ACS Publications. Most Trusted. Most Cited. Most Read
Hierarchical TiO2:Cu2O Nanostructures for Gas/Vapor Sensing and CO2 Sequestration
My Activity

Figure 1Loading Img
    Research Article

    Hierarchical TiO2:Cu2O Nanostructures for Gas/Vapor Sensing and CO2 Sequestration
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2019, 11, 51, 48466–48475
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.9b18824
    Published November 25, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We investigate the effect of high-surface-area self-assembled TiO2:Cu2O nanostructures for CO2 and relative humidity gravimetric detection using polyethylenimine (PEI), 1-ethyl-3-methylimidazolium (EMIM), and polyacrylamide (PAAm). Introduction of hierarchical TiO2:Cu2O nanostructures on the surface of quartz crystal microbalance sensors is found to significantly improve sensitivity to CO2 and to H2O vapor. The response of EMIM to CO2 increases fivefold for 100 nm-thick TiO2:Cu2O as compared to gold. At ambient CO2 concentrations, the hierarchical assembly operates as a sensor with excellent reversibility, while at higher pressures, the CO2 desorption rate decreases, suggesting possible application for CO2 sequestration under these conditions. The gravimetric response of PEI to CO2 increases by a factor of 3 upon introduction of a 50 nm TiO2:Cu2O layer. The PAAm gravimetric response to water vapor also increases by a factor of 3 and displays improved reversibility with the addition of 50 nm TiO2:Cu2O structures. We found that TiO2:Cu2O can be used to lower the detection limits for CO2 sensing with EMIM and PEI and lower the detection limits for H2O sensing with PAAm by over a factor of 2. Coarse-grained and all-atom molecular dynamics simulations indicate the dissociative character of ionic liquid assembly on TiO2:Cu2O interfaces and different distributions of CO2 and H2O molecules on bare and ionic liquid-coated surfaces, confirming experimental observations. Overall, our results show high potential of hierarchical assemblies of TiO2:Cu2O/room temperature ionic liquid and polymer films for sensors and CO2 sequestration.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.9b18824.

    • Z-contrast STEM and integrated EELS spectrum images; changes in the fundamental frequency of 5 MHz QCM crystals coated with TiO2, Cu2O, and TiO2:Cu2O; in-plane charge-distribution snapshot; CO2 and water adsorption; mean square displacement; snapshot of the simulation after 6 ns; XRD pattern; and CG and atomistic MD simulations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 21 publications.

    1. Monojoy Goswami, Miguel Toro-González, Jisue Moon, Sandra Davern. Precision Atomistic Structures of Actinium-/Radium-/Barium-Doped Lanthanide Nanoconstructs for Radiotherapeutic Applications. ACS Nano 2024, 18 (26) , 16577-16588. https://doi.org/10.1021/acsnano.3c13213
    2. Georgios Polizos, Monojoy Goswami, Jong K. Keum, Lilin He, Charl J. Jafta, Jaswinder Sharma, Yangyang Wang, Logan T. Kearney, Runming Tao, Jianlin Li. Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes. ACS Nano 2024, 18 (4) , 2750-2762. https://doi.org/10.1021/acsnano.3c03901
    3. Yihe Zhao, Zhikang Li, Yong Xia, Qinxiang Jia, Libo Zhao, Roya Maboudia. Advances in Micro- and Nano-scale Resonant Mass-sensitive Gas Sensors: Mechanisms, Materials, Functionalization and Applications. Sensors and Actuators B: Chemical 2025, 13 , 137415. https://doi.org/10.1016/j.snb.2025.137415
    4. Muhammad Faheem, Beriham Basha, M.S. Al-Buriahi, Z.A. Alrowaili, K. Mahmood, A. Ali, Muhammad Ramzan Khawar, Chungyeon Cho, Dongwhi choi, S. Hussain. Interfacial studies of Cu2O/TiO2 junction deposited at different electropotentials. Results in Physics 2024, 64 , 107896. https://doi.org/10.1016/j.rinp.2024.107896
    5. Davide Molino, Giuseppe Ferraro, Stefania Lettieri, Pietro Zaccagnini, Marco Etzi, Carmela Astorino, Eugenio De Nardo, Mattia Bartoli, Andrea Lamberti, Candido Fabrizio Pirri, Sergio Bocchini. Enhanced CO₂ Detection Using Potentiometric Sensors Based on PIM‐1/DBU Imidazolate Membranes. Advanced Sustainable Systems 2024, 2 https://doi.org/10.1002/adsu.202400415
    6. Zikang Qin, Yulei Ma, Jing Wei, Hongfang Guo, Bangda Wang, Jing Deng, Chunhai Yi, Nanwen Li, Shouliang Yi, Yi Deng, Wentao Du, Jian Shen, Wenju Jiang, Lu Yao, Lin Yang, Zhongde Dai. Recent progress in ternary mixed matrix membranes for CO2 separation. Green Energy & Environment 2024, 9 (5) , 831-858. https://doi.org/10.1016/j.gee.2023.04.008
    7. Teja Kuruganti, Pooran K. Joshi, Monojoy Goswami. Simulation of two nanoparticle melting to understand the conductivity drop of 3D-printed silver nanowires. Materials & Design 2023, 236 , 112502. https://doi.org/10.1016/j.matdes.2023.112502
    8. Walid Belaid, Amina Houimi, Shrouk E. Zaki, Mohamed A. Basyooni. Sol-Gel Production of Semiconductor Metal Oxides for Gas Sensor Applications. 2023https://doi.org/10.5772/intechopen.111844
    9. Neeraj Kumar, Tushar Kumar, Deepak Kumar, Mohammad Shariq, Hussain J. Alathlawi, E. El-Bialy, Inas A. Ahmed, Noura E. Alhazmi, Eman Almutib, Mohd Shakir Khan. A comparative study of Polarimetric sensing with freestanding n-type porous silicon and porous alumina membrane. Materials Chemistry and Physics 2023, 301 , 127575. https://doi.org/10.1016/j.matchemphys.2023.127575
    10. Chao Zhang, Kaichun Xu, Kewei Liu, Jinyong Xu, Zichen Zheng. Metal oxide resistive sensors for carbon dioxide detection. Coordination Chemistry Reviews 2022, 472 , 214758. https://doi.org/10.1016/j.ccr.2022.214758
    11. Tongle Gao, Ting-Ting Li, Xilin Liao, Jia-Horng Lin, Bing-Chiuan Shiu, Ching-Wen Lou. Construction of Cu2O/TiO2 heterojunction photoelectrodes for photoelectrochemical determination of glucose. Journal of Materials Research and Technology 2022, 21 , 798-809. https://doi.org/10.1016/j.jmrt.2022.09.043
    12. Qijie Chang, Daofu Wu, Yanyi Huang, Chengyao Liang, Libo Liu, Huanbin Liu, Yan Liu, Jing Qiu, Xiaosheng Tang, Genquan Han. All-inorganic lead-free Cs2XCl6 (X = Hf, Zr, Te) perovskites for humidity detection. Applied Surface Science 2022, 603 , 154423. https://doi.org/10.1016/j.apsusc.2022.154423
    13. X. Zhang, N. Qin, E. Ye, G. Guan, M. Y. Han, Z. Li. Nanotechnology for CO2 Capture, Storage, and Conversion. 2022, 65-116. https://doi.org/10.1039/9781839165771-00065
    14. Z. Jin, H. Mei, H. Liu, L. Pan, Y. Yan, L. Cheng. High-strength, superhydrophilic/underwater superoleophobic multifunctional ceramics for high efficiency oil-water separation and water purification. Materials Today Nano 2022, 18 , 100199. https://doi.org/10.1016/j.mtnano.2022.100199
    15. Hayato Goto, Hikaru Masegi, Shivaji B. Sadale, Kei Noda. Intricate behaviors of gas phase CO2 photoreduction in high vacuum using Cu2O-loaded TiO2 nanotube arrays. Journal of CO2 Utilization 2022, 59 , 101964. https://doi.org/10.1016/j.jcou.2022.101964
    16. Lei Qi, Mei Wang, Jianbin Xue, Qiyuan Zhang, Feng Chen, Qianqian Liu, Wanfei Li, Xinheng Li. Simultaneous Tuning Band Gaps of Cu 2 O and TiO 2 to Form S‐Scheme Hetero‐Photocatalyst. Chemistry – A European Journal 2021, 27 (59) , 14638-14644. https://doi.org/10.1002/chem.202102120
    17. Min Liu, Haoran Li, Lan Bai, Kai Zheng, Zhipeng Zhao, Zhao Chen, Seik Weng Ng, Liwen Ding, Chenghui Zeng. Real-time and visual sensing devices based on pH-control assembled lanthanide-barium nano-cluster. Journal of Hazardous Materials 2021, 413 , 125291. https://doi.org/10.1016/j.jhazmat.2021.125291
    18. Linfeng Bai, Kezhu Xu, Wanquan Jiang, Min Sang, Qunling Fang, Shouhu Xuan, Xinglong Gong. Spatially ensemble of polydopamine-protected-Au nanocrystals on Fe3O4@SiO2@γ-AlOOH microflower for improving catalytic performance. Applied Surface Science 2021, 543 , 148750. https://doi.org/10.1016/j.apsusc.2020.148750
    19. Monika Gupta, Huzein Fahmi Hawari, Pradeep Kumar, Zainal Arif Burhanudin, Nelson Tansu. Functionalized Reduced Graphene Oxide Thin Films for Ultrahigh CO2 Gas Sensing Performance at Room Temperature. Nanomaterials 2021, 11 (3) , 623. https://doi.org/10.3390/nano11030623
    20. Hui Mei, Shixiang Zhou, Mingyang Lu, Yong Zhao, Laifei Cheng. Construction of pine-branch-like α-Fe2O3/TiO2 hierarchical heterostructure for gas sensing. Ceramics International 2020, 46 (11) , 18675-18682. https://doi.org/10.1016/j.ceramint.2020.04.181
    21. Feifan Yang, Yibang Fan, Jingjie Li, Hongyuan Fu, Guojiao Xiang, Wenbo Peng, Yijian Zhou, Yang Zhao, Zhiqiang Zhen, Gaoqiang Deng, Hui Wang. Effects of Oxygen Flow Rates on the Physical Characteristics of Magnetron Sputtered Single-Phase Polycrystalline Cu2O Films. Materials Research 2020, 23 (6) https://doi.org/10.1590/1980-5373-mr-2020-0275

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2019, 11, 51, 48466–48475
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsami.9b18824
    Published November 25, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    1318

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.