Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

La1.5Sr0.5NiMn0.5Ru0.5O6 Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity

  • Maria Retuerto*
    Maria Retuerto
    Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, L10, 28049 Madrid, Spain
    *E-mail: [email protected] (M.R.).
  • Federico Calle-Vallejo
    Federico Calle-Vallejo
    Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
  • Laura Pascual
    Laura Pascual
    Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, L10, 28049 Madrid, Spain
  • Gunnar Lumbeeck
    Gunnar Lumbeeck
    EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
  • María Teresa Fernandez-Diaz
    María Teresa Fernandez-Diaz
    Institut Laue-Langevin, BP156X, F-38042 Grenoble, France
  • Mark Croft
    Mark Croft
    Department of Physics, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
    More by Mark Croft
  • Jagannatha Gopalakrishnan
    Jagannatha Gopalakrishnan
    Solid State and Structural Chemistry Unit, Indian Institute of Science, 560 012 Bangalore, India
  • Miguel A. Peña
    Miguel A. Peña
    Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, L10, 28049 Madrid, Spain
  • Joke Hadermann
    Joke Hadermann
    EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
  • Martha Greenblatt
    Martha Greenblatt
    Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
  • , and 
  • Sergio Rojas*
    Sergio Rojas
    Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, L10, 28049 Madrid, Spain
    *E-mail: [email protected] (S.R.).
    More by Sergio Rojas
Cite this: ACS Appl. Mater. Interfaces 2019, 11, 24, 21454–21464
Publication Date (Web):May 22, 2019
https://doi.org/10.1021/acsami.9b02077
Copyright © 2019 American Chemical Society

    Article Views

    8345

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Perovskites (ABO3) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A2BB′O6) with different cations in A, B, and B′ sites, namely, (La1.5Sr0.5)A(Ni0.5Mn0.5)B(Ni0.5Ru0.5)B′O6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P21/n and with cationic ordering between the ions in the B and B′ sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of ∼Ni2+, ∼Mn4+, and ∼Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of ∼0.83 V (the difference between the potentials measured at −1 mA cm–2 for the ORR and +10 mA cm–2 for the OER). The ORR onset potential (Eonset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g–1 at 0.9 V and 7.3 A g–1 at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm–2 is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.9b02077.

    • X-ray powder diffraction; electron diffraction; PND; XANES; electrochemical performance; BET surface area; computational details; and postmortem TEM study (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 121 publications.

    1. Xin Wang, Harish Singh, Manashi Nath, Kurt Lagemann, Katharine Page. Excellent Bifunctional Oxygen Evolution and Reduction Electrocatalysts (5A1/5)Co2O4 and Their Tunability. ACS Materials Au 2024, 4 (3) , 274-285. https://doi.org/10.1021/acsmaterialsau.3c00088
    2. Weixuan Xu, Rui Zeng, Michael Rebarchik, Alvaro Posada-Borbón, Huiqi Li, Christopher J. Pollock, Manos Mavrikakis, Héctor D. Abruña. Atomically Dispersed Zn/Co–N–C as ORR Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society 2024, 146 (4) , 2593-2603. https://doi.org/10.1021/jacs.3c11355
    3. Tuncay Erdil, Cigdem Toparli. B-Site Effect on High-Entropy Perovskite Oxide as a Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials 2023, 6 (21) , 11255-11267. https://doi.org/10.1021/acsaem.3c02149
    4. Dmitry Galyamin, Álvaro Tolosana-Moranchel, María Retuerto, Sergio Rojas. Unraveling the Most Relevant Features for the Design of Iridium Mixed Oxides with High Activity and Durability for the Oxygen Evolution Reaction in Acidic Media. JACS Au 2023, 3 (9) , 2336-2355. https://doi.org/10.1021/jacsau.3c00247
    5. Huma Khan, Samuel E. Lofland, Kandalam V. Ramanujachary, Norah Alhokbany, Tokeer Ahmad. Bifunctional Multiferroic GdCrO3 Nanoassemblies for Sustainable H2 Production Using Electro- and Photocatalysis. ACS Applied Energy Materials 2023, 6 (15) , 8102-8110. https://doi.org/10.1021/acsaem.3c01210
    6. Raja Palani, Yi-Shiuan Wu, She-Huang Wu, Wen-Chen Chien, Shingjiang Jessie Lue, Rajan Jose, Chun-Chen Yang. Fascinating Bifunctional Electrocatalytic Activity via a Mesoporous Structured FeMnO3@ZrO2 Matrix as an Efficient Cathode for Li–O2 Batteries. ACS Applied Energy Materials 2023, 6 (9) , 4734-4747. https://doi.org/10.1021/acsaem.3c00052
    7. Samad Razzaq, Kai S. Exner. Materials Screening by the Descriptor Gmax(η): The Free-Energy Span Model in Electrocatalysis. ACS Catalysis 2023, 13 (3) , 1740-1758. https://doi.org/10.1021/acscatal.2c03997
    8. Lei Jin, Feng Zhang, Felix Gunkel, Xian-Kui Wei, Yanxing Zhang, Dawei Wang, Juri Barthel, Rafal E. Dunin-Borkowski, Chun-Lin Jia. Understanding Structural Incorporation of Oxygen Vacancies in Perovskite Cobaltite Films and Potential Consequences for Electrocatalysis. Chemistry of Materials 2022, 34 (23) , 10373-10381. https://doi.org/10.1021/acs.chemmater.2c02043
    9. . Noble Metal-Free Electrocatalysts: Fundamentals and Recent Advances in Electrocatalysts for Energy Applications. Volume 1. https://doi.org/10.1021/bk-2022-1431
    10. Yuepeng Liu Zhongfang Li Lei Zhang Peng Sun Shuaifeng Wang Changhui Ji Wenjie Duan Likai Wang Xueliang Niu . Role of Electrocatalysts in the Performance and Efficiency of Metal−Air Batteries. , 95-127. https://doi.org/10.1021/bk-2022-1431.ch005
    11. Peng Li, Xuhao Wan, Jinhao Su, Wei Liu, Yuzheng Guo, Huayi Yin, Dihua Wang. A Single-Phase FeCoNiMnMo High-Entropy Alloy Oxygen Evolution Anode Working in Alkaline Solution for over 1000 h. ACS Catalysis 2022, 12 (19) , 11667-11674. https://doi.org/10.1021/acscatal.2c02946
    12. Nikhil Kumar, Tanmay Rom, Mukesh Kumar, Tharamani C. Nagaiah, Eoyoon Lee, Hyung Chul Ham, Sun Hee Choi, Sudhindra Rayaprol, Vasudeva Siruguri, Tapas Kumar Mandal, Brendan J. Kennedy, Avijit Kumar Paul. Unraveling the Effect of A-Site Sr-Doping in Double Perovskites Ca2–xSrxScRuO6 (x = 0 and 1): Structural Interpretation and Mechanistic Investigations of Trifunctional Electrocatalytic Effects. ACS Applied Energy Materials 2022, 5 (9) , 11632-11645. https://doi.org/10.1021/acsaem.2c02101
    13. Vishal Kotha, Imran Karajagi, Prakash C. Ghosh, Leela S. Panchakarla. Potassium-Substituted LaMnO3 as a Highly Active and Exceptionally Stable Electrocatalyst toward Bifunctional Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Energy Materials 2022, 5 (6) , 7297-7307. https://doi.org/10.1021/acsaem.2c00823
    14. Xiao-ran Wen, Xue-wei Wang, Ke Ma, You-lin Chen, Chang Yu, Zhihao Yuan. Optimized Oxygen Reduction Reaction of Sm0.7La0.3Mn2O5 Nanorods by a Lanthanum Dopant for Zinc–Air Batteries. ACS Applied Energy Materials 2022, 5 (6) , 7356-7363. https://doi.org/10.1021/acsaem.2c00863
    15. Longchao Wang, Youqi Chu, Yutong Nong, Fenghua Zheng, Yu Li, Yizhen Huang, Yahao Li, Qichang Pan, Hongqiang Wang, Qingyu Li. Sr-Based Sub/Surface Integrated Layer and Bulk Doping to Enhance High-Voltage Cycling of a Ni-Rich Cathode Material. ACS Sustainable Chemistry & Engineering 2022, 10 (24) , 7883-7895. https://doi.org/10.1021/acssuschemeng.2c00369
    16. Martina Marasi, Anna Paola Panunzi, Leonardo Duranti, Nicola Lisi, Elisabetta Di Bartolomeo. Enhancing Oxygen Reduction Activity and Structural Stability of La0.6Sr0.4FeO3−δ by 1 mol % Pt and Ru B-Site Doping for Application in All-Perovskite IT-SOFCs. ACS Applied Energy Materials 2022, 5 (3) , 2918-2928. https://doi.org/10.1021/acsaem.1c03613
    17. Yao Yang, Cheyenne R. Peltier, Rui Zeng, Roberto Schimmenti, Qihao Li, Xin Huang, Zhifei Yan, Georgia Potsi, Ryan Selhorst, Xinyao Lu, Weixuan Xu, Mariel Tader, Alexander V. Soudackov, Hanguang Zhang, Mihail Krumov, Ellen Murray, Pengtao Xu, Jeremy Hitt, Linxi Xu, Hsin-Yu Ko, Brian G. Ernst, Colin Bundschu, Aileen Luo, Danielle Markovich, Meixue Hu, Cheng He, Hongsen Wang, Jiye Fang, Robert A. DiStasio, Jr., Lena F. Kourkoutis, Andrej Singer, Kevin J. T. Noonan, Li Xiao, Lin Zhuang, Bryan S. Pivovar, Piotr Zelenay, Enrique Herrero, Juan M. Feliu, Jin Suntivich, Emmanuel P. Giannelis, Sharon Hammes-Schiffer, Tomás Arias, Manos Mavrikakis, Thomas E. Mallouk, Joel D. Brock, David A. Muller, Francis J. DiSalvo, Geoffrey W. Coates, Héctor D. Abruña. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews 2022, 122 (6) , 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
    18. Yawen Dai, Jie Yu, Zhenbao Zhang, Shuo Zhai, Chun Cheng, Siyuan Zhao, Peng Tan, Zongping Shao, Meng Ni. Regulating the Interfacial Electron Density of La0.8Sr0.2Mn0.5Co0.5O3/RuOx for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries. ACS Applied Materials & Interfaces 2021, 13 (51) , 61098-61106. https://doi.org/10.1021/acsami.1c18081
    19. Jianhui Song, Xin Jin, Shuo Zhang, Xingyu Jiang, Jiangfeng Yang, Zi Li, Jian Zhou, Huigang Zhang, Yuefeng Nie. Synergistic Role of Eg Filling and Anion–Cation Hybridization in Enhancing the Oxygen Evolution Reaction Activity in Nickelates. ACS Applied Energy Materials 2021, 4 (11) , 12535-12542. https://doi.org/10.1021/acsaem.1c02335
    20. Kun Jiang, Wenjun Liu, Wei Lai, Menglian Wang, Qian Li, Zhaolong Wang, Junjie Yuan, Yilin Deng, Jian Bao, Hongbing Ji. NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorganic Chemistry 2021, 60 (22) , 17371-17378. https://doi.org/10.1021/acs.inorgchem.1c02903
    21. Satarupa Das, Subhajit Bhattacharjee, Surajit Mondal, Supriti Dutta, Neha Bothra, Swapan K. Pati, Sayan Bhattacharyya. Bimetallic Zero-Valent Alloy with Measured High-Valent Surface States to Reinforce the Bifunctional Activity in Rechargeable Zinc-Air Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (44) , 14868-14880. https://doi.org/10.1021/acssuschemeng.1c04970
    22. Rathindranath Biswas, Pooja Thakur, Gagandeep Kaur, Shubham Som, Monochura Saha, Vandna Jhajhria, Harjinder Singh, Imtiaz Ahmed, Biplab Banerjee, Deepak Chopra, Tapasi Sen, Krishna Kanta Haldar. Interfacial Engineering of CuCo2S4/g-C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (16) , 12355-12366. https://doi.org/10.1021/acs.inorgchem.1c01566
    23. Xin Tong, Mohamed Cherif, Gaixia Zhang, Xinxing Zhan, Jugang Ma, Ali Almesrati, François Vidal, Yujun Song, Jerome P. Claverie, Shuhui Sun. N, P-Codoped Graphene Dots Supported on N-Doped 3D Graphene as Metal-Free Catalysts for Oxygen Reduction. ACS Applied Materials & Interfaces 2021, 13 (26) , 30512-30523. https://doi.org/10.1021/acsami.1c03141
    24. Hainan Sun, Wei Zhou. Progress on X-ray Absorption Spectroscopy for the Characterization of Perovskite-Type Oxide Electrocatalysts. Energy & Fuels 2021, 35 (7) , 5716-5737. https://doi.org/10.1021/acs.energyfuels.1c00534
    25. Casey E. Beall, Emiliana Fabbri, Thomas J. Schmidt. Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis 2021, 11 (5) , 3094-3114. https://doi.org/10.1021/acscatal.0c04473
    26. Maria Christy, Hashikaa Rajan, Hwichul Yang, Young-Beom Kim. Optimizing the Surface Characteristics of La0.6Sr0.4CoO3−δ Perovskite Oxide by Rapid Flash Sintering Technology for Easy Fabrication and Fast Reaction Kinetics in Alkaline Medium. Energy & Fuels 2020, 34 (12) , 16838-16846. https://doi.org/10.1021/acs.energyfuels.0c03147
    27. Ángel Morales-García, Federico Calle-Vallejo, Francesc Illas. MXenes: New Horizons in Catalysis. ACS Catalysis 2020, 10 (22) , 13487-13503. https://doi.org/10.1021/acscatal.0c03106
    28. Yuto Miyahara, Tomokazu Fukutsuka, Takeshi Abe, Kohei Miyazaki. Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts. Chemistry of Materials 2020, 32 (19) , 8195-8202. https://doi.org/10.1021/acs.chemmater.0c01674
    29. Xiaoling Sun, Qiaojuan Gong, Yunxia Liang, Mingjie Wu, Nengneng Xu, Pengni Gong, Shuhui Sun, Jinli Qiao. Exploiting a High-Performance “Double-Carbon” Structure Co9S8/GN Bifunctional Catalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces 2020, 12 (34) , 38202-38210. https://doi.org/10.1021/acsami.0c10734
    30. Fan Bai, Xin Qu, Jun Wang, Xu Chen, Wensheng Yang. Confinement Catalyst of Co9S8@N-Doped Carbon Derived from Intercalated Co(OH)2 Precursor and Enhanced Electrocatalytic Oxygen Reduction Performance. ACS Applied Materials & Interfaces 2020, 12 (30) , 33740-33750. https://doi.org/10.1021/acsami.0c08267
    31. Pralay Gayen, Sulay Saha, Kaustava Bhattacharyya, Vijay K. Ramani. Oxidation State and Oxygen-Vacancy-Induced Work Function Controls Bifunctional Oxygen Electrocatalytic Activity. ACS Catalysis 2020, 10 (14) , 7734-7746. https://doi.org/10.1021/acscatal.0c01541
    32. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
    33. Jia Sun, Lei Du, Baoyu Sun, Guokang Han, Yulin Ma, Jiajun Wang, Hua Huo, Chunyu Du, Geping Yin. Bifunctional LaMn0.3Co0.7O3 Perovskite Oxide Catalyst for Oxygen Reduction and Evolution Reactions: The Optimized eg Electronic Structures by Manganese Dopant. ACS Applied Materials & Interfaces 2020, 12 (22) , 24717-24725. https://doi.org/10.1021/acsami.0c03983
    34. Nikhil Kumar, Mukesh Kumar, Tharamani C. Nagaiah, Vasudeva Siruguri, Sudhindra Rayaprol, Ashok Kumar Yadav, Shambhu Nath Jha, Dibyendu Bhattacharyya, Avijit Kumar Paul. Investigation of New B-Site-Disordered Perovskite Oxide CaLaScRuO6+δ: An Efficient Oxygen Bifunctional Electrocatalyst in a Highly Alkaline Medium. ACS Applied Materials & Interfaces 2020, 12 (8) , 9190-9200. https://doi.org/10.1021/acsami.9b20199
    35. Chunhua Zhao, Nan Li, Ruizhi Zhang, Zhaoqiang Zhu, Jiahao Lin, Kefu Zhang, Chongjun Zhao. Surface Reconstruction of La0.8Sr0.2Co0.8Fe0.2O3−δ for Superimposed OER Performance. ACS Applied Materials & Interfaces 2019, 11 (51) , 47858-47867. https://doi.org/10.1021/acsami.9b13834
    36. Hongpeng Chen, Haonan Xie, Chen Yang, Jinshuo Pang, Naiqin Zhao, Chunnian He, Enzuo Liu. Bifunctional mechanism of oxygen evolution reaction and oxygen reduction reaction induced by surface reconstruction in Perovskite electrocatalysts. Electrochimica Acta 2024, 491 , 144339. https://doi.org/10.1016/j.electacta.2024.144339
    37. Zhi-Qi Jiang, Cheng-Zhen Fan, Jun-Yu Pan, Li Shao, Hao Chen, Erum Pervaiz, Yan Dong, Tong-Zhou Wang, Xue-Rong Zheng, Ji-Hong Li, Yi-Da Deng. Recent advances in Ir/Ru-based perovskite electrocatalysts for oxygen evolution reaction. Rare Metals 2024, 43 (7) , 2891-2912. https://doi.org/10.1007/s12598-024-02623-x
    38. Isabel Rodríguez-García, José Luis Gómez de la Fuente, Jorge Torrero, Daniel García Sánchez, Mohamed Abdel Salam, José Antonio Alonso, Aldo Saul Gago, Kaspar Andreas Friedrich, Sergio Rojas, María Retuerto, Álvaro Tolosana-Moranchel. NdMn1.5Ru0.5O5, a high-performance electrocatalyst with low Ru content for acidic oxygen evolution reaction. Journal of Power Sources 2024, 604 , 234416. https://doi.org/10.1016/j.jpowsour.2024.234416
    39. Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Vivian Meier, Nur Sena Yüzbasi, Benjamin H. Sjølin, Ivano E. Castelli, Dino Aegerter, Thomas Graule, Thomas J. Schmidt. Time‐Resolved Oxidation State Changes Are Key to Elucidating the Bifunctionality of Perovskite Catalysts for Oxygen Evolution and Reduction. ENERGY & ENVIRONMENTAL MATERIALS 2024, 143 https://doi.org/10.1002/eem2.12737
    40. Mario García-Rodríguez, Jhony X. Flores-Lasluisa, Diego Cazorla-Amorós, Emilia Morallón. Enhancing Interaction between Lanthanum Manganese Cobalt Oxide and Carbon Black through Different Approaches for Primary Zn–Air Batteries. Materials 2024, 17 (10) , 2309. https://doi.org/10.3390/ma17102309
    41. Shuo Wang, Haiting Shi, Daoxi Wang, Yuanhua Xia, Yue Yin, Shuaitong Liang, Yanli Hu, Ruiqi Shao, Xiaoqing Wu, Zhiwei Xu. Neutron-based characterization: A rising star in illuminating rechargeable lithium metal batteries. Nano Energy 2024, 122 , 109337. https://doi.org/10.1016/j.nanoen.2024.109337
    42. Mustafa Farajzadeh, Fatemeh Rahnemaye Rahsepar. A Review of the Recent Advances in Development of Noble Metal‐Free Materials as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ChemElectroChem 2024, 11 (6) https://doi.org/10.1002/celc.202300516
    43. Sagar Ingavale, Mohan Gopalakrishnan, Carolin Mercy Enoch, Chanon Pornrungroj, Meena Rittiruam, Supareak Praserthdam, Anongnat Somwangthanaroj, Kasadit Nootong, Rojana Pornprasertsuk, Soorathep Kheawhom. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. Small 2024, 30 https://doi.org/10.1002/smll.202308443
    44. Dongshuang Wu, Yidan Chen, Yuelei Bai, Chuncheng Zhu, Mingyi Zhang. One-Dimensional La0.2Sr0.8Cu0.4Co0.6O3−δ Nanostructures for Efficient Oxygen Evolution Reaction. Nanomaterials 2024, 14 (1) , 64. https://doi.org/10.3390/nano14010064
    45. Maximilian Cieluch, Dennis Düerkop, Norbert Kazamer, Florian Wirkert, Pit Podleschny, Ulrich Rost, Achim Schmiemann, Michael Brodmann. Manufacturing and investigation of MEAs for PEMWE based on glass fibre reinforced PFSA/ssPS composite membranes and catalyst-coated substrates prepared via catalyst electrodeposition. International Journal of Hydrogen Energy 2024, 52 , 521-533. https://doi.org/10.1016/j.ijhydene.2023.07.310
    46. Yanzhu Deng, Juwei Du, Yan Zhu, Ling Zhao, Huanwen Wang, Yansheng Gong, Jun Jin, Beibei He, Rui Wang. Interface engineering of Ruddlesden–Popper perovskite/CeO2/carbon heterojunction for rechargeable zinc-air batteries. Journal of Colloid and Interface Science 2024, 653 , 1775-1784. https://doi.org/10.1016/j.jcis.2023.09.138
    47. Tong Wu, Lihua Zhang, Yinbo Zhan, Yilin Dong, Zheng Tan, Bowei Zhou, Fei Wei, Dongliang Zhang, Xia Long. Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction. Molecules 2023, 28 (24) , 8154. https://doi.org/10.3390/molecules28248154
    48. Shan Wang, Ping Xiao, Jie Yang, Sónia A. C. Carabineiro, Marek Wiśniewski, Junjiang Zhu, Xinying Liu. Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering 2023, 17 (11) , 1649-1676. https://doi.org/10.1007/s11705-023-2324-x
    49. Qiangqiang Lu, Qingxin Han, Xuechuan Wang, Chao Wei, Xiaoyu Guan, Chun Qu, Ji Li. High-value utilization of Cr-containing sludge: Eco-friendly and ultra-low-cost electrocatalyst for efficient OER in alkaline media from Cr-containing sludge. Journal of Environmental Management 2023, 346 , 119020. https://doi.org/10.1016/j.jenvman.2023.119020
    50. Tanmay Rom, Poojita, Avijit Kumar Paul. Structure‐property Relationship of Double Perovskite Oxide towards Trifunctional Electrocatalytic Activity: Strategy for Designing and Development. ChemCatChem 2023, 15 (20) https://doi.org/10.1002/cctc.202300774
    51. Carolin Mercy Enoch, Sagar Ingavale, Phiralang Marbaniang, Indrajit Patil, Anita Swami. Molten salt-directed synthesis of strontium manganese perovskite oxide: an active electrocatalyst for the oxygen reduction reaction and oxygen evolution reaction. Journal of Materials Chemistry A 2023, 11 (40) , 21780-21792. https://doi.org/10.1039/D3TA03808D
    52. Biaokui Dongyang, Wenying Yang, Qirui Ye, Zilin Ma, Shimin Lai, Feifei Dong, Zhan Lin. Modulation of iron-based perovskites for enhanced electrocatalytic oxygen evolution reaction by a multi-method approach. Journal of Alloys and Compounds 2023, 958 , 170368. https://doi.org/10.1016/j.jallcom.2023.170368
    53. Kailin Fu, Weijian Chen, Feng Jiang, Xia Chen, Jianmin Liu. Research Progress of Perovskite-Based Bifunctional Oxygen Electrocatalyst in Alkaline Conditions. Molecules 2023, 28 (20) , 7114. https://doi.org/10.3390/molecules28207114
    54. Juan Bai, Jing Shang, Jun Mei, Dongchen Qi, Ting Liao, Ziqi Sun. Triphenylphosphine‐Assisted Exsolution Engineering on Ruddlesden–Popper Perovskites for Promoting Oxygen Evolution. ENERGY & ENVIRONMENTAL MATERIALS 2023, 1 https://doi.org/10.1002/eem2.12668
    55. Sengeni Anantharaj, Suguru Noda. Electrochemical dealloying-assisted activity enhancement: The next big thing in water electrosplitting!. Nano Energy 2023, 114 , 108624. https://doi.org/10.1016/j.nanoen.2023.108624
    56. Jadranka Milikić, Sara Knežević, Miloš Ognjanović, Dalibor Stanković, Lazar Rakočević, Biljana Šljukić. Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction. International Journal of Hydrogen Energy 2023, 48 (71) , 27568-27581. https://doi.org/10.1016/j.ijhydene.2023.03.433
    57. Wei Shen, Jiamin Zhu, Yang Hu, Jie Yin, Yao Zheng, Pinxian Xi. Applications of Rare Earth Promoted Transition Metal Sulfides in Electrocatalysis †. Chinese Journal of Chemistry 2023, 41 (14) , 1740-1752. https://doi.org/10.1002/cjoc.202200715
    58. Jianyi Li, Yaxiong Yao, Li An, Shanshan Wu, Nan Zhang, Jing Jin, Rui Wang, Pinxian Xi. Regulation of perovskite oxides composition for the efficient electrocatalytic reactions. Smart Molecules 2023, 1 (1) https://doi.org/10.1002/smo.20220005
    59. Wencong Wang, Wei Liu, Masao Kamiko, Shunsuke Yagi. Effect of cation vacancies in nonstoichiometric (LaMn)1-O3 on oxygen reduction reaction catalysis. Journal of Alloys and Compounds 2023, 946 , 169398. https://doi.org/10.1016/j.jallcom.2023.169398
    60. Xin Chen, Yahui Li, Xiuyun Zhao. Screening of transition metal-based MOF as highly efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Surfaces and Interfaces 2023, 38 , 102821. https://doi.org/10.1016/j.surfin.2023.102821
    61. Kai S. Exner. On the concept of metal–hydrogen peroxide batteries: improvement over metal–air batteries?. Energy Advances 2023, 2 (4) , 522-529. https://doi.org/10.1039/D3YA00002H
    62. Elena V. Timofeeva, Carlo U. Segre, Gavin S. Pour, Matthew Vazquez, Benard L. Patawah. Aqueous air cathodes and catalysts for metal–air batteries. Current Opinion in Electrochemistry 2023, 38 , 101246. https://doi.org/10.1016/j.coelec.2023.101246
    63. Eleonora Romeo, Francesc Illas, Federico Calle-Vallejo. A general but still unknown characteristic of active oxygen evolution electrocatalysts. Chemical Science 2023, 14 (13) , 3622-3629. https://doi.org/10.1039/D2SC06832J
    64. Chunyan Yang, Xuke Ma, Jiaqi Zhou, Yafei Zhao, Xu Xiang, Huishan Shang, Bing Zhang. Scalable Synthesis of Bimetallic CoFe Alloy Nanoparticles for Efficient Oxygen Evolution Reaction. ChemistrySelect 2023, 8 (9) https://doi.org/10.1002/slct.202204580
    65. Lingxue Meng, Yige Wang, Wenwei Liu, Chunlei Fan, Haoxiong Nan, Jiang Wang, Jia Yu. Mesoporous Surface-Sulfurized Fe–Co3O4 Nanosheets Integrated with N/S Co-Doped Graphene as a Robust Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. Molecules 2023, 28 (5) , 2221. https://doi.org/10.3390/molecules28052221
    66. Velusamy Maheskumar, Karunamoorthy Saravanakumar, Jagan Govindan, Chang Min Park. Rational design of double perovskite La2Ni0.5Co0.5MnO6 decorated polyaniline array on MoO3 nanobelts with strong heterointerface boosting oxygen evolution reaction and urea oxidation. Applied Surface Science 2023, 612 , 155737. https://doi.org/10.1016/j.apsusc.2022.155737
    67. Xiuzhe Wang, Jing Sui, Zenglei Hou, Mengqi Zhang, Qian Zhang, Jianhua Yu, Zhixing Gan, Lina Sui, Lifeng Dong. LSCF perovskite oxide in situ grown on reduced graphene oxide as high-performance bifunctional catalyst for zinc-air battery. Diamond and Related Materials 2023, 132 , 109668. https://doi.org/10.1016/j.diamond.2022.109668
    68. Jing Li, Fan Yang, Yunzhu Du, Min Jiang, Xiyang Cai, Qiaodan Hu, Junliang Zhang. The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1−Fe O3−δ (0.2 ≤ x ≤ 1) perovskites in alkaline media. Chemical Engineering Journal 2023, 451 , 138646. https://doi.org/10.1016/j.cej.2022.138646
    69. Jiajie Li, Shanbao Zou, Jinzhen Huang, Xiaoqian Wu, Yue Lu, Xundao Liu, Bo Song, Dehua Dong. Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries. Chinese Chemical Letters 2023, 34 (1) , 107222. https://doi.org/10.1016/j.cclet.2022.02.027
    70. Lei Huang, Xuanjie Huang, Jia Yan, Yonghui Liu, Hao Jiang, Hongguo Zhang, Jinfeng Tang, Qiang Liu. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. Journal of Hazardous Materials 2023, 442 , 130024. https://doi.org/10.1016/j.jhazmat.2022.130024
    71. GeunHyeong Lee, Jooheon Kim. Oxygen evolution catalyst containing CoNi nanoalloy and carbon nanotube maximized the electrochemical surface area and intrinsic activity. Solid State Sciences 2023, 135 , 107063. https://doi.org/10.1016/j.solidstatesciences.2022.107063
    72. Xiang Peng, Shuai Feng, Sifan Lai, Zhitian Liu, Jianhong Gao, Mehran Javanbakht, Biao Gao. Structural engineering of rare-earth-based perovskite electrocatalysts for advanced oxygen evolution reaction. International Journal of Hydrogen Energy 2022, 47 (93) , 39470-39485. https://doi.org/10.1016/j.ijhydene.2022.09.130
    73. Kai Wen Zheng, Bo Li, Xin Li, Wang Gao. Understanding the oxygen-evolution-reaction catalytic activity of metal oxides based on the intrinsic descriptors. Physical Chemistry Chemical Physics 2022, 24 (46) , 28632-28640. https://doi.org/10.1039/D2CP04299A
    74. Prakash Ramakrishnan, Jae-won Lee, Seong-Ho Baek. The oxygen electrode bifunctionality studies: La2FeNiO6 double perovskite nanoparticles. Journal of Alloys and Compounds 2022, 918 , 165492. https://doi.org/10.1016/j.jallcom.2022.165492
    75. Ibrahim Elghamry, Abdulrahman S. Alablan, Mamdouh E. Abdelsalam. A Bifunctional Electrocatalyst based on Ni-porphyrin/Vapor-Grown Carbon Fibres for Oxygen Reduction and Evolution Reactions in Alkaline Media. International Journal of Electrochemical Science 2022, 17 (10) , 221013. https://doi.org/10.20964/2022.10.22
    76. Tao Li, Zhanglong He, Xiang Liu, Min Jiang, Qin Liao, Ruida Ding, Shan Liu, Chen Zhao, Weibin Guo, Shanshan Zhang, Hao He. Interface interaction of Ag-CeO2-Co3O4 facilitate ORR/OER activity for Zn-air battery. Surfaces and Interfaces 2022, 33 , 102270. https://doi.org/10.1016/j.surfin.2022.102270
    77. G.K. Kiran, T.V.M. Sreekanth, G.R. Dillip, K. Yoo, J. Kim. Enhanced bifunctional catalytic activity of surface-modified vanadyl ethylene glycolate for oxygen reduction and evolution reactions. Materials Chemistry and Physics 2022, 289 , 126506. https://doi.org/10.1016/j.matchemphys.2022.126506
    78. Elizabeth Sargeant, Francesc Illas, Paramaconi Rodríguez, Federico Calle-Vallejo. On the shifting peak of volcano plots for oxygen reduction and evolution. Electrochimica Acta 2022, 426 , 140799. https://doi.org/10.1016/j.electacta.2022.140799
    79. Jihyeon Park, Sinwoo Kang, Jaeyoung Lee. Non-noble electrocatalysts discovered by scaling relations of Gibbs-free energies of key oxygen adsorbates in water oxidation. Journal of Materials Chemistry A 2022, 10 (30) , 15975-15980. https://doi.org/10.1039/D2TA02594A
    80. Sile Yu, Ziyi Shui, Chenghua Wang, Yuan Lei, Yilun Liu, Wei Zhao, Xi Chen. The method of introducing oxygen vacancy into La0.8Sr0.2FeO3-based catalyst: enhancing the ORR and OER performance. Journal of Materials Science 2022, 57 (26) , 12364-12376. https://doi.org/10.1007/s10853-022-07359-6
    81. Surendra B. Karki, Ram Krishna Hona, Farshid Ramezanipour. Sr3Mn2O6 and Sr3FeMnO6 for oxygen and hydrogen evolution electrocatalysis. Journal of Solid State Electrochemistry 2022, 26 (5) , 1303-1311. https://doi.org/10.1007/s10008-022-05167-1
    82. Pei Leng, Fang Luo, Min Li, Shuangxiu Ma, Xue Long, Zehui Yang. Construction of abundant Co3O4/Co(OH)2 heterointerfaces as air electrocatalyst for flexible all-solid-state zinc-air batteries. Electrochimica Acta 2022, 413 , 140158. https://doi.org/10.1016/j.electacta.2022.140158
    83. Maximilian Cieluch, Pit Yannick Podleschny, Norbert Kazamer, Florian Josef Wirkert, Ulrich Wilhelm Rost, Michael Brodmann. Development of a Bifunctional Ti-Based Gas Diffusion Electrode for ORR and OER by One- and Two-Step Pt-Ir Electrodeposition. Nanomaterials 2022, 12 (7) , 1233. https://doi.org/10.3390/nano12071233
    84. Manuel J. Kolb, Federico Calle-Vallejo. The bifunctional volcano plot: thermodynamic limits for single-atom catalysts for oxygen reduction and evolution. Journal of Materials Chemistry A 2022, 10 (11) , 5937-5941. https://doi.org/10.1039/D1TA08366J
    85. Isabel Rodríguez-García, Dmitry Galyamin, Laura Pascual, Pilar Ferrer, Miguel A. Peña, Dave Grinter, Georg Held, Mohamed Abdel Salam, Mohamed Mokhtar, Katabathini Narasimharao, María Retuerto, Sergio Rojas. Enhanced stability of SrRuO3 mixed oxide via monovalent doping in Sr1-xKxRuO3 for the oxygen evolution reaction. Journal of Power Sources 2022, 521 , 230950. https://doi.org/10.1016/j.jpowsour.2021.230950
    86. Yang Yang, Wen-Jie Wang, Yi-Bin Yang, Peng-Fei Guo, Bing Zhu, Kuan Wang, Wei-Tao Wang, Zhen-Hong He, Zhao-Tie Liu. Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction. Journal of The Electrochemical Society 2022, 169 (2) , 024503. https://doi.org/10.1149/1945-7111/ac4cda
    87. Yuwei Wang, Ying Yue, Tao Cong, Liquan Fan, Xinyu Su, Xingmei Liu, WeiChao Zhang, Yufeng Li, Xijun Liu. Nanofiber-based Sm0.5Sr0.5Co0.2Fe0.8O3-δ of N-doped graphene modification for bifunctional oxygen electrocatalyst in alkaline medium. International Journal of Electrochemical Science 2022, 17 (2) , 220225. https://doi.org/10.20964/2022.02.32
    88. Xingmei Liu, Yuwei Wang, Liquan Fan, Weichao Zhang, Weiyan Cao, Xianxin Han, Xijun Liu, Hongge Jia. Sm0.5Sr0.5Co1−xNixO3−δ—A Novel Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions. Molecules 2022, 27 (4) , 1263. https://doi.org/10.3390/molecules27041263
    89. Yuhai Dou, Ding Yuan, Linping Yu, Weiping Zhang, Lei Zhang, Kaicai Fan, Mohammad Al‐Mamun, Porun Liu, Chun‐Ting He, Huijun Zhao. Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis. Advanced Materials 2022, 34 (2) https://doi.org/10.1002/adma.202104667
    90. Gamze Karanfil, Halime Coskun, Meric Karakıs, Adem Sarilmaz, Aysenur Gencer, Gokhan Surucu, Abdalaziz Aljabour, Faruk Ozel. Exploration of carbon additives to the synthesis of CuMoS structures and their electrocatalytic activity in oxygen reduction reaction. International Journal of Hydrogen Energy 2022, 47 (8) , 5326-5336. https://doi.org/10.1016/j.ijhydene.2021.11.180
    91. Wendi Chen, Heping Yu, Shengming Chang, Wenming Li, Renjie Liu, Yuxin Wang, Hui Zhang, Zhongyi Zhang. Wheat straw as carbon source to prepare FeCoP2 / N, P Dual-Doped carbon matrix as bifunctional catalyst for application in rechargeable Zinc-air and Aluminum-air batteries. Applied Surface Science 2022, 573 , 151486. https://doi.org/10.1016/j.apsusc.2021.151486
    92. Yuan Kong, Yi Wang, Wei Chu, Zhongqing Liu. Tailoring surface and interface electronic structure of NiFe LDH via V doping for enhanced oxygen evolution reaction. Journal of Alloys and Compounds 2021, 885 , 160929. https://doi.org/10.1016/j.jallcom.2021.160929
    93. Adewale K. Ipadeola, Aderemi B. Haruna, Lesego Gaolatlhe, Augustus K. Lebechi, Jiashen Meng, Quanquan Pang, Kamel Eid, Aboubakr M. Abdullah, Kenneth I. Ozoemena. Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zinc‐Air Batteries. ChemElectroChem 2021, 8 (21) , 3998-4018. https://doi.org/10.1002/celc.202100574
    94. Yubo Sun, Yao Li, Shijie You, Xuerui Li, Ying Zhang, Zhuang Cai, Mingyang Liu, Nanqi Ren, Jinlong Zou. Fe3C/CoFe2O4 nanoparticles wrapped in one-dimensional MIL-53(Fe)-derived carbon nanofibers as efficient dual-function oxygen catalysts. Chemical Engineering Journal 2021, 424 , 130460. https://doi.org/10.1016/j.cej.2021.130460
    95. Zeenat Shafi, Zahoor Ahmad, Khurram Saleem Joya, Shahid Iqbal, Muhammad Naeem Khan. Designing of noble metal free high performance mesoporous electrocatalysts for water splitting. International Journal of Hydrogen Energy 2021, 46 (80) , 39799-39809. https://doi.org/10.1016/j.ijhydene.2021.09.211
    96. Hainan Sun, Sanzhao Song, Xiaomin Xu, Jie Dai, Jie Yu, Wei Zhou, Zongping Shao, WooChul Jung. Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials 2021, 11 (37) https://doi.org/10.1002/aenm.202101937
    97. Dong Liu, Pengfei Zhou, Haoyun Bai, Haoqiang Ai, Xinyu Du, Mingpeng Chen, Di Liu, Weng Fai Ip, Kin Ho Lo, Chi Tat Kwok, Shi Chen, Shuangpeng Wang, Guichuan Xing, Xuesen Wang, Hui Pan. Development of Perovskite Oxide‐Based Electrocatalysts for Oxygen Evolution Reaction. Small 2021, 17 (43) https://doi.org/10.1002/smll.202101605
    98. Hamidreza Arandiyan, Sajjad S. Mofarah, Charles C. Sorrell, Esmail Doustkhah, Baharak Sajjadi, Derek Hao, Yuan Wang, Hongyu Sun, Bing-Jie Ni, Mehran Rezaei, Zongping Shao, Thomas Maschmeyer. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews 2021, 50 (18) , 10116-10211. https://doi.org/10.1039/D0CS00639D
    99. Yi Liang, Dongdong Ye, Ning Han, Ping Liang, Jiaqi Wang, Guangjun Yang, Chengkai Zhang, Xin He, Mei Chen, Chi Zhang. Nanoporous silver-modified LaCoO3-δ perovskite for oxygen reduction reaction. Electrochimica Acta 2021, 391 , 138908. https://doi.org/10.1016/j.electacta.2021.138908
    100. Anand Parkash. CTAB-caped Cu nanoparticles doped on zeolitic imidazolate framework-ZIF-67 as bifunctional catalysts for oxygen-reduction and evolution reactions in alkaline media. Journal of Porous Materials 2021, 28 (4) , 1245-1260. https://doi.org/10.1007/s10934-021-01076-2
    Load all citations