ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells

  • Liyang Yu*
    Liyang Yu
    College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
    *E-mail: [email protected] (L.Y.).
    More by Liyang Yu
  • Deping Qian
    Deping Qian
    Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
    More by Deping Qian
  • Sara Marina
    Sara Marina
    POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
    More by Sara Marina
  • Ferry A. A. Nugroho
    Ferry A. A. Nugroho
    Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
  • Anirudh Sharma
    Anirudh Sharma
    Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
    Laboratoire de Chimie des Polymères Organiques (LCPO), University of Bordeaux, UMR 5629, B8 Allée Geoffroy Saint Hilaire, 33615 Pessac Cedex, France
  • Sandra Hultmark
    Sandra Hultmark
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
  • Anna I. Hofmann
    Anna I. Hofmann
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
  • Renee Kroon
    Renee Kroon
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
    More by Renee Kroon
  • Johannes Benduhn
    Johannes Benduhn
    Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
  • Detlef-M. Smilgies
    Detlef-M. Smilgies
    Cornell High Energy Synchrotron Source (CHESS), Ithaca, New York 14850, United States
  • Koen Vandewal
    Koen Vandewal
    Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
  • Mats R. Andersson
    Mats R. Andersson
    Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
  • Christoph Langhammer
    Christoph Langhammer
    Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
  • Jaime Martín
    Jaime Martín
    POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
    Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
  • Feng Gao
    Feng Gao
    Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
    More by Feng Gao
  • , and 
  • Christian Müller*
    Christian Müller
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
    *E-mail: [email protected] (C.M.).
Cite this: ACS Appl. Mater. Interfaces 2019, 11, 24, 21766–21774
Publication Date (Web):June 7, 2019
https://doi.org/10.1021/acsami.9b04554
Copyright © 2019 American Chemical Society
ACS AuthorChoiceACS AuthorChoice
Article Views
4691
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (6 MB)
Supporting Info (1)»

Abstract

Organic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature Tg of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high Tg of ∼180 °C. Nanoscopic crystallites of a low-temperature polymorph are able to form through a diffusion-limited crystallization process. The resulting fine-grained nanostructure does not evolve further with time and hence is characterized by a high degree of thermal stability. Instead, above Tg, the low temperature polymorph melts, and micrometer-sized crystals of a high-temperature polymorph develop, enabled by more rapid diffusion and hence long-range mass transport. This leads to the same detrimental decrease in photovoltaic performance that is known to occur also in the case of fullerene-based blends. Besides explaining the superior thermal stability of non-fullerene blends at relatively high temperatures, our work introduces a new rationale for the design of bulk heterojunctions that is not based on the selection of high-Tg materials per se but diffusion-limited crystallization. The planar structure of ITIC and potentially other non-fullerene acceptors readily facilitates the desired glass-crystal transition, which constitutes a significant advantage over fullerenes, and may pave the way for truly stable organic solar cells.

1. Introduction

ARTICLE SECTIONS
Jump To

The low carbon footprint and short energy payback time projected for organic solar cells hold promise for both small-scale energy harvesting to power wearable electronics and grid-scale electricity generation. To mature into a truly viable technology, it is paramount that organic solar cells exhibit, besides a high efficiency and low manufacturing cost, excellent long-term stability. (1−3) Degradation of an organic solar cell can occur through photochemical processes, (4−6) initiated by exposure to oxygen (7−9) and/or UV irradiation, (4−6,10−12) which can be mitigated through appropriate encapsulation (13,14) and the use of UV filters. (15,16) Additionally, the nanostructure of the active layer is prone to evolve, in particular, upon heating during both fabrication and operation. (17−21) Because the active layer nanostructure of organic photovoltaic blends must be carefully optimized to achieve high device efficiency, (22) any change in the precise distribution of the donor and acceptor material(s) inevitably leads to a deterioration of the solar cell performance.
Much of the current understanding of processes that limit the thermal stability originates from the extensive work that has been carried out on blends based on fullerene acceptors, which have dominated the field of organic solar cells for a long time. Fullerenes such as phenyl-C61-butyric acid methyl ester (PC61BM) can only crystallize above the glass-transition temperature Tg (of the fullerene:polymer blend) where they suffer from a very low nucleation rate. (23) Therefore, fullerenes tend to form micrometer-sized crystals that disrupt the active layer and hence deteriorate its photovoltaic performance. (17,18,20,23−25) Crystallization of fullerenes can be tamed by preventing the crystallization process altogether, which can be achieved by selecting donor polymers with a high Tg, (20,25−28) the use of fullerene alloys (29−35) or dimers, (36,37) and by cross-linking. (38−41) Alternatively, crystallization can be controlled by enhancing the density of nuclei through the addition of a nucleating agent such as unsubstituted C60. (42,43) It is, however, not evident whether knowledge gained from fullerene-based photovoltaics can be applied to other material systems such as those based on alternative acceptors.
Currently, non-fullerene acceptors receive considerable attention because they now routinely lead to new record efficiencies of organic solar cells, reaching up to 15.7% in the case of single junction devices. (44−50) Furthermore, there is a growing emphasis on the design of acceptors that show potential for a more cost-effective synthesis than that of fullerenes, absorb more strongly and display better chemical and thermal stability. Devices comprising materials such as the widely studied indacenodithienothiophene-based acceptor ITIC (see Figure 1a for chemical structure) now rival or even surpass the thermal stability of fullerene-based blends. (44,51,52) For instance, blends of ITIC and the benzodithiophene-benzodithiophenedione-based donor copolymer PBDB-T (53) (see Figure 1a for chemical structure) feature an unaltered solar cell performance at 100 °C for an extended period of time. (44) Despite the highly promising thermal stability of blends comprising non-fullerene acceptors, there is a lack of studies that explore the underlying thermodynamic and kinetic processes that underpin their thermal evolution.

Figure 1

Figure 1. (a) Chemical structures of ITIC and PBDB-T; (b) first heating DSC thermograms of 1:1 ITIC:PBDB-T and the neat materials, solution cast from chlorobenzene (dashed baseline; exothermic recrystallization enlarged and colored red); (c) composite contour plot of out-of-plane integrated GIWAXS diffractograms of 1:1 ITIC:PBDB-T annealed for 10 min at various temperatures.

We, therefore, set out to study the crystallization behavior of the non-fullerene acceptor ITIC and its impact on the thermal stability of its blends with PBDB-T. We observe that, in contrast to fullerene-based blends, the acceptor is able to crystallize at temperatures considerably below its Tg. This glass-crystal transition is known in the context of amorphous drugs, which are stored in a glassy state and must not crystallize to preserve their superior solubility and bioavailability. (26,54,55) Gratifyingly, we find that diffusion-limited crystallization below the Tg offers unique advantages for organic photovoltaic blends because it leads to the growth of nanometer-sized acceptor crystals and hence a highly metastable nanostructure that is characterized by excellent thermal stability.

2. Results and Discussion

ARTICLE SECTIONS
Jump To

We started our investigation with thermal analysis of ITIC:PBDB-T blends using differential scanning calorimetry (DSC) at a scan rate of 10 °C min–1. We purified the acceptor material immediately prior to our experiments because proton nuclear magnetic resonance (1H NMR) showed that ITIC gradually degrades during storage in air (Figure S1, Supporting Information). The first heating thermogram of the polymer cast from chlorobenzene is featureless apart from a very shallow exotherm (Figure 1b). In contrast, for ITIC, we observe, in addition to a shallow exotherm around 100 °C, a distinct endotherm with a peak at 180 °C immediately followed by a sharp exotherm starting at 190 °C. We conclude that the acceptor is initially semicrystalline and above 190 °C, goes through a melting and recrystallization step, likely due to a polymorph change. The first heating DSC thermograms of the solution cast blend material (1:1 weight ratio) reveal the same features that are present for neat ITIC and a more pronounced broad exotherm around 100 °C. The exotherm around 100 °C and endotherm at 180 °C display an almost identical enthalpy of about 8.7 J g–1 (calculated based on the weight of ITIC, see Figure S2 of the Supporting Information) in the case of both the neat acceptor and the blend, which suggests that, after solidification from the solution, the acceptor material is mostly amorphous. Initially, at least some acceptor molecules are likely to reside in the polymer-rich matrix. Hence, the aggregation of the polymer upon heating, indicated by the shallow DSC exotherm and increase in diffraction intensity (Figure S3, Supporting Information), assists the phase separation and crystallization of ITIC. To confirm that ITIC underwent a polymorph change, we monitored the nanostructure of the 1:1 blend material annealed at various temperatures with grazing incidence wide-angle X-ray scattering (GIWAXS) (Figure 1c). Above 100 °C, we observe the appearance of a diffraction around 15.5 nm–1 (see Figure S4 of Supporting Information for line cut at 160 °C), which is a characteristic of neat ITIC solidified from chlorobenzene (Figure S3, Supporting Information). Above 180 °C, we observe an abrupt change in the scattering pattern, characterized by the appearance of a high intensity diffraction at 15 nm–1, consistent with neat ITIC annealed in this temperature range. We conclude that ITIC undergoes a change in the polymorph at 180 °C, and we label the low- and high-temperature polymorphs as polymorphs I and II, respectively (cf. Figure 1c).
To explore the thermotropic behavior of ITIC in more detail, we employed fast scanning calorimetry (FSC). We performed physical aging experiments at various temperatures to determine the upper limit of the Tg. (56) Physical aging can only take place below the glass-transition temperature as long as at least some molecular reorganization is permitted at the experimental timescale. An endothermic overshoot in a calorimetric heating scan subsequent to extended aging is a sign that the glassy-state system is able to spontaneously evolve toward a more equilibrated thermodynamic state reducing its enthalpy and volume below the Tg. In our set of experiments, we subjected the materials to rapid heating at 4000 K s–1, both after annealing (aging) at different temperatures Tann for 30 min and after quenching from 450 °C; the latter step allowed us to obtain reference scans of the material that did not have time to crystallize or relax (see Figure 2a for thermal history of FSC scans). For both, quenched ITIC and a quenched 1:1 ITIC:PBDB-T blend, an endothermic overshoot can only be detected in the case of aging temperatures below 200 °C, suggesting an upper limit for a Tg of ITIC of about 200 °C (when vitrified at 4000 °C s–1). Hence, we assign the step function in the FSC thermograms with a midpoint around 180 °C to the glass transition of the acceptor material (Figure 2b).

Figure 2

Figure 2. (a) Protocol used for FSC measurements where Tann is the annealing temperature; (b) first and second heating FSC thermograms of PBDB-T, 1:1 ITIC:PBDB-T, and ITIC after annealing at Tann (blue) and quenching from 450 °C at 4000 K s–1 (red); (c) DMA thermogram of 1:1 ITIC:PBDB-T showing the storage modulus E′ and loss tangent (tanδ), recorded after a pre-run to 160 °C; (d) plasmonic nanospectroscopy of 1:1 ITIC:PBDB-T showing the relative shift of the localized surface plasmon resonance (LSPR) peak Δλpeak.

Because blending with the polymer does not appear to alter the Tg of the acceptor, we argue that the blend has undergone phase separation and that ITIC-rich domains are present. Indeed, atomic force microscopy (AFM, cf. Figure S5, Supporting Information) shows features on the order of several tens of nanometers in the case of both as-cast and annealed blends. To verify that ITIC has a Tg of ∼180 °C, we employed dynamic mechanical analysis (DMA) and plasmonic nanospectroscopy (Figure 2c,d), as described elsewhere. (57,58) The DMA thermogram of a 1:1 ITIC:PBDB-T blend features a significant drop in storage modulus above 140 °C and the loss tangent (tanδ) peaks at 179 °C, which confirms the high Tg deduced by FSC. Plasmonic nanospectroscopy reveals a Tg in the same temperature range, extrapolated from the change in the rate by which the peak of the plasmonic resonance shifts with temperature.
The endotherm observed for neat ITIC and the 1:1 ITIC:PBDB-T blend in DSC scans closely overlaps in temperature with the enthalpy relaxation found in FSC measurements. Careful examination of the FSC thermograms subsequent to annealing at Tann < Tg reveals two distinguishable endothermic transitions (Figure 2b; rightmost panel). The first transition dominates the signal for ITIC annealed at temperatures up to 120 °C. Instead, for Tann > 120 °C, a second signal located at a slightly higher temperature increases in prominence. We assign the first endothermic transition to the enthalpy recovery associated with the glass transition as its intensity decreases for annealing close to the Tg. The second transition at a slightly higher temperature was not observed until the material was annealed above 0.8 × Tg (∼90 °C) and peaked only below the Tg. This transition could possibly be the trace of melting of polymorph I crystals formed in the temperature range 0.8 × Tg < Tann < Tg. In contrast, for Tann > Tg, melting occurs around 350 °C (Figure 2b) suggesting another polymorph (e.g., polymorph II).
We propose that ITIC, in contrast to fullerene acceptors, is able to crystallize into polymorph I far below its Tg of ∼180 °C through diffusion-limited crystallization (Figure 3). This type of crystallization behavior is common for many pharmaceutical compounds such as paracetamol, indomethacin, celecoxib, nifedipine, and ibuprofen, (59−63) which can crystallize considerably below their glass-transition temperature. (62,64) At temperatures below Tg, the acceptor can only diffuse locally, which allows ITIC molecules to reorganize and join a crystal growth front that is present in their close vicinity. Instead, above Tg, the acceptor solidifies through more rapid and long-range diffusion into polymorph II. The occurrence of distinct polymorphs above and below the Tg and a phase transformation involving the melting of one phase and crystallization of another polymorph have also been reported for ibuprofen. (63)

Figure 3

Figure 3. Schematic illustrating isothermal crystallization of ITIC molecules (blue) within a matrix at various temperatures, with concentric yellow circles illustrating the accessible volume. Below 0.8 × Tg, molecules are frozen and fully localized. In the regime, 0.8 × Tg < Tann < Tg local diffusion allows crystallization into polymorph I nanocrystals. Above Tg but below the melting temperature Tm, long-range mass transport leads to the formation of larger polymorph II crystals.

In a further set of experiments, we investigated how the diffusion-limited crystallization into polymorph I below Tg, and the transformation into polymorph II above Tg affects the distribution of the acceptor material. To this end, we studied thin films with polarized optical microscopy and scanning electron microscopy (SEM). Optical microscopy reveals that crystallites start to appear upon annealing for 10 min at Tann > 100 °C in initially featureless as-cast films (Figure 4). Raman microscopy confirmed that the observed crystallites are composed of ITIC as evidenced by a pronounced signal of the CN stretching vibration (Figure S6, Supporting Information). We observe two different regimes below and above Tg of ∼180 °C, which are characterized by a markedly different size and shape of crystallites. SEM images indicate that polymorph I crystallites have a sheet-like structure with a thickness around 100 nm and a lateral extent of up to 500 nm. Their growth is accompanied by a gradual increase in quenching of the acceptor photoluminescence above 100 °C (Figure S8, Supporting Information). Instead, crystallization of polymorph II above Tg leads to large, micrometer-sized spherulites that can be easily discerned in polarized optical micrographs. In addition, we observe a strong increase in ITIC photoluminescence (Figure S8, Supporting Information). We argue that diffusion-limited crystallization into polymorph I below Tg, in combination with a high tendency of the planar ITIC acceptor to aggregate, likely caused by π–π interactions, leads to nanoscopic crystallites with a high aspect ratio. Crystallization is also assisted by the strong densification of amorphous ITIC annealed/aged below the Tg, suggested by the notable enthalpy recovery found in the FSC aging experiments (see Figure 2b). In contrast, polymorph II crystals form above Tg where long-range mass transport increases the crystal growth rate, resulting in much larger crystallites that likely deteriorate the photovoltaic performance of ITIC:PBDB-T blends.

Figure 4

Figure 4. (a) Polarized optical microscopy images of 1:1 ITIC:PBDB-T thin films deposited on Si wafers annealed at 100 to 240 °C for 10 min compared to (b) DSC heating thermogram of 1:1 ITIC:PBDB-T solution cast from chlorobenzene.

To judge the impact of the two annealing regimes on the nucleation rate, we counted the number of crystallites by analyzing both optical microscopy and SEM images (Figures 5 and 6). For polymorph I, we deduce a nucleation density as high as 1.1 × 108 cm–2 by optical microscopy and 8 × 107 cm–2 by SEM at 160 °C (Figure 5), which is one to two orders of magnitude higher than values reported for PC61BM, (23,43) unless nucleated with C60. (43) Instead, for polymorph II, we estimate from optical micrographs a much lower nucleation density of only 1 × 105 cm–2 at 220 °C. We also investigated the influence of the processing additive 1,8-diiodooctane (DIO) on the populations of polymorph I and II crystallites because DIO is known to improve the photovoltaic performance of ITIC:PBDB-T blends. (44,65,66) From SEM (Figure S9, Supporting Information), we find an even higher nucleation density of 4 × 108 cm–2 for polymorph I crystallites grown at 160 °C for 10 min in films prepared by spin coating using a solution containing 0.5 vol % DIO. In addition, the use of DIO further reduces the lateral extent of ITIC crystallites to now less than 50 nm in sheet thickness.

Figure 5

Figure 5. (a) Polarized optical microscopy images of 1:1 ITIC:PBDB-T thin films deposited on silicon wafers annealed for different duration at 160 °C; (b) crystal area coverage (black open squares) and nucleation density (filled symbols, see Figure S10 of the Supporting Information for the method used to estimate the nucleation density) estimated from optical microscopy images (blue circles, error bar representing the standard deviation) and SEM images (red diamond). The reference is the unannealed film.

Figure 6

Figure 6. (a, b) Two SEM images of ITIC polymorph I crystals, grown at 160 °C in a 1:1 ITIC:PBDB-T thin film deposited on silicon wafers.

To study the impact of the two polymorphs on the photovoltaic performance of ITIC:PBDB-T blends, we constructed a series of organic solar cells consisting of a layer stack of glass/ITO/PEDOT:PSS/active layer/LiF/Al. Initially, we studied devices that differed in the stoichiometry of the active layer blend. Blends with a 1:1 ratio of ITIC and PBDB-T by weight showed the highest short-circuit current density (Jsc) of ∼14 mA cm–2, accompanied by an open-circuit voltage (Voc) of ∼0.9 V and fill factor (FF) of ∼0.5, giving rise to a power conversion efficiency (PCE) of about 7% (Figure S12, Supporting Information). We therefore chose to study the thermal stability of 1:1 ITIC:PBDB-T blends in more detail. To this end, we annealed active layers for 10 min at various temperatures prior to evaporation of the top electrode. The formation of polymorph I crystallites upon annealing at Tann > 100 °C is accompanied by an increase in the fill factor leading to a slight improvement in PCE to 7.5% (Figure 7). Instead, annealing at temperatures close to or above the Tg of ∼180 °C of the acceptor resulted in a gradual deterioration of all photovoltaic parameters. The observed reduction in Voc from 0.9 to 0.85 V is consistent with the appearance of a broad subgap absorption band, visible in sensitive external quantum efficiency (sEQE) measurements (Figure S11, Supporting Information), indicating a change in the energy of the charge transfer state ECT. (67) We argue that the emergence of coarser polymorph II crystals disrupts the nanostructure of the studied ITIC:PBDB-T blends, resulting in a reduced Jsc and FF. The impact of polymorph II crystals on the PCE is, therefore, comparable to the commonly observed reduction in the efficiency of PC61BM-based devices upon growth of micrometer-sized fullerene crystals.

Figure 7

Figure 7. (a–d) Device parameters (solid symbols representing the mean value of eight devices and the error bars representing the standard deviation) of 1:1 ITIC:PBDB-T solar cells with active layers annealed for 10 min at temperatures up to 210 °C: (a) open-circuit voltage Voc (the device architecture is described in the inset), (b) short-circuit current density Jsc, (c) fill factor FF, and (d) power-conversion efficiency PCE. (e) Typical JV characteristics of the reference (unannealed) device and devices annealed at various temperatures. The dark current (dashed gray line) of the reference device is also displayed. (f) PCE of ITIC:PBDB-T solar cells annealed for various time at 160 °C (black solid circles) or 210 °C (open square) (see Figure S13 of the Supporting Information for other device parameters).

In a final set of experiments, we focused on the long-term stability at elevated temperature. We chose to carry out our experiments at 160 °C, which lies only slightly below the Tg of ∼180 °C, where gradual structural changes over a long period of time, for example, a conversion from polymorph I to II, are likely. Note that Zhao et al. have previously reported excellent thermal stability of ITIC:PBDB-T-based solar cells annealed for 10 days at 100 °C. (44) During the first few minutes of annealing, a slight drop in Voc is compensated by an increase in FF, overall leading to a stable PCE for the first 10 min at 160 °C (Figure 7 and Figure S13 of the Supporting Information). At longer times, the PCE gradually deteriorates due to a loss in Jsc, which we assign to a transformation from polymorph I to II, corroborated by optical microscopy and GIWAXS (Figure S14, Supporting Information). Optical microscopy and GIWAXS suggest that the thin film nanostructure is almost unchanged for a much longer duration than 10 min when annealing at 160 °C. We argue that solar cell devices are more sensitive to minor changes in the nanostructure. Regardless, ITIC:PBDB-T-based solar cells offer a sufficiently long processing window of 10 min at 160 °C for rapid solvent removal and lamination, which is needed for high-speed manufacturing and encapsulation. Coincidentally, 160 °C is also the highest continuous service temperature of one of the most heat-resistant types of substrate: poly(ethylene naphthalate) (PEN) films.

3. Conclusions

ARTICLE SECTIONS
Jump To

We have shown that the acceptor ITIC crystallizes in a different way as compared to fullerenes, which bestows blends of ITIC and the polymer PBDB-T with a superior thermal stability. ITIC is able to crystallize at temperatures considerably below its high Tg of ∼180 °C through a glass-crystal transition. This diffusion-limited process leads to a very high nucleation density and hence the formation of a metastable blend nanostructure characterized by nanoscopic crystallites of a low-temperature ITIC polymorph. These nanoscopic polymorph I crystallites do not negatively affect the device performance. In addition, these crystallites do not evolve further with time as long as the temperature remains sufficiently below the Tg, and hence, the nanostructure displays a high degree of thermal stability. Instead, above Tg, long-range diffusion and crystallization of a high-temperature ITIC polymorph result in micrometer-sized crystals, which, similar to micrometer-sized fullerene crystals, have a detrimental impact on the photovoltaic performance. We conclude that diffusion-limited crystallization of non-fullerene acceptors below Tg is a powerful tool to improve the reproducibility (see Figure S15 of the Supporting Information) and long-term stability of organic solar cells and represents a considerable advantage over fullerene acceptors.

4. Experimental Section

ARTICLE SECTIONS
Jump To

4.1. Materials and Purification

ITIC and PBDB-T were purchased from Solarmer Ltd. PBDB-T (Mn = 17 kg mol–1; PDI = 3.7) was used as received. 1H NMR spectra of ITIC were recorded with a 400 MHz nuclear magnetic resonance spectrometer that indicated the presence of impurities in the as-received batch (Figure S1). Aside from the parent proton peaks of ITIC, we observe several additional peaks in the aromatic region of the 1H NMR spectrum, suggesting the presence of one or more unknown impurities. We purified ITIC by flash column chromatography on silica gel with 2:3 dichloromethane:hexane as the eluent. After purification, a 1H NMR spectrum was collected again that corresponded to the previously reported experimental data of ITIC. (68)

4.2. Differential Scanning Calorimetry (DSC)

DSC was conducted at a heating/cooling rate of 10 °C min–1 with a Mettler Toledo DSC2 equipped with a high-sensitivity sensor (HSS9+). Mettler 20 μL Al crucible light sample pans were used. Around 6 mg of material was used for each measurement and collected from films cast at room temperature from chlorobenzene solutions (20 g L–1).

4.3. Fast Scanning Calorimetry (FSC)

FSC was conducted with a Mettler Toledo Flash DSC 1 equipped with an intracooler and nitrogen purge. Thin films were deposited directly on the backside of the FSC chip from 20 g L–1 chlorobenzene solutions. The measurement protocol is shown in Figure 2a.

4.4. Dynamic Mechanical Analysis (DMA)

Measurements were performed under nitrogen flow (60 mL min–1) in a strain-controlled mode (maximum strain <0.1%) at a frequency of 1 Hz and a heating rate of 3 °C min–1 using a TA Instruments Q800 DMA. The materials were embedded in a glass fiber mesh (E-glass supplied by Hexcel) by casting from a 20 g L–1 chlorobenzene solution followed by drying under vacuum at room temperature overnight. The glass mesh was cut into strips at a 45° angle with respect to the fiber elongation to avoid any continuous fibers crossing the length of the sample and contributing to the DMA response (see ref (20) for details).

4.5. Plasmonic Nanospectroscopy

Measurements were done under argon at a heating rate of 5 °C min–1 using sensors comprised of 170 × 20 nm (diameter × height) Au nanodisk arrays, encapsulated with a conformal 10 nm SiO2 film, as described previously. (58) Materials were deposited onto the sensors by spin coating from a 20 g L–1 chlorobenzene solution. The sensors were illuminated using a fiber-coupled halogen lamp (AvaLight-HAL-S, Avantes) while the extinction spectra were continuously recorded by a fiber-coupled fixed grating spectrometer (AvaSpec-1024, Avantes). The shift of the localized surface plasmon resonance (LSPR) peak Δλpeak was obtained by fitting the measured extinction spectra to a 20° polynomial.

4.6. Polarized Optical Microscopy

Images were recorded in a reflecting mode with a Zeiss Axio Scope A1 equipped with a pair of crossed polarizers. Samples were spin coated from a 20 g L–1 chlorobenzene solution on silicon wafers. The microscopies are taken with a Zeiss EC Epiplan 100× length with a numerical aperture of 0.85, a condenser with a numerical aperture of 0.9, and an AxioCam MRc 5 camera. The estimated resolution is 380 nm at a wavelength of 550 nm.

4.7. Atomic Force Microscopy (AFM)

Atomic force microscopy was performed with a Bruker Dimension ICON atomic force microscope in the PeakForce KPFM mode using a PFTUNA tip (k, ∼0.4 N m–1) on samples spin coated on silicon wafers.

4.8. Scanning Electron Microscopy (SEM)

SEM was conducted on areas without top electrodes on the solar cell samples with a Leo Ultra 55 SEM at 3 kV using an InLens detector at a working distance of 9.7 mm.

4.9. Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS)

Measurements were performed at the D-line, Cornell High Energy Synchrotron Source (CHESS) at Cornell University. The X-ray beam with a wavelength of 1.162 Å and size of about 0.5 mm was directed onto the samples at an incident angle of 0.15°. Measurements were done on either the areas without top electrodes on the solar cell samples discussed in this work (Figure 1 and Figure S14) or films deposited on silicon wafers (Figure S3). An optical microscope, located vertically above the sample, was used to monitor the beam and sample location so that only areas free of Al top electrodes were irradiated. A Pilatus 200K detector located 177.2 mm from the sample was used with an exposure time of 3 s.

4.10. Photoluminescence Spectroscopy

Spectra were recorded on thin films as prepared for the solar cells with an Andor spectrometer (Shamrock sr-303i-B, coupled to a Newton EMCCD Si array detector cooled to −60 °C). A 670 nm laser was used as a pumping light source.

4.11. Organic Solar Cell Devices

Solar cell devices were fabricated on glass substrates with indium tin oxide (ITO) as a conductive coating. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was spin coated onto the substrates and dried at 150 °C for 10 min. Then, ITIC:PBDB-T with a 1:1 weight ratio (unless otherwise specified) was spin coated under nitrogen at 2500 rpm for 60 s from a 20 g L–1 chlorobenzene solution containing 0.5 vol % 1,8-diiodooctane (DIO). Annealing was done under nitrogen followed by deposition of LiF and the Al top electrode by thermal evaporation through a mask, which defined an active area of 7 mm2. Devices were measured in air without encapsulation. JV curves (measured in the forward direction with a scan step of 0.04 V) were collected using a Keithley 2400 source meter under AM1.5 illumination provided by a solar simulator (LSH-7320 ABA LED solar simulator) with an intensity equivalent to 1000 W m–2 after a spectral mismatch correction.

4.12. Sensitive External Quantum Efficiency (sEQE)

Measurements were conducted on solar cell devices, which were encapsulated by gluing glass slides on the top of the active area. The light of a quartz halogen lamp (50 W) was chopped at 141 Hz and coupled into a monochromator (Newport Cornerstone 260 1/4 m). The resulting monochromatic light is focused onto the organic solar cell; its short-circuit current is fed to a current–voltage preamplifier and then analyzed with a lock-in amplifier (Signal Recovery 7280 DSP). The time constant of the lock-in amplifier was chosen to be 1 s, and the amplification of the preamplifier was increased to resolve low photocurrents. The sEQE is determined by dividing the photocurrent of the organic solar cell by the flux of incoming photons, which was obtained with a calibrated silicon (Si) and indium–gallium–arsenide (InGaAs) photodiode.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.9b04554.

  • NMR; first heating DSC thermograms; out-of-plane integration of GIWAXS images; qualitative maps of AFM images; Raman spectroscopy; normalized UV–vis absorption; SEM images; polarized optical microscopy; normalized sensitive EQEPV spectra; device parameters; composite contour plot; a plot summarizing PCE of devices (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
  • Authors
    • Deping Qian - Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
    • Sara Marina - POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
    • Ferry A. A. Nugroho - Department of Physics and , Chalmers University of Technology, 41296 Göteborg, SwedenOrcidhttp://orcid.org/0000-0001-5571-0454
    • Anirudh Sharma - Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, AustraliaLaboratoire de Chimie des Polymères Organiques (LCPO), University of Bordeaux, UMR 5629, B8 Allée Geoffroy Saint Hilaire, 33615 Pessac Cedex, FranceOrcidhttp://orcid.org/0000-0003-4841-0108
    • Sandra Hultmark - Department of Chemistry and Chemical Engineering and , Chalmers University of Technology, 41296 Göteborg, Sweden
    • Anna I. Hofmann - Department of Chemistry and Chemical Engineering and , Chalmers University of Technology, 41296 Göteborg, SwedenOrcidhttp://orcid.org/0000-0002-4480-6028
    • Renee Kroon - Department of Chemistry and Chemical Engineering and , Chalmers University of Technology, 41296 Göteborg, Sweden
    • Johannes Benduhn - Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187 Dresden, GermanyOrcidhttp://orcid.org/0000-0001-5683-9495
    • Detlef-M. Smilgies - Cornell High Energy Synchrotron Source (CHESS), Ithaca, New York 14850, United StatesOrcidhttp://orcid.org/0000-0001-9351-581X
    • Koen Vandewal - Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, BelgiumOrcidhttp://orcid.org/0000-0001-5471-383X
    • Mats R. Andersson - Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, AustraliaOrcidhttp://orcid.org/0000-0002-7928-8216
    • Christoph Langhammer - Department of Physics and , Chalmers University of Technology, 41296 Göteborg, Sweden
    • Jaime Martín - POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, SpainIkerbasque, Basque Foundation for Science, E-48011 Bilbao, SpainOrcidhttp://orcid.org/0000-0002-9669-7273
    • Feng Gao - Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, SwedenOrcidhttp://orcid.org/0000-0002-2582-1740
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

We acknowledge financial support from the Knut and Alice Wallenberg Foundation through the project “Mastering Morphology for Solution-borne Electronics”, the Swedish Research Council (grant agreement no. 2016-06146), and the Swedish Foundation for Strategic Research (grant agreement no. RMA15-0052). We thank the Cornell High Energy Synchrotron Source (CHESS), supported by the NSF under award DMR-1332208, for providing time for GIWAXS measurements. J.B. and K.V. acknowledge funding from the German Federal Ministry for Education and Research (BMBF) through the InnoProfile project “Organische p-i-n Bauelemente 2.2” (03IPT602X).

References

ARTICLE SECTIONS
Jump To

This article references 68 other publications.

  1. 1
    Jo̷rgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Stability of Polymer Solar Cells. Adv. Mater. 2012, 24, 580612,  DOI: 10.1002/adma.201104187
  2. 2
    Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J. A Roll-to-Roll Process to Flexible Polymer Solar Cells: Model Studies, Manufacture and Operational Stability Studies. J. Mater. Chem. 2009, 19, 54425451,  DOI: 10.1039/b823001c
  3. 3
    Grossiord, N.; Kroon, J. M.; Andriessen, R.; Blom, P. W. M. Degradation Mechanisms in Organic Photovoltaic Devices. Org. Electron. 2012, 13, 432456,  DOI: 10.1016/j.orgel.2011.11.027
  4. 4
    Rivaton, A.; Tournebize, A.; Gaume, J.; Bussière, P.-O.; Gardette, J.-L.; Therias, S. Photostability of Organic Materials Used in Polymer Solar Cells. Polym. Int. 2014, 63, 13351345,  DOI: 10.1002/pi.4656
  5. 5
    Anselmo, A. S.; Dzwilewski, A.; Svensson, K.; Moons, E. Photodegradation of the Electronic Structure of PCBM and C60 Films in Air. Chem. Phys. Lett. 2016, 652, 220224,  DOI: 10.1016/j.cplett.2016.04.003
  6. 6
    Hintz, H.; Egelhaaf, H.-J.; Lüer, L.; Hauch, J.; Peisert, H.; Chassé, T. Photodegradation of P3HT–A Systematic Study of Environmental Factors. Chem. Mater. 2011, 23, 145154,  DOI: 10.1021/cm102373k
  7. 7
    Tapponnier, A.; Biaggio, I.; Günter, P. Ultrapure C60 Field-Effect Transistors and the Effects of Oxygen Exposure. Appl. Phys. Lett. 2005, 86, 112114,  DOI: 10.1063/1.1883327
  8. 8
    lüer, L.; Egelhaaf, H.-J.; Oelkrug, D.; Cerullo, G.; Lanzani, G.; Huisman, B.-H.; de Leeuw, D. M. Oxygen-Induced Quenching of Photoexcited States in Polythiophene Films. Org. Electron. 2004, 5, 8389,  DOI: 10.1016/j.orgel.2003.12.005
  9. 9
    Egelhaaf, H.-J.; Lüer, L.; Oelkrug, D.; Winter, G.; Haisch, P.; Hanack, M. Influence of Oxygen Doping on the Photoconductivity of π-Conjugated Molecules. Synth. Met. 1997, 84, 897898,  DOI: 10.1016/S0379-6779(96)04201-4
  10. 10
    Lessmann, R.; Hong, Z.; Scholz, S.; Maennig, B.; Riede, M. K.; Leo, K. Aging of Flat Heterojunction Zinc Phthalocyanine/Fullerene C60 Organic Solar Cells. Org. Electron. 2010, 11, 539543,  DOI: 10.1016/j.orgel.2009.12.010
  11. 11
    Eklund, P. C.; Rao, A. M.; Zhou, P.; Wang, Y.; Holden, J. M. Photochemical Transformation of C60 and C70 Films. Thin Solid Films 1995, 257, 185203,  DOI: 10.1016/0040-6090(94)05704-4
  12. 12
    Hamed, A.; Sun, Y. Y.; Tao, Y. K.; Meng, R. L.; Hor, P. H. Effects of Oxygen and Illumination on the in Situ Conductivity of C 60 Thin Films. Phys. Rev. B 1993, 47, 1087310880,  DOI: 10.1103/PhysRevB.47.10873
  13. 13
    Peters, C. H.; Sachs-Quintana, I. T.; Kastrop, J. P.; Beaupré, S.; Leclerc, M.; McGehee, M. D. High Efficiency Polymer Solar Cells with Long Operating Lifetimes. Adv. Energy Mater. 2011, 1, 491494,  DOI: 10.1002/aenm.201100138
  14. 14
    Giannouli, M.; Drakonakis, V. M.; Savva, A.; Eleftheriou, P.; Florides, G.; Choulis, S. A. Methods for Improving the Lifetime Performance of Organic Photovoltaics with Low-Costing Encapsulation. ChemPhysChem 2015, 16, 11341154,  DOI: 10.1002/cphc.201402749
  15. 15
    Córcoles, L.; Abad, J.; Padilla, J.; Urbina, A. Wavelength Influence on the Photodegradation of P3HT:PCBM Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 141, 423428,  DOI: 10.1016/j.solmat.2015.06.023
  16. 16
    Fernandes, R. V.; Bristow, N.; Stoichkov, V.; Anizelli, H. S.; Duarte, J. L.; Laureto, E.; Kettle, J. Development of Multidye UV Filters for OPVs Using Luminescent Materials. J. Phys. D: Appl. Phys. 2017, 50, 025103  DOI: 10.1088/1361-6463/50/2/025103
  17. 17
    Zhao, J.; Swinnen, A.; van Assche, G.; Manca, J.; Vanderzande, D.; van Mele, B. Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. J. Phys. Chem. B 2009, 113, 15871591,  DOI: 10.1021/jp804151a
  18. 18
    Bertho, S.; Janssen, G.; Cleij, T. J.; Conings, B.; Moons, W.; Gadisa, A.; D’Haen, J.; Goovaerts, E.; Lutsen, L.; Manca, J.; Vanderzande, D. Effect of Temperature on the Morphological and Photovoltaic Stability of Bulk Heterojunction Polymer:Fullerene Solar Cells. Sol. Energy Mater. Sol. Cells 2008, 92, 753760,  DOI: 10.1016/j.solmat.2008.01.006
  19. 19
    Yang, X.; Loos, J. Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control. Macromolecules 2007, 40, 13531362,  DOI: 10.1021/ma0618732
  20. 20
    Müller, C.; Bergqvist, J.; Vandewal, K.; Tvingstedt, K.; Anselmo, A. S.; Magnusson, R.; Alonso, M. I.; Moons, E.; Arwin, H.; Campoy-Quiles, M.; Inganäs, O. Phase Behaviour of Liquid-Crystalline Polymer/Fullerene Organic photovoltaic Blends: Thermal Stability and Miscibility. J. Mater. Chem. 2011, 21, 1067610684,  DOI: 10.1039/c1jm11239b
  21. 21
    Yang, X.; Van Duren, J. K. J.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Morphology and Thermal Stability of the Active Layer in Poly(p-Phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices. Macromolecules 2004, 37, 21512158,  DOI: 10.1021/ma035620+
  22. 22
    Reyes-Reyes, M.; Kim, K.; Carroll, D. L. High-Efficiency Photovoltaic Devices Based on Annealed Poly(3-Hexylthiophene) and 1-(3-Methoxycarbonyl)-Propyl-1- Phenyl-(6,6)C61 Blends. Appl. Phys. Lett. 2005, 87, 083506  DOI: 10.1063/1.2006986
  23. 23
    Lindqvist, C.; Sanz-Velasco, A.; Wang, E.; Bäcke, O.; Gustafsson, S.; Olsson, E.; Andersson, M. R.; Müller, C. Nucleation-Limited Fullerene Crystallisation in a Polymer-Fullerene Bulk-Heterojunction Blend. J. Mater. Chem. A 2013, 1, 71747180,  DOI: 10.1039/c3ta11018d
  24. 24
    Hindson, J. C.; Ulgut, B.; Friend, R. H.; Greenham, N. C.; Norder, B.; Kotlewski, A.; Dingemans, T. J. All-Aromatic Liquid Crystal Triphenylamine-Based Poly(Azomethine)s as Hole Transport Materials for Opto-Electronic Applications. J. Mater. Chem. 2010, 20, 937944,  DOI: 10.1039/B919159C
  25. 25
    Müller, C. On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability. Chem. Mater. 2015, 27, 27402754,  DOI: 10.1021/acs.chemmater.5b00024
  26. 26
    Laitinen, R.; Löbmann, K.; Strachan, C. J.; Grohganz, H.; Rades, T. Emerging Trends in the Stabilization of Amorphous Drugs. Int. J. Pharm. 2013, 453, 6579,  DOI: 10.1016/j.ijpharm.2012.04.066
  27. 27
    Bergqvist, J.; Lindqvist, C.; Bäcke, O.; Ma, Z.; Tang, Z.; Tress, W.; Gustafsson, S.; Wang, E.; Olsson, E.; Andersson, M. R.; Inganäs, O.; Müller, C. Sub-Glass Transition Annealing Enhances Polymer Solar Cell Performance. J. Mater. Chem. A 2014, 2, 61466152,  DOI: 10.1039/C3TA14165A
  28. 28
    Vandenbergh, J.; Conings, B.; Bertho, S.; Kesters, J.; Spoltore, D.; Esiner, S.; Zhao, J.; Van Assche, G.; Wienk, M. M.; Maes, W.; Lutsen, L.; Van Mele, B.; Janssen, R. A. J.; Manca, J.; Vanderzande, D. J. M. Thermal Stability of Poly[2-Methoxy-5-(2’-Phenylethoxy)-1,4-Phenylenevinylene] (MPE-PPV):Fullerene Bulk Heterojunction Solar Cells. Macromolecules 2011, 44, 84708478,  DOI: 10.1021/ma201911a
  29. 29
    Lindqvist, C.; Bergqvist, J.; Bäcke, O.; Gustafsson, S.; Wang, E.; Olsson, E.; Inganäs, O.; Andersson, M. R.; Müller, C. Fullerene Mixtures Enhance the Thermal Stability of a Non-Crystalline Polymer Solar Cell Blend. Appl. Phys. Lett. 2014, 104, 153301,  DOI: 10.1063/1.4870997
  30. 30
    de Zerio Mendaza, A. D.; Melianas, A.; Rossbauer, S.; Bäcke, O.; Nordstierna, L.; Erhart, P.; Olsson, E.; Anthopoulos, T. D.; Inganäs, O.; Müller, C. High-Entropy Mixtures of Pristine Fullerenes for Solution-Processed Transistors and Solar Cells. Adv. Mater. 2015, 27, 73257331,  DOI: 10.1002/adma.201503530
  31. 31
    de Zerio Mendaza, A. D.; Melianas, A.; Nugroho, F. A. A.; Bäcke, O.; Olsson, E.; Langhammer, C.; Inganäs, O.; Müller, C. A Fullerene Alloy Based Photovoltaic Blend with a Glass Transition Temperature above 200 °C. J. Mater. Chem. A 2017, 5, 41564162,  DOI: 10.1039/C6TA08106A
  32. 32
    Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L.; Sun, Y.; Ma, W.; Zhan, X. Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Adv. Mater. 2016, 28, 80218028,  DOI: 10.1002/adma.201602067
  33. 33
    An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile Ternary Organic Solar Cells: A Critical Review. Energy Environ. Sci. 2016, 9, 281322,  DOI: 10.1039/C5EE02641E
  34. 34
    Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J. Organic Ternary Solar Cells: A Review. Adv. Mater. 2013, 25, 42454266,  DOI: 10.1002/adma.201300623
  35. 35
    de Zerio, A. D.; Müller, C. Glass Forming Acceptor Alloys for Highly Efficient and Thermally Stable Ternary Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1702741,  DOI: 10.1002/aenm.201702741
  36. 36
    Li, Z.; Wong, H. C.; Huang, Z.; Zhong, H.; Tan, C. H.; Tsoi, W. C.; Kim, J. S.; Durrant, J. R.; Cabral, J. T. Performance Enhancement of Fullerene-Based Solar Cells by Light Processing. Nat. Commun. 2013, 4, 2227,  DOI: 10.1038/ncomms3227
  37. 37
    Piersimoni, F.; Degutis, G.; Bertho, S.; Vandewal, K.; Spoltore, D.; Vangerven, T.; Drijkoningen, J.; van Bael, M. K.; Hardy, A.; D’Haen, J.; Maes, W.; Vanderzande, D.; Nesladek, M.; Manca, J. Influence of Fullerene Photodimerization on the PCBM Crystallization in Polymer: Fullerene Bulk Heterojunctions under Thermal Stress. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 12091214,  DOI: 10.1002/polb.23330
  38. 38
    Diacon, A.; Derue, L.; Lecourtier, C.; Dautel, O.; Wantz, G.; Hudhomme, P. Cross-Linkable Azido C 60 -Fullerene Derivatives for Efficient Thermal Stabilization of Polymer Bulk-Heterojunction Solar Cells. J. Mater. Chem. C 2014, 2, 71631767,  DOI: 10.1039/C4TC01178C
  39. 39
    Miyanishi, S.; Tajima, K.; Hashimoto, K. Morphological Stabilization of Polymer Photovoltaic Cells by Using Cross-Linkable Poly(3-(5-Hexenyl)Thiophene). Macromolecules 2009, 42, 16101618,  DOI: 10.1021/ma802839a
  40. 40
    Kim, B. J.; Miyamoto, Y.; Ma, B.; Fréchet, J. M. J. Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Adv. Funct. Mater. 2009, 19, 22732281,  DOI: 10.1002/adfm.200900043
  41. 41
    Drees, M.; Hoppe, H.; Winder, C.; Neugebauer, H.; Sariciftci, N. S.; Schwinger, W.; Schäffler, F.; Topf, C.; Scharber, M. C.; Zhu, Z.; Gaudiana, R. Stabilization of the Nanomorphology of Polymer–Fullerene “Bulk Heterojunction” Blends Using a Novel Polymerizable Fullerene Derivative. J. Mater. Chem. 2005, 15, 51581563,  DOI: 10.1039/b505361g
  42. 42
    Richards, J. J.; Rice, A. H.; Nelson, R. D.; Kim, F. S.; Jenekhe, S. A.; Luscombe, C. K.; Pozzo, D. C. Modification of PCBM Crystallization via Incorporation of C60in Polymer/Fullerene Solar Cells. Adv. Funct. Mater. 2013, 23, 514522,  DOI: 10.1002/adfm.201201100
  43. 43
    Lindqvist, C.; Bergqvist, J.; Feng, C.-C.; Gustafsson, S.; Bäcke, O.; Treat, N. D.; Bounioux, C.; Henriksson, P.; Kroon, R.; Wang, E.; Sanz-Velasco, A.; Kristiansen, P. M.; Stingelin, N.; Olsson, E.; Inganäs, O.; Andersson, M. R.; Mülller, C. Fullerene Nucleating Agents: A Route towards Thermally Stable Photovoltaic Blends. Adv. Energy Mater. 2014, 4, 1301437,  DOI: 10.1002/aenm.201301437
  44. 44
    Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 47344739,  DOI: 10.1002/adma.201600281
  45. 45
    Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 11401151,  DOI: 10.1016/j.joule.2019.01.004
  46. 46
    Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K.-Y.; Marder, S. R.; Zhan, X. Non-Fullerene Acceptors for Organic Solar Cells. Nat. Rev. Mater. 2018, 3, 18003,  DOI: 10.1038/natrevmats.2018.3
  47. 47
    Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 34473507,  DOI: 10.1021/acs.chemrev.7b00535
  48. 48
    Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical Review of the Molecular Design Progress in Non-Fullerene Electron Acceptors towards Commercially Viable Organic Solar Cells. Chem. Soc. Rev. 2019, 48, 15961625,  DOI: 10.1039/C7CS00892A
  49. 49
    Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119128,  DOI: 10.1038/nmat5063
  50. 50
    Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; Röhr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; Anthopoulos, T. D.; Nelson, J.; Heeney, M. An Alkylated Indacenodithieno[3,2-b]Thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses. Adv. Mater. 2018, 30, 1705209,  DOI: 10.1002/adma.201705209
  51. 51
    Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C.-Z.; Russell, T. P.; Chen, H. An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Adv. Mater. 2018, 30, 1705208,  DOI: 10.1002/adma.201705208
  52. 52
    Lee, H. K. H.; Durrant, J. R.; Li, Z.; Tsoi, W. C. Stability Study of Thermal Cycling on Organic Solar Cells. J. Mater. Res. 2018, 33, 19021908,  DOI: 10.1557/jmr.2018.167
  53. 53
    Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z.; Hou, J. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules 2012, 45, 96119617,  DOI: 10.1021/ma301900h
  54. 54
    Developing Solid Oral Dosage Forms, Qiu, Y., Chen, Y., Zhang, G. G., Yu, L., Mantri, R. V.; Academic Press, 2009.
  55. 55
    Sun, Y.; Zhu, L.; Wu, T.; Cai, T.; Gunn, E. M.; Yu, L. Stability of Amorphous Pharmaceutical Solids: Crystal Growth Mechanisms and Effect of Polymer Additives. AAPS J. 2012, 14, 380388,  DOI: 10.1208/s12248-012-9345-6
  56. 56
    Martín, J.; Stingelin, N.; Cangialosi, D. Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer. J. Phys. Chem. Lett. 2018, 9, 990995,  DOI: 10.1021/acs.jpclett.7b03110
  57. 57
    Sharma, A.; Pan, X.; Campbell, J. A.; Andersson, M. R.; Lewis, D. A. Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells. Macromolecules 2017, 50, 33473354,  DOI: 10.1021/acs.macromol.7b00430
  58. 58
    Nugroho, F. A. A.; Diaz de Zerio Mendaza, A.; Lindqvist, C.; Antosiewicz, T. J.; Müller, C.; Langhammer, C. Plasmonic Nanospectroscopy for Thermal Analysis of Organic Semiconductor Thin Films. Anal. Chem. 2017, 89, 25752582,  DOI: 10.1021/acs.analchem.6b04807
  59. 59
    Grzybowska, K.; Paluch, M.; Grzybowski, A.; Wojnarowska, Z.; Hawelek, L.; Kolodziejczyk, K.; Ngai, K. L. Molecular Dynamics and Physical Stability of Amorphous Anti-Inflammatory Drug: Celecoxib. J. Phys. Chem. B 2010, 114, 1279212801,  DOI: 10.1021/jp1040212
  60. 60
    Kissi, E. O.; Grohganz, H.; Löbmann, K.; Ruggiero, M. T.; Zeitler, J. A.; Rades, T. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. J. Phys. Chem. B 2018, 122, 28032808,  DOI: 10.1021/acs.jpcb.7b10105
  61. 61
    Sibik, J.; Löbmann, K.; Rades, T.; Zeitler, J. A. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy. Mol. Pharmaceutics 2015, 12, 30623068,  DOI: 10.1021/acs.molpharmaceut.5b00330
  62. 62
    Kaminska, E.; Tarnacka, M.; Kaminski, K.; Ngai, K. L.; Paluch, M. Changes in Dynamics of the Glass-Forming Pharmaceutical Nifedipine in Binary Mixtures with Octaacetylmaltose. Eur. J. Pharm. Biopharm. 2015, 97, 185191,  DOI: 10.1016/j.ejpb.2015.09.010
  63. 63
    Dudognon, E.; Danède, F.; Descamps, M.; Correia, N. T. Evidence for a New Crystalline Phase of Racemic Ibuprofen. Pharm. Res. 2008, 25, 28532858,  DOI: 10.1007/s11095-008-9655-7
  64. 64
    Nath, R.; el Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R. Relaxation in the Glass Former Acetylsalicylic Acid Studied by Deuteron Magnetic Resonance and Dielectric Spectroscopy. Phys. Rev. E 2006, 74, 021506  DOI: 10.1103/PhysRevE.74.021506
  65. 65
    Zhao, W.; Zhang, S.; Hou, J. Realizing 11.3% Efficiency in Fullerene-Free Polymer Solar Cells by Device Optimization. Sci. China Chem. 2016, 59, 15741582,  DOI: 10.1007/s11426-016-0198-0
  66. 66
    Lin, Y.; Jin, Y.; Dong, S.; Zheng, W.; Yang, J.; Liu, A.; Liu, F.; Jiang, Y.; Russell, T. P.; Zhang, F.; Huang, F.; Hou, L. Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Adv. Energy Mater. 2018, 8, 1701942,  DOI: 10.1002/aenm.201701942
  67. 67
    Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the Open-Circuit Voltage to Interface Molecular Properties of Donor:Acceptor Bulk Heterojunction Solar Cells. Phys. Rev. B 2010, 81, 125204,  DOI: 10.1103/PhysRevB.81.125204
  68. 68
    Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 11701174,  DOI: 10.1002/adma.201404317

Cited By

This article is cited by 57 publications.

  1. Xun Pan, Jonas Mattiasson Bjuggren, Martyn Jevric, Wen Liang Tan, Christopher R. McNeill, Mats R. Andersson. Achieving High-Efficiency Organic Photovoltaics from a New Completely Amorphous Donor Polymer. Chemistry of Materials 2022, 34 (11) , 5103-5115. https://doi.org/10.1021/acs.chemmater.2c00533
  2. Jules Bertrandie, Anirudh Sharma, Nicola Gasparini, Diego Rosas Villalva, Sri Harish K. Paleti, Nimer Wehbe, Joel Troughton, Derya Baran. Air-Processable and Thermally Stable Hole Transport Layer for Non-Fullerene Organic Solar Cells. ACS Applied Energy Materials 2022, 5 (1) , 1023-1030. https://doi.org/10.1021/acsaem.1c03378
  3. Abdul Azeez, K. S. Narayan. Dominant Effect of UV-Light-Induced “Burn-in” Degradation in Non-Fullerene Acceptor Based Organic Solar Cells. The Journal of Physical Chemistry C 2021, 125 (23) , 12531-12540. https://doi.org/10.1021/acs.jpcc.1c02119
  4. Aijie Liu, Lars Gedda, Martin Axelsson, Mariia Pavliuk, Katarina Edwards, Leif Hammarström, Haining Tian. Panchromatic Ternary Polymer Dots Involving Sub-Picosecond Energy and Charge Transfer for Efficient and Stable Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2021, 143 (7) , 2875-2885. https://doi.org/10.1021/jacs.0c12654
  5. Pranab Deb, Ryan T. Grimm, John K. Grey. Unique Degradation Signatures of Organic Solar Cells with Nonfullerene Electron Acceptors. ACS Applied Materials & Interfaces 2021, 13 (4) , 5338-5348. https://doi.org/10.1021/acsami.0c21367
  6. Aaron Kirkey, Erik J. Luber, Bing Cao, Brian C. Olsen, Jillian M. Buriak. Optimization of the Bulk Heterojunction of All-Small-Molecule Organic Photovoltaics Using Design of Experiment and Machine Learning Approaches. ACS Applied Materials & Interfaces 2020, 12 (49) , 54596-54607. https://doi.org/10.1021/acsami.0c14922
  7. Elham Rezasoltani, Anne A. Y. Guilbert, Jun Yan, Xabier Rodríguez-Martínez, Mohammed Azzouzi, Flurin Eisner, Sachetan M. Tuladhar, Zeinab Hamid, Andrew Wadsworth, Iain McCulloch, Mariano Campoy-Quiles, Jenny Nelson. Correlating the Phase Behavior with the Device Performance in Binary Poly-3-hexylthiophene: Nonfullerene Acceptor Blend Using Optical Probes of the Microstructure. Chemistry of Materials 2020, 32 (19) , 8294-8305. https://doi.org/10.1021/acs.chemmater.0c02093
  8. Ferry Anggoro Ardy Nugroho, David Albinsson, Tomasz J. Antosiewicz, Christoph Langhammer. Plasmonic Metasurface for Spatially Resolved Optical Sensing in Three Dimensions. ACS Nano 2020, 14 (2) , 2345-2353. https://doi.org/10.1021/acsnano.9b09508
  9. Youdi Zhang, Ying Wang, Tao Yang, Tao Liu, Yiqun Xiao, Xinhui Lu, He Yan, Zhongyi Yuan, Yiwang Chen, Yongfang Li. Thioether Bond Modification Enables Boosted Photovoltaic Performance of Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (35) , 32218-32224. https://doi.org/10.1021/acsami.9b11700
  10. Anirudh Sharma, Saeed Masoumi, Desta Gedefaw, Seamus O'Shaughnessy, Derya Baran, Amir Pakdel. Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today 2022, 29 , 101614. https://doi.org/10.1016/j.apmt.2022.101614
  11. Youngwoo Kwon, Chihyung Lee, Minwoo Nam, Doo-Hyun Ko. Revealing conflicting effects of solvent additives on morphology and performance of non-fullerene organic photovoltaics under different illuminance conditions. Dyes and Pigments 2022, 207 , 110754. https://doi.org/10.1016/j.dyepig.2022.110754
  12. Haoyu Zhao, Jordan J. Shanahan, Stephanie Samson, Zhaofan Li, Guorong Ma, Nathaniel Prine, Luke Galuska, Yunfei Wang, Wenjie Xia, Wei You, Xiaodan Gu. Manipulating Conjugated Polymer Backbone Dynamics through Controlled Thermal Cleavage of Alkyl Side Chains. Macromolecular Rapid Communications 2022, 118 , 2200533. https://doi.org/10.1002/marc.202200533
  13. Sri Harish Kumar Paleti, Sandra Hultmark, Nicolas Ramos, Nicola Gasparini, Abdul-Hamid Emwas, Jaime Martin, Christian Müller, Derya Baran. Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cells. Solar RRL 2022, 37 , 2200436. https://doi.org/10.1002/solr.202200436
  14. Amirhadi Alesadi, Zhiqiang Cao, Zhaofan Li, Song Zhang, Haoyu Zhao, Xiaodan Gu, Wenjie Xia. Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure. Cell Reports Physical Science 2022, 3 (6) , 100911. https://doi.org/10.1016/j.xcrp.2022.100911
  15. Xueyan Hou, Andrew J. Clarke, Mohammed Azzouzi, Jun Yan, Flurin Eisner, Xingyuan Shi, Mark F. Wyatt, T. John S. Dennis, Zhe Li, Jenny Nelson. Relationship between molecular properties and degradation mechanisms of organic solar cells based on bis-adducts of phenyl-C 61 butyric acid methyl ester. Journal of Materials Chemistry C 2022, 10 (20) , 7875-7885. https://doi.org/10.1039/D1TC05768E
  16. Yilei Wu, Sebastian Schneider, Yue Yuan, Ryan M. Young, Tommaso Francese, Iram F. Mansoor, Peter J. Dudenas, Yusheng Lei, Enrique D. Gomez, Dean M. DeLongchamp, Mark C. Lipke, Giulia Galli, Michael R. Wasielewski, John B. Asbury, Michael F. Toney, Zhenan Bao. Twisted A‐D‐A Type Acceptors with Thermally‐Activated Delayed Crystallization Behavior for Efficient Nonfullerene Organic Solar Cells. Advanced Energy Materials 2022, 12 (18) , 2103957. https://doi.org/10.1002/aenm.202103957
  17. Sara Marina, Edgar Gutierrez-Fernandez, Junkal Gutierrez, Marco Gobbi, Nicolás Ramos, Eduardo Solano, Jeromy Rech, Wei You, Luis Hueso, Agnieszka Tercjak, Harald Ade, Jaime Martin. Semi-paracrystallinity in semi-conducting polymers. Materials Horizons 2022, 9 (4) , 1196-1206. https://doi.org/10.1039/D1MH01349A
  18. Bradley Kirk, Xun Pan, Martyn Jevric, Gunther Andersson, Mats R. Andersson. Introducing neat fullerenes to improve the thermal stability of slot-die coated organic solar cells. Materials Advances 2022, 3 (6) , 2838-2849. https://doi.org/10.1039/D2MA00120A
  19. Mengyuan Gao, Yang Liu, Kaihu Xian, Zhongxiang Peng, Kangkang Zhou, Junwei Liu, Saimeng Li, Fei Xie, Wenchao Zhao, Jidong Zhang, Xuechen Jiao, Long Ye. Thermally stable poly(3‐hexylthiophene): Nonfullerene solar cells with efficiency breaking 10%. Aggregate 2022, 4 https://doi.org/10.1002/agt2.190
  20. Tejasvini Sharma, Prerna Mahajan, Mohammad Adil Afroz, Anupriya Singh, Yukta, Naveen Kumar Tailor, Smruti Purohit, Sonali Verma, Bhavya Padha, Vinay Gupta, Sandeep Arya, Soumitra Satapathi. Recent Progress in Advanced Organic Photovoltaics: Emerging Techniques and Materials. ChemSusChem 2022, 15 (5) https://doi.org/10.1002/cssc.202101067
  21. Yatzil Alejandra Avalos Quiroz, Tomoyuki Koganezawa, Pavlo Perkhun, Elena Barulina, Carmen M. Ruiz, Jörg Ackermann, Noriyuki Yoshimoto, Christine Videlot‐Ackermann. Exploring Charge Transport in High‐Temperature Polymorphism of ITIC Derivatives in Simple Processed Unipolar Bottom Contact Organic Field‐Effect Transistor. Advanced Electronic Materials 2022, 8 (3) , 2100743. https://doi.org/10.1002/aelm.202100743
  22. Guoping Li, Liang-Wen Feng, Subhrangsu Mukherjee, Leighton O. Jones, Robert M. Jacobberger, Wei Huang, Ryan M. Young, Robert M. Pankow, Weigang Zhu, Norman Lu, Kevin L. Kohlstedt, Vinod K. Sangwan, Michael R. Wasielewski, Mark C. Hersam, George C. Schatz, Dean M. DeLongchamp, Antonio Facchetti, Tobin J. Marks. Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy & Environmental Science 2022, 15 (2) , 645-659. https://doi.org/10.1039/D1EE03225A
  23. Kaihu Xian, Yang Liu, Junwei Liu, Jinde Yu, Yifan Xing, Zhongxiang Peng, Kangkang Zhou, Mengyuan Gao, Wenchao Zhao, Guanghao Lu, Jidong Zhang, Jianhui Hou, Yanhou Geng, Long Ye. Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A 2022, 10 (7) , 3418-3429. https://doi.org/10.1039/D1TA10161G
  24. Wenkai Zhong, Ming Zhang, Guillaume Freychet, Gregory M. Su, Lei Ying, Fei Huang, Yong Cao, Yongming Zhang, Cheng Wang, Feng Liu. Decoupling Complex Multi‐Length‐Scale Morphology in Non‐Fullerene Photovoltaics with Nitrogen K‐Edge Resonant Soft X‐ray Scattering. Advanced Materials 2022, 34 (6) , 2107316. https://doi.org/10.1002/adma.202107316
  25. Zhiya Li, Xunchang Wang, Nan Zheng, Aziz Saparbaev, Jiayi Zhang, Cong Xiao, Shiyun Lei, Xufan Zheng, Manxue Zhang, Yuda Li, Biao Xiao, Renqiang Yang. Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy. Energy & Environmental Science 2022, 7 https://doi.org/10.1039/D2EE02107B
  26. Pierluigi Mondelli, Francesco Silvestri, Laura Ciammaruchi, Eduardo Solano, Eduardo Beltrán-Gracia, Esther Barrena, Moritz Riede, Graham Morse. A liquid-crystalline non-fullerene acceptor enabling high-performance organic solar cells. Journal of Materials Chemistry A 2021, 9 (47) , 26917-26928. https://doi.org/10.1039/D1TA07822D
  27. Junwei Liu, Mengyuan Gao, Juhee Kim, Zhihua Zhou, Dae Sung Chung, Hang Yin, Long Ye. Challenges and recent advances in photodiodes-based organic photodetectors. Materials Today 2021, 51 , 475-503. https://doi.org/10.1016/j.mattod.2021.08.004
  28. Long Ye, Mengyuan Gao, Jianhui Hou. Advances and prospective in thermally stable nonfullerene polymer solar cells. Science China Chemistry 2021, 64 (11) , 1875-1887. https://doi.org/10.1007/s11426-021-1087-8
  29. Baocai Du, Yunlong Ma, Chuanhang Guo, Jinlong Cai, Donghui Li, Shili Cheng, Dan Liu, Qingdong Zheng, Tao Wang. Hot‐Casting Boosts Efficiency of Halogen‐Free Solvent Processed Non‐Fullerene Organic Solar Cells. Advanced Functional Materials 2021, 31 (45) , 2105794. https://doi.org/10.1002/adfm.202105794
  30. Wei Li, Dan Liu, Tao Wang. Stability Of Non‐Fullerene Electron Acceptors and Their Photovoltaic Devices. Advanced Functional Materials 2021, 31 (41) , 2104552. https://doi.org/10.1002/adfm.202104552
  31. Liyang Yu, Andrew M. Zeidell, John E. Anthony, Oana D. Jurchescu, Christian Müller. Isothermal crystallization and time-temperature-transformation diagram of the organic semiconductor 5,11-bis(triethylsilylethynyl)anthradithiophene. Journal of Materials Chemistry C 2021, 9 (35) , 11745-11752. https://doi.org/10.1039/D1TC01482J
  32. Yawen Li, Yuze Lin. Planar heterojunctions for reduced non-radiative open-circuit voltage loss and enhanced stability of organic solar cells. Journal of Materials Chemistry C 2021, 9 (35) , 11715-11721. https://doi.org/10.1039/D1TC01536B
  33. Michela Prete, Elisa Ogliani, Mikkel Bregnhøj, Jonas Sandby Lissau, Subham Dastidar, Horst-Günter Rubahn, Sebastian Engmann, Anne Ladegaard Skov, Michael A. Brook, Peter R. Ogilby, Adam Printz, Vida Turkovic, Morten Madsen. Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity. Journal of Materials Chemistry C 2021, 9 (35) , 11838-11850. https://doi.org/10.1039/D1TC01544C
  34. Minjun Kim, Yelim Choi, Dae Hwan Lee, Jihyun Min, Yong‐Jin Pu, Taiho Park. Roles and Impacts of Ancillary Materials for Multi‐Component Blend Organic Photovoltaics towards High Efficiency and Stability. ChemSusChem 2021, 14 (17) , 3475-3487. https://doi.org/10.1002/cssc.202100887
  35. Fei Chen, Ying Zhang, Qi Wang, Mengyuan Gao, Nigel Kirby, Zhongxiang Peng, Yunfeng Deng, Miaomiao Li, Long Ye. High T g Polymer Insulator Yields Organic Photovoltaic Blends with Superior Thermal Stability at 150 o C . Chinese Journal of Chemistry 2021, 39 (9) , 2570-2578. https://doi.org/10.1002/cjoc.202100270
  36. Yunpeng Qin, Nrup Balar, Zhengxing Peng, Abay Gadisa, Indunil Angunawela, Anirban Bagui, Somayeh Kashani, Jianhui Hou, Harald Ade. The performance-stability conundrum of BTP-based organic solar cells. Joule 2021, 5 (8) , 2129-2147. https://doi.org/10.1016/j.joule.2021.06.006
  37. Meiling Zhang, Yuhui Hu, Xiaopeng Xu, Liyang Yu, Ying Li, Qiang Peng. Core effect on indacenodithieno[3,2-b]thiophene dimer based small molecule acceptors for non-fullerene polymer solar cells. Synthetic Metals 2021, 278 , 116812. https://doi.org/10.1016/j.synthmet.2021.116812
  38. Sara Marina, Alberto D. Scaccabarozzi, Edgar Gutierrez‐Fernandez, Eduardo Solano, Aditi Khirbat, Laura Ciammaruchi, Amaia Iturrospe, Alex Balzer, Liyang Yu, Elena Gabirondo, Xavier Monnier, Haritz Sardon, Thomas D. Anthopoulos, Mario Caironi, Mariano Campoy‐Quiles, Christian Müller, Daniele Cangialosi, Natalie Stingelin, Jaime Martin. Polymorphism in Non‐Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional Materials 2021, 31 (29) , 2103784. https://doi.org/10.1002/adfm.202103784
  39. Minkyu Kyeong, Jinho Lee, Matyas Daboczi, Katherine Stewart, Huifeng Yao, Hyojung Cha, Joel Luke, Kwanghee Lee, James R. Durrant, Ji-Seon Kim, Sukwon Hong. Organic cathode interfacial materials for non-fullerene organic solar cells. Journal of Materials Chemistry A 2021, 9 (23) , 13506-13514. https://doi.org/10.1039/D1TA01609A
  40. Artem Levitsky, Sebastian Alexander Schneider, Eugen Rabkin, Michael F. Toney, Gitti L. Frey. Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Materials Horizons 2021, 8 (4) , 1272-1285. https://doi.org/10.1039/D0MH01805H
  41. Desiree Adamczak, Andrea Perinot, Hartmut Komber, Anna Illy, Sandra Hultmark, Bianca Passarella, Wen Liang Tan, Sebastian Hutsch, David Becker-Koch, Charlotte Rapley, Alberto D. Scaccabarozzi, Martin Heeney, Yana Vaynzof, Frank Ortmann, Christopher R. McNeill, Christian Müller, Mario Caironi, Michael Sommer. Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. Journal of Materials Chemistry C 2021, 9 (13) , 4597-4606. https://doi.org/10.1039/D1TC00043H
  42. Yawen Li, Tengfei Li, Yuze Lin. Stability: next focus in organic solar cells based on non-fullerene acceptors. Materials Chemistry Frontiers 2021, 5 (7) , 2907-2930. https://doi.org/10.1039/D1QM00027F
  43. Baocai Du, Renyong Geng, Wenliang Tan, Yuchao Mao, Donghui Li, Xue Zhang, Dan Liu, Weihua Tang, Wenchao Huang, Tao Wang. Heating induced aggregation in non-fullerene organic solar cells towards high performance. Journal of Energy Chemistry 2021, 54 , 131-137. https://doi.org/10.1016/j.jechem.2020.05.054
  44. Baocai Du, Jicheng Yi, He Yan, Tao Wang. Temperature Induced Aggregation of Organic Semiconductors. Chemistry – A European Journal 2021, 27 (9) , 2908-2919. https://doi.org/10.1002/chem.202002559
  45. Yiwen Wang, Jinho Lee, Xueyan Hou, Chiara Labanti, Jun Yan, Eva Mazzolini, Amber Parhar, Jenny Nelson, Ji‐Seon Kim, Zhe Li. Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptor‐Based Organic Solar Cells. Advanced Energy Materials 2021, 11 (5) , 2003002. https://doi.org/10.1002/aenm.202003002
  46. Yiqun Xiao, Jun Yuan, Guodong Zhou, Ka Chak Ngan, Xinxin Xia, Jingshuai Zhu, Yingping Zou, Ni Zhao, Xiaowei Zhan, Xinhui Lu. Unveiling the crystalline packing of Y6 in thin films by thermally induced “backbone-on” orientation. Journal of Materials Chemistry A 2021, 3 https://doi.org/10.1039/D1TA05268C
  47. Huawei Hu, Masoud Ghasemi, Zhengxing Peng, Jianquan Zhang, Jeromy James Rech, Wei You, He Yan, Harald Ade. The Role of Demixing and Crystallization Kinetics on the Stability of Non‐Fullerene Organic Solar Cells. Advanced Materials 2020, 32 (49) , 2005348. https://doi.org/10.1002/adma.202005348
  48. William Greenbank, Naas Djeddaoui, Elodie Destouesse, Jani Lamminaho, Michela Prete, Larbi Boukezzi, Thomas Ebel, Lakhdar Bessissa, Horst-Günter Rubahn, Vida Turkovic, Morten Madsen. Degradation Behavior of Scalable Nonfullerene Organic Solar Cells Assessed by Outdoor and Indoor ISOS Stability Protocols. Energy Technology 2020, 8 (12) , 2000295. https://doi.org/10.1002/ente.202000295
  49. Laura Ciammaruchi, Osnat Zapata-Arteaga, Edgar Gutiérrez-Fernández, Jaime Martin, Mariano Campoy-Quiles. Structure dependent photostability of ITIC and ITIC-4F. Materials Advances 2020, 1 (8) , 2846-2861. https://doi.org/10.1039/D0MA00458H
  50. Sandra Hultmark, Sri Harish Kumar Paleti, Albert Harillo, Sara Marina, Ferry Anggoro Ardy Nugroho, Yanfeng Liu, Leif K. E. Ericsson, Ruipeng Li, Jaime Martín, Jonas Bergqvist, Christoph Langhammer, Fengling Zhang, Liyang Yu, Mariano Campoy‐Quiles, Ellen Moons, Derya Baran, Christian Müller. Suppressing Co‐Crystallization of Halogenated Non‐Fullerene Acceptors for Thermally Stable Ternary Solar Cells. Advanced Functional Materials 2020, 30 (48) , 2005462. https://doi.org/10.1002/adfm.202005462
  51. Yunpeng Qin, Ye Xu, Zhengxing Peng, Jianhui Hou, Harald Ade. Low Temperature Aggregation Transitions in N3 and Y6 Acceptors Enable Double‐Annealing Method That Yields Hierarchical Morphology and Superior Efficiency in Nonfullerene Organic Solar Cells. Advanced Functional Materials 2020, 30 (46) , 2005011. https://doi.org/10.1002/adfm.202005011
  52. Asif Mahmood, Jin‐Liang Wang. A Review of Grazing Incidence Small‐ and Wide‐Angle X‐Ray Scattering Techniques for Exploring the Film Morphology of Organic Solar Cells. Solar RRL 2020, 4 (10) , 2000337. https://doi.org/10.1002/solr.202000337
  53. Huimin Gu, Lingpeng Yan, Zerui Li, Jianqi Zhang, Qun Luo, Yongzhen Yang, Xuguang Liu, Zhixiang Wei, Chang-Qi Ma. Simultaneous Performance and Stability Improvement of Ternary Polymer Solar Cells Enabled by Modulating the Molecular Packing of Acceptors. Solar RRL 2020, 4 (10) , 2000374. https://doi.org/10.1002/solr.202000374
  54. Andrew Wadsworth, Zeinab Hamid, Jan Kosco, Nicola Gasparini, Iain McCulloch. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Advanced Materials 2020, 32 (38) , 2001763. https://doi.org/10.1002/adma.202001763
  55. Xiaoyan Du, Thomas Heumueller, Wolfgang Gruber, Osbel Almora, Andrej Classen, Jianfei Qu, Feng He, Tobias Unruh, Ning Li, Christoph J. Brabec. Unraveling the Microstructure‐Related Device Stability for Polymer Solar Cells Based on Nonfullerene Small‐Molecular Acceptors. Advanced Materials 2020, 32 (16) , 1908305. https://doi.org/10.1002/adma.201908305
  56. Zeinab Hamid, Andrew Wadsworth, Elham Rezasoltani, Sarah Holliday, Mohammed Azzouzi, Marios Neophytou, Anne A. Y. Guilbert, Yifan Dong, Mark S. Little, Subhrangsu Mukherjee, Andrew A. Herzing, Helen Bristow, R. Joseph Kline, Dean M. DeLongchamp, Artem A. Bakulin, James R. Durrant, Jenny Nelson, Iain McCulloch. Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T‐2DT/Nonfullerene Organic Solar Cells. Advanced Energy Materials 2020, 10 (8) , 1903248. https://doi.org/10.1002/aenm.201903248
  57. Yuliar Firdaus, Qiao He, Yuanbao Lin, Ferry Anggoro Ardy Nugroho, Vincent M. Le Corre, Emre Yengel, Ahmed H. Balawi, Akmaral Seitkhan, Frédéric Laquai, Christoph Langhammer, Feng Liu, Martin Heeney, Thomas D. Anthopoulos. Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. Journal of Materials Chemistry A 2020, 8 (3) , 1164-1175. https://doi.org/10.1039/C9TA11752K
  • Abstract

    Figure 1

    Figure 1. (a) Chemical structures of ITIC and PBDB-T; (b) first heating DSC thermograms of 1:1 ITIC:PBDB-T and the neat materials, solution cast from chlorobenzene (dashed baseline; exothermic recrystallization enlarged and colored red); (c) composite contour plot of out-of-plane integrated GIWAXS diffractograms of 1:1 ITIC:PBDB-T annealed for 10 min at various temperatures.

    Figure 2

    Figure 2. (a) Protocol used for FSC measurements where Tann is the annealing temperature; (b) first and second heating FSC thermograms of PBDB-T, 1:1 ITIC:PBDB-T, and ITIC after annealing at Tann (blue) and quenching from 450 °C at 4000 K s–1 (red); (c) DMA thermogram of 1:1 ITIC:PBDB-T showing the storage modulus E′ and loss tangent (tanδ), recorded after a pre-run to 160 °C; (d) plasmonic nanospectroscopy of 1:1 ITIC:PBDB-T showing the relative shift of the localized surface plasmon resonance (LSPR) peak Δλpeak.

    Figure 3

    Figure 3. Schematic illustrating isothermal crystallization of ITIC molecules (blue) within a matrix at various temperatures, with concentric yellow circles illustrating the accessible volume. Below 0.8 × Tg, molecules are frozen and fully localized. In the regime, 0.8 × Tg < Tann < Tg local diffusion allows crystallization into polymorph I nanocrystals. Above Tg but below the melting temperature Tm, long-range mass transport leads to the formation of larger polymorph II crystals.

    Figure 4

    Figure 4. (a) Polarized optical microscopy images of 1:1 ITIC:PBDB-T thin films deposited on Si wafers annealed at 100 to 240 °C for 10 min compared to (b) DSC heating thermogram of 1:1 ITIC:PBDB-T solution cast from chlorobenzene.

    Figure 5

    Figure 5. (a) Polarized optical microscopy images of 1:1 ITIC:PBDB-T thin films deposited on silicon wafers annealed for different duration at 160 °C; (b) crystal area coverage (black open squares) and nucleation density (filled symbols, see Figure S10 of the Supporting Information for the method used to estimate the nucleation density) estimated from optical microscopy images (blue circles, error bar representing the standard deviation) and SEM images (red diamond). The reference is the unannealed film.

    Figure 6

    Figure 6. (a, b) Two SEM images of ITIC polymorph I crystals, grown at 160 °C in a 1:1 ITIC:PBDB-T thin film deposited on silicon wafers.

    Figure 7

    Figure 7. (a–d) Device parameters (solid symbols representing the mean value of eight devices and the error bars representing the standard deviation) of 1:1 ITIC:PBDB-T solar cells with active layers annealed for 10 min at temperatures up to 210 °C: (a) open-circuit voltage Voc (the device architecture is described in the inset), (b) short-circuit current density Jsc, (c) fill factor FF, and (d) power-conversion efficiency PCE. (e) Typical JV characteristics of the reference (unannealed) device and devices annealed at various temperatures. The dark current (dashed gray line) of the reference device is also displayed. (f) PCE of ITIC:PBDB-T solar cells annealed for various time at 160 °C (black solid circles) or 210 °C (open square) (see Figure S13 of the Supporting Information for other device parameters).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 68 other publications.

    1. 1
      Jo̷rgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Stability of Polymer Solar Cells. Adv. Mater. 2012, 24, 580612,  DOI: 10.1002/adma.201104187
    2. 2
      Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J. A Roll-to-Roll Process to Flexible Polymer Solar Cells: Model Studies, Manufacture and Operational Stability Studies. J. Mater. Chem. 2009, 19, 54425451,  DOI: 10.1039/b823001c
    3. 3
      Grossiord, N.; Kroon, J. M.; Andriessen, R.; Blom, P. W. M. Degradation Mechanisms in Organic Photovoltaic Devices. Org. Electron. 2012, 13, 432456,  DOI: 10.1016/j.orgel.2011.11.027
    4. 4
      Rivaton, A.; Tournebize, A.; Gaume, J.; Bussière, P.-O.; Gardette, J.-L.; Therias, S. Photostability of Organic Materials Used in Polymer Solar Cells. Polym. Int. 2014, 63, 13351345,  DOI: 10.1002/pi.4656
    5. 5
      Anselmo, A. S.; Dzwilewski, A.; Svensson, K.; Moons, E. Photodegradation of the Electronic Structure of PCBM and C60 Films in Air. Chem. Phys. Lett. 2016, 652, 220224,  DOI: 10.1016/j.cplett.2016.04.003
    6. 6
      Hintz, H.; Egelhaaf, H.-J.; Lüer, L.; Hauch, J.; Peisert, H.; Chassé, T. Photodegradation of P3HT–A Systematic Study of Environmental Factors. Chem. Mater. 2011, 23, 145154,  DOI: 10.1021/cm102373k
    7. 7
      Tapponnier, A.; Biaggio, I.; Günter, P. Ultrapure C60 Field-Effect Transistors and the Effects of Oxygen Exposure. Appl. Phys. Lett. 2005, 86, 112114,  DOI: 10.1063/1.1883327
    8. 8
      lüer, L.; Egelhaaf, H.-J.; Oelkrug, D.; Cerullo, G.; Lanzani, G.; Huisman, B.-H.; de Leeuw, D. M. Oxygen-Induced Quenching of Photoexcited States in Polythiophene Films. Org. Electron. 2004, 5, 8389,  DOI: 10.1016/j.orgel.2003.12.005
    9. 9
      Egelhaaf, H.-J.; Lüer, L.; Oelkrug, D.; Winter, G.; Haisch, P.; Hanack, M. Influence of Oxygen Doping on the Photoconductivity of π-Conjugated Molecules. Synth. Met. 1997, 84, 897898,  DOI: 10.1016/S0379-6779(96)04201-4
    10. 10
      Lessmann, R.; Hong, Z.; Scholz, S.; Maennig, B.; Riede, M. K.; Leo, K. Aging of Flat Heterojunction Zinc Phthalocyanine/Fullerene C60 Organic Solar Cells. Org. Electron. 2010, 11, 539543,  DOI: 10.1016/j.orgel.2009.12.010
    11. 11
      Eklund, P. C.; Rao, A. M.; Zhou, P.; Wang, Y.; Holden, J. M. Photochemical Transformation of C60 and C70 Films. Thin Solid Films 1995, 257, 185203,  DOI: 10.1016/0040-6090(94)05704-4
    12. 12
      Hamed, A.; Sun, Y. Y.; Tao, Y. K.; Meng, R. L.; Hor, P. H. Effects of Oxygen and Illumination on the in Situ Conductivity of C 60 Thin Films. Phys. Rev. B 1993, 47, 1087310880,  DOI: 10.1103/PhysRevB.47.10873
    13. 13
      Peters, C. H.; Sachs-Quintana, I. T.; Kastrop, J. P.; Beaupré, S.; Leclerc, M.; McGehee, M. D. High Efficiency Polymer Solar Cells with Long Operating Lifetimes. Adv. Energy Mater. 2011, 1, 491494,  DOI: 10.1002/aenm.201100138
    14. 14
      Giannouli, M.; Drakonakis, V. M.; Savva, A.; Eleftheriou, P.; Florides, G.; Choulis, S. A. Methods for Improving the Lifetime Performance of Organic Photovoltaics with Low-Costing Encapsulation. ChemPhysChem 2015, 16, 11341154,  DOI: 10.1002/cphc.201402749
    15. 15
      Córcoles, L.; Abad, J.; Padilla, J.; Urbina, A. Wavelength Influence on the Photodegradation of P3HT:PCBM Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 141, 423428,  DOI: 10.1016/j.solmat.2015.06.023
    16. 16
      Fernandes, R. V.; Bristow, N.; Stoichkov, V.; Anizelli, H. S.; Duarte, J. L.; Laureto, E.; Kettle, J. Development of Multidye UV Filters for OPVs Using Luminescent Materials. J. Phys. D: Appl. Phys. 2017, 50, 025103  DOI: 10.1088/1361-6463/50/2/025103
    17. 17
      Zhao, J.; Swinnen, A.; van Assche, G.; Manca, J.; Vanderzande, D.; van Mele, B. Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. J. Phys. Chem. B 2009, 113, 15871591,  DOI: 10.1021/jp804151a
    18. 18
      Bertho, S.; Janssen, G.; Cleij, T. J.; Conings, B.; Moons, W.; Gadisa, A.; D’Haen, J.; Goovaerts, E.; Lutsen, L.; Manca, J.; Vanderzande, D. Effect of Temperature on the Morphological and Photovoltaic Stability of Bulk Heterojunction Polymer:Fullerene Solar Cells. Sol. Energy Mater. Sol. Cells 2008, 92, 753760,  DOI: 10.1016/j.solmat.2008.01.006
    19. 19
      Yang, X.; Loos, J. Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control. Macromolecules 2007, 40, 13531362,  DOI: 10.1021/ma0618732
    20. 20
      Müller, C.; Bergqvist, J.; Vandewal, K.; Tvingstedt, K.; Anselmo, A. S.; Magnusson, R.; Alonso, M. I.; Moons, E.; Arwin, H.; Campoy-Quiles, M.; Inganäs, O. Phase Behaviour of Liquid-Crystalline Polymer/Fullerene Organic photovoltaic Blends: Thermal Stability and Miscibility. J. Mater. Chem. 2011, 21, 1067610684,  DOI: 10.1039/c1jm11239b
    21. 21
      Yang, X.; Van Duren, J. K. J.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Morphology and Thermal Stability of the Active Layer in Poly(p-Phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices. Macromolecules 2004, 37, 21512158,  DOI: 10.1021/ma035620+
    22. 22
      Reyes-Reyes, M.; Kim, K.; Carroll, D. L. High-Efficiency Photovoltaic Devices Based on Annealed Poly(3-Hexylthiophene) and 1-(3-Methoxycarbonyl)-Propyl-1- Phenyl-(6,6)C61 Blends. Appl. Phys. Lett. 2005, 87, 083506  DOI: 10.1063/1.2006986
    23. 23
      Lindqvist, C.; Sanz-Velasco, A.; Wang, E.; Bäcke, O.; Gustafsson, S.; Olsson, E.; Andersson, M. R.; Müller, C. Nucleation-Limited Fullerene Crystallisation in a Polymer-Fullerene Bulk-Heterojunction Blend. J. Mater. Chem. A 2013, 1, 71747180,  DOI: 10.1039/c3ta11018d
    24. 24
      Hindson, J. C.; Ulgut, B.; Friend, R. H.; Greenham, N. C.; Norder, B.; Kotlewski, A.; Dingemans, T. J. All-Aromatic Liquid Crystal Triphenylamine-Based Poly(Azomethine)s as Hole Transport Materials for Opto-Electronic Applications. J. Mater. Chem. 2010, 20, 937944,  DOI: 10.1039/B919159C
    25. 25
      Müller, C. On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability. Chem. Mater. 2015, 27, 27402754,  DOI: 10.1021/acs.chemmater.5b00024
    26. 26
      Laitinen, R.; Löbmann, K.; Strachan, C. J.; Grohganz, H.; Rades, T. Emerging Trends in the Stabilization of Amorphous Drugs. Int. J. Pharm. 2013, 453, 6579,  DOI: 10.1016/j.ijpharm.2012.04.066
    27. 27
      Bergqvist, J.; Lindqvist, C.; Bäcke, O.; Ma, Z.; Tang, Z.; Tress, W.; Gustafsson, S.; Wang, E.; Olsson, E.; Andersson, M. R.; Inganäs, O.; Müller, C. Sub-Glass Transition Annealing Enhances Polymer Solar Cell Performance. J. Mater. Chem. A 2014, 2, 61466152,  DOI: 10.1039/C3TA14165A
    28. 28
      Vandenbergh, J.; Conings, B.; Bertho, S.; Kesters, J.; Spoltore, D.; Esiner, S.; Zhao, J.; Van Assche, G.; Wienk, M. M.; Maes, W.; Lutsen, L.; Van Mele, B.; Janssen, R. A. J.; Manca, J.; Vanderzande, D. J. M. Thermal Stability of Poly[2-Methoxy-5-(2’-Phenylethoxy)-1,4-Phenylenevinylene] (MPE-PPV):Fullerene Bulk Heterojunction Solar Cells. Macromolecules 2011, 44, 84708478,  DOI: 10.1021/ma201911a
    29. 29
      Lindqvist, C.; Bergqvist, J.; Bäcke, O.; Gustafsson, S.; Wang, E.; Olsson, E.; Inganäs, O.; Andersson, M. R.; Müller, C. Fullerene Mixtures Enhance the Thermal Stability of a Non-Crystalline Polymer Solar Cell Blend. Appl. Phys. Lett. 2014, 104, 153301,  DOI: 10.1063/1.4870997
    30. 30
      de Zerio Mendaza, A. D.; Melianas, A.; Rossbauer, S.; Bäcke, O.; Nordstierna, L.; Erhart, P.; Olsson, E.; Anthopoulos, T. D.; Inganäs, O.; Müller, C. High-Entropy Mixtures of Pristine Fullerenes for Solution-Processed Transistors and Solar Cells. Adv. Mater. 2015, 27, 73257331,  DOI: 10.1002/adma.201503530
    31. 31
      de Zerio Mendaza, A. D.; Melianas, A.; Nugroho, F. A. A.; Bäcke, O.; Olsson, E.; Langhammer, C.; Inganäs, O.; Müller, C. A Fullerene Alloy Based Photovoltaic Blend with a Glass Transition Temperature above 200 °C. J. Mater. Chem. A 2017, 5, 41564162,  DOI: 10.1039/C6TA08106A
    32. 32
      Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L.; Sun, Y.; Ma, W.; Zhan, X. Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Adv. Mater. 2016, 28, 80218028,  DOI: 10.1002/adma.201602067
    33. 33
      An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile Ternary Organic Solar Cells: A Critical Review. Energy Environ. Sci. 2016, 9, 281322,  DOI: 10.1039/C5EE02641E
    34. 34
      Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J. Organic Ternary Solar Cells: A Review. Adv. Mater. 2013, 25, 42454266,  DOI: 10.1002/adma.201300623
    35. 35
      de Zerio, A. D.; Müller, C. Glass Forming Acceptor Alloys for Highly Efficient and Thermally Stable Ternary Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1702741,  DOI: 10.1002/aenm.201702741
    36. 36
      Li, Z.; Wong, H. C.; Huang, Z.; Zhong, H.; Tan, C. H.; Tsoi, W. C.; Kim, J. S.; Durrant, J. R.; Cabral, J. T. Performance Enhancement of Fullerene-Based Solar Cells by Light Processing. Nat. Commun. 2013, 4, 2227,  DOI: 10.1038/ncomms3227
    37. 37
      Piersimoni, F.; Degutis, G.; Bertho, S.; Vandewal, K.; Spoltore, D.; Vangerven, T.; Drijkoningen, J.; van Bael, M. K.; Hardy, A.; D’Haen, J.; Maes, W.; Vanderzande, D.; Nesladek, M.; Manca, J. Influence of Fullerene Photodimerization on the PCBM Crystallization in Polymer: Fullerene Bulk Heterojunctions under Thermal Stress. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 12091214,  DOI: 10.1002/polb.23330
    38. 38
      Diacon, A.; Derue, L.; Lecourtier, C.; Dautel, O.; Wantz, G.; Hudhomme, P. Cross-Linkable Azido C 60 -Fullerene Derivatives for Efficient Thermal Stabilization of Polymer Bulk-Heterojunction Solar Cells. J. Mater. Chem. C 2014, 2, 71631767,  DOI: 10.1039/C4TC01178C
    39. 39
      Miyanishi, S.; Tajima, K.; Hashimoto, K. Morphological Stabilization of Polymer Photovoltaic Cells by Using Cross-Linkable Poly(3-(5-Hexenyl)Thiophene). Macromolecules 2009, 42, 16101618,  DOI: 10.1021/ma802839a
    40. 40
      Kim, B. J.; Miyamoto, Y.; Ma, B.; Fréchet, J. M. J. Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Adv. Funct. Mater. 2009, 19, 22732281,  DOI: 10.1002/adfm.200900043
    41. 41
      Drees, M.; Hoppe, H.; Winder, C.; Neugebauer, H.; Sariciftci, N. S.; Schwinger, W.; Schäffler, F.; Topf, C.; Scharber, M. C.; Zhu, Z.; Gaudiana, R. Stabilization of the Nanomorphology of Polymer–Fullerene “Bulk Heterojunction” Blends Using a Novel Polymerizable Fullerene Derivative. J. Mater. Chem. 2005, 15, 51581563,  DOI: 10.1039/b505361g
    42. 42
      Richards, J. J.; Rice, A. H.; Nelson, R. D.; Kim, F. S.; Jenekhe, S. A.; Luscombe, C. K.; Pozzo, D. C. Modification of PCBM Crystallization via Incorporation of C60in Polymer/Fullerene Solar Cells. Adv. Funct. Mater. 2013, 23, 514522,  DOI: 10.1002/adfm.201201100
    43. 43
      Lindqvist, C.; Bergqvist, J.; Feng, C.-C.; Gustafsson, S.; Bäcke, O.; Treat, N. D.; Bounioux, C.; Henriksson, P.; Kroon, R.; Wang, E.; Sanz-Velasco, A.; Kristiansen, P. M.; Stingelin, N.; Olsson, E.; Inganäs, O.; Andersson, M. R.; Mülller, C. Fullerene Nucleating Agents: A Route towards Thermally Stable Photovoltaic Blends. Adv. Energy Mater. 2014, 4, 1301437,  DOI: 10.1002/aenm.201301437
    44. 44
      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 47344739,  DOI: 10.1002/adma.201600281
    45. 45
      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 11401151,  DOI: 10.1016/j.joule.2019.01.004
    46. 46
      Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K.-Y.; Marder, S. R.; Zhan, X. Non-Fullerene Acceptors for Organic Solar Cells. Nat. Rev. Mater. 2018, 3, 18003,  DOI: 10.1038/natrevmats.2018.3
    47. 47
      Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 34473507,  DOI: 10.1021/acs.chemrev.7b00535
    48. 48
      Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical Review of the Molecular Design Progress in Non-Fullerene Electron Acceptors towards Commercially Viable Organic Solar Cells. Chem. Soc. Rev. 2019, 48, 15961625,  DOI: 10.1039/C7CS00892A
    49. 49
      Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119128,  DOI: 10.1038/nmat5063
    50. 50
      Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; Röhr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; Anthopoulos, T. D.; Nelson, J.; Heeney, M. An Alkylated Indacenodithieno[3,2-b]Thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses. Adv. Mater. 2018, 30, 1705209,  DOI: 10.1002/adma.201705209
    51. 51
      Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C.-Z.; Russell, T. P.; Chen, H. An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Adv. Mater. 2018, 30, 1705208,  DOI: 10.1002/adma.201705208
    52. 52
      Lee, H. K. H.; Durrant, J. R.; Li, Z.; Tsoi, W. C. Stability Study of Thermal Cycling on Organic Solar Cells. J. Mater. Res. 2018, 33, 19021908,  DOI: 10.1557/jmr.2018.167
    53. 53
      Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z.; Hou, J. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules 2012, 45, 96119617,  DOI: 10.1021/ma301900h
    54. 54
      Developing Solid Oral Dosage Forms, Qiu, Y., Chen, Y., Zhang, G. G., Yu, L., Mantri, R. V.; Academic Press, 2009.
    55. 55
      Sun, Y.; Zhu, L.; Wu, T.; Cai, T.; Gunn, E. M.; Yu, L. Stability of Amorphous Pharmaceutical Solids: Crystal Growth Mechanisms and Effect of Polymer Additives. AAPS J. 2012, 14, 380388,  DOI: 10.1208/s12248-012-9345-6
    56. 56
      Martín, J.; Stingelin, N.; Cangialosi, D. Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer. J. Phys. Chem. Lett. 2018, 9, 990995,  DOI: 10.1021/acs.jpclett.7b03110
    57. 57
      Sharma, A.; Pan, X.; Campbell, J. A.; Andersson, M. R.; Lewis, D. A. Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells. Macromolecules 2017, 50, 33473354,  DOI: 10.1021/acs.macromol.7b00430
    58. 58
      Nugroho, F. A. A.; Diaz de Zerio Mendaza, A.; Lindqvist, C.; Antosiewicz, T. J.; Müller, C.; Langhammer, C. Plasmonic Nanospectroscopy for Thermal Analysis of Organic Semiconductor Thin Films. Anal. Chem. 2017, 89, 25752582,  DOI: 10.1021/acs.analchem.6b04807
    59. 59
      Grzybowska, K.; Paluch, M.; Grzybowski, A.; Wojnarowska, Z.; Hawelek, L.; Kolodziejczyk, K.; Ngai, K. L. Molecular Dynamics and Physical Stability of Amorphous Anti-Inflammatory Drug: Celecoxib. J. Phys. Chem. B 2010, 114, 1279212801,  DOI: 10.1021/jp1040212
    60. 60
      Kissi, E. O.; Grohganz, H.; Löbmann, K.; Ruggiero, M. T.; Zeitler, J. A.; Rades, T. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. J. Phys. Chem. B 2018, 122, 28032808,  DOI: 10.1021/acs.jpcb.7b10105
    61. 61
      Sibik, J.; Löbmann, K.; Rades, T.; Zeitler, J. A. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy. Mol. Pharmaceutics 2015, 12, 30623068,  DOI: 10.1021/acs.molpharmaceut.5b00330
    62. 62
      Kaminska, E.; Tarnacka, M.; Kaminski, K.; Ngai, K. L.; Paluch, M. Changes in Dynamics of the Glass-Forming Pharmaceutical Nifedipine in Binary Mixtures with Octaacetylmaltose. Eur. J. Pharm. Biopharm. 2015, 97, 185191,  DOI: 10.1016/j.ejpb.2015.09.010
    63. 63
      Dudognon, E.; Danède, F.; Descamps, M.; Correia, N. T. Evidence for a New Crystalline Phase of Racemic Ibuprofen. Pharm. Res. 2008, 25, 28532858,  DOI: 10.1007/s11095-008-9655-7
    64. 64
      Nath, R.; el Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R. Relaxation in the Glass Former Acetylsalicylic Acid Studied by Deuteron Magnetic Resonance and Dielectric Spectroscopy. Phys. Rev. E 2006, 74, 021506  DOI: 10.1103/PhysRevE.74.021506
    65. 65
      Zhao, W.; Zhang, S.; Hou, J. Realizing 11.3% Efficiency in Fullerene-Free Polymer Solar Cells by Device Optimization. Sci. China Chem. 2016, 59, 15741582,  DOI: 10.1007/s11426-016-0198-0
    66. 66
      Lin, Y.; Jin, Y.; Dong, S.; Zheng, W.; Yang, J.; Liu, A.; Liu, F.; Jiang, Y.; Russell, T. P.; Zhang, F.; Huang, F.; Hou, L. Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Adv. Energy Mater. 2018, 8, 1701942,  DOI: 10.1002/aenm.201701942
    67. 67
      Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the Open-Circuit Voltage to Interface Molecular Properties of Donor:Acceptor Bulk Heterojunction Solar Cells. Phys. Rev. B 2010, 81, 125204,  DOI: 10.1103/PhysRevB.81.125204
    68. 68
      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 11701174,  DOI: 10.1002/adma.201404317
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.9b04554.

    • NMR; first heating DSC thermograms; out-of-plane integration of GIWAXS images; qualitative maps of AFM images; Raman spectroscopy; normalized UV–vis absorption; SEM images; polarized optical microscopy; normalized sensitive EQEPV spectra; device parameters; composite contour plot; a plot summarizing PCE of devices (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE