, Anna Pietrzak, Anna Chrostowska, Piotr Kaszyński. Substituent effects on the electronic structure of the flat Blatter radical: correlation analysis of experimental and computational data. New Journal of Chemistry 2021, 45 (48) , 22876-22887. https://doi.org/10.1039/D1NJ05137G
    37. Arrigo Calzolari, Andrzej Rajca, Maria Benedetta Casu. From radical to triradical thin film processes: the Blatter radical derivatives. Journal of Materials Chemistry C 2021, 9 (33) , 10787-10793. https://doi.org/10.1039/D1TC01541A
    38. Imma Ratera, Jose Vidal-Gancedo, Daniel Maspoch, Stefan T. Bromley, Núria Crivillers, Marta Mas-Torrent. Perspectives for polychlorinated trityl radicals. Journal of Materials Chemistry C 2021, 9 (33) , 10610-10623. https://doi.org/10.1039/D1TC02196F
    39. Szymon Kapuściński, Jacek Szczytko, Damian Pociecha, Marcin Jasiński, Piotr Kaszyński. Discs, dumbbells and superdiscs: molecular and supermolecular architecture dependent magnetic behavior of mesogenic Blatter radical derivatives. Materials Chemistry Frontiers 2021, 5 (17) , 6512-6521. https://doi.org/10.1039/D1QM00391G
    40. Lorenzo Poggini, Alessandro Lunghi, Alberto Collauto, Antonio Barbon, Lidia Armelao, Agnese Magnani, Andrea Caneschi, Federico Totti, Lorenzo Sorace, Matteo Mannini. Chemisorption of nitronyl–nitroxide radicals on gold surface: an assessment of morphology, exchange interaction and decoherence time. Nanoscale 2021, 13 (16) , 7613-7621. https://doi.org/10.1039/D1NR00640A
    41. Sergei V. Chapyshev, Denis V. Korchagin, Evgenii Ya. Misochko. Recent advances in chemistry of high-spin nitrenes. Russian Chemical Reviews 2021, 90 (1) , 39-69. https://doi.org/10.1070/RCR4965
    42. Aniket A. Hande, Clovis Darrigan, Paulina Bartos, Patrick Baylère, Anna Pietrzak, Piotr Kaszyński, Anna Chrostowska. UV-photoelectron spectroscopy of stable radicals: the electronic structure of planar Blatter radicals as materials for organic electronics. Physical Chemistry Chemical Physics 2020, 22 (41) , 23637-23644. https://doi.org/10.1039/D0CP03896B
    43. Fergus J. M. Rogers, Philip L. Norcott, Michelle L. Coote. Recent advances in the chemistry of benzo[ e ][1,2,4]triazinyl radicals. Organic & Biomolecular Chemistry 2020, 18 (41) , 8255-8277. https://doi.org/10.1039/D0OB01394C
    44. Tobias Junghoefer, Ewa Malgorzata Nowik-Boltyk, J. Alejandro de Sousa, Erika Giangrisostomi, Ruslan Ovsyannikov, Thomas Chassé, Jaume Veciana, Marta Mas-Torrent, Concepció Rovira, Núria Crivillers, Maria Benedetta Casu. Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry. Chemical Science 2020, 11 (34) , 9162-9172. https://doi.org/10.1039/D0SC03399E
    45. Michael R. Wasielewski, Malcolm D. E. Forbes, Natia L. Frank, Karol Kowalski, Gregory D. Scholes, Joel Yuen-Zhou, Marc A. Baldo, Danna E. Freedman, Randall H. Goldsmith, Theodore Goodson, Martin L. Kirk, James K. McCusker, Jennifer P. Ogilvie, David A. Shultz, Stefan Stoll, K. Birgitta Whaley. Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry 2020, 4 (9) , 490-504. https://doi.org/10.1038/s41570-020-0200-5
    46. J. Hrubý, D. Dvořák, L. Squillantini, M. Mannini, J. van Slageren, R. Herchel, I. Nemec, P. Neugebauer. Co( ii )-Based single-ion magnets with 1,1′-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Transactions 2020, 49 (33) , 11697-11707. https://doi.org/10.1039/D0DT01512A
    47. Christos P. Constantinides, Daniel B. Lawson, Georgia A. Zissimou, Andrey A. Berezin, Aaron Mailman, Maria Manoli, Andreas Kourtellaris, Gregory M. Leitus, Rodolphe Clérac, Heikki M. Tuononen, Panayiotis A. Koutentis. Polymorphism in a π stacked Blatter radical: structures and magnetic properties of 3-(phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[ e ][1,2,4]triazin-4-yl. CrystEngComm 2020, 22 (33) , 5453-5463. https://doi.org/10.1039/D0CE00789G
    48. Fadwat Bazzi, Alexander J. Danke, Daniel B. Lawson, Maria Manoli, Gregory M. Leitus, Panayiotis A. Koutentis, Christos P. Constantinides. 1-(2-Methoxyphenyl)-3-phenyl-1,4-dihydro-1,2,4-benzotriazin-4-yl: a tricky “structure-to-magnetism” correlation aided by DFT calculations. CrystEngComm 2020, 22 (25) , 4306-4316. https://doi.org/10.1039/D0CE00669F
    49. Kilingaru I. Shivakumar, Damian Pociecha, Jacek Szczytko, Szymon Kapuściński, Hirosato Monobe, Piotr Kaszyński. Photoconductive bent-core liquid crystalline radicals with a paramagnetic polar switchable phase. Journal of Materials Chemistry C 2020, 8 (3) , 1083-1088. https://doi.org/10.1039/C9TC05764A
    50. Luke St Marie, Abdel El Fatimy, Jakub Hrubý, Ivan Nemec, James Hunt, Rachael Myers-Ward, D Kurt Gaskill, Mattias Kruskopf, Yanfei Yang, Randolph Elmquist, Raphael Marx, Joris van Slageren, Petr Neugebauer, Paola Barbara. Nanostructured graphene for nanoscale electron paramagnetic resonance spectroscopy. Journal of Physics: Materials 2020, 3 (1) , 014013. https://doi.org/10.1088/2515-7639/ab6af8
    51. Lianzhen Cao, Xia Liu, Zhen Guo, Lianqun Zhou. Surface/Interface Engineering for Constructing Advanced Nanostructured Light-Emitting Diodes with Improved Performance: A Brief Review. Micromachines 2019, 10 (12) , 821. https://doi.org/10.3390/mi10120821
    52. Christos P. Constantinides, Daniel B. Lawson, Andrey A. Berezin, Georgia A. Zissimou, Maria Manoli, Gregory M. Leitus, Panayiotis A. Koutentis. Ferromagnetic interactions in a 1D Heisenberg linear chain of 1-phenyl-3,7-bis(trifluoromethyl)-1,4-dihydro-1,2,4-benzotriazin-4-yls. CrystEngComm 2019, 21 (31) , 4599-4606. https://doi.org/10.1039/C9CE00739C
    53. Samuel Lenz, Bastian Kern, Martin Schneider, Joris van Slageren. Measurement of quantum coherence in thin films of molecular quantum bits without post-processing. Chemical Communications 2019, 55 (50) , 7163-7166. https://doi.org/10.1039/C9CC02184A

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2019, 11, 1, 1571–1578
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.8b16061
    Published December 6, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1612

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.